JPH0572039A - Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function - Google Patents
Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting functionInfo
- Publication number
- JPH0572039A JPH0572039A JP23470591A JP23470591A JPH0572039A JP H0572039 A JPH0572039 A JP H0572039A JP 23470591 A JP23470591 A JP 23470591A JP 23470591 A JP23470591 A JP 23470591A JP H0572039 A JPH0572039 A JP H0572039A
- Authority
- JP
- Japan
- Prior art keywords
- fluorescence
- wavelength
- λex
- λem
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は試料固有のスペクトル測
定に用いる分光蛍光光度計に係り、特にそのスペクトル
補正の技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrofluorometer used for measuring a spectrum specific to a sample, and more particularly to a technique for correcting its spectrum.
【0002】[0002]
【従来の技術】分光蛍光光度計は、光源から放射される
光線が励起側分光器にて波長設定され、その波長設定さ
れた単色光が試料セル内の測定試料を照射,励起し、試
料から発光した蛍光を蛍光側分光器及び蛍光検知器を介
して検出して、蛍光(励起・発光)スペクトルを測定す
る。2. Description of the Related Art In a spectrofluorometer, a light beam emitted from a light source has its wavelength set by an excitation-side spectroscope, and the monochromatic light having the wavelength set irradiates and excites a measurement sample in a sample cell. The emitted fluorescence is detected via a fluorescence side spectroscope and a fluorescence detector to measure a fluorescence (excitation / emission) spectrum.
【0003】蛍光スペクトルは、励起光の強度Iex
(λ)と蛍光分子の吸光係数εex(λ)との積に比例
するため、どの波長に設定しても一定の励起光強度が得
られるような理想的な測定系で蛍光スペクトルを観察す
るのが望ましい。しかし、実際の測定系では励起光強度
Iex(λ)は波長とともに変動し、その変動は光源や
分光器の種類,装置の経年変化等いわゆる装置の個性に
大きく依存する。このことは、励起側だけでなく、蛍光
側においてもその分光器や検知器の感度特性等に個性が
あるため同様のことがいえる。従って、検知器に表れる
蛍光スペクトルは見かけ上のものとなる。真のスペクト
ルを求めるには、上記の装置の個性(装置関数,波長特
性ともいう)を考慮したスペクトル補正を行うことが必
要となる。The fluorescence spectrum is the intensity Iex of the excitation light.
Since it is proportional to the product of (λ) and the extinction coefficient εex (λ) of the fluorescent molecule, it is necessary to observe the fluorescence spectrum with an ideal measurement system that can obtain a constant excitation light intensity at any wavelength. Is desirable. However, in an actual measurement system, the excitation light intensity Iex (λ) fluctuates with wavelength, and the fluctuation largely depends on the so-called individuality of the device such as the type of the light source or the spectroscope and the secular change of the device. This can be said to be similar not only on the excitation side but also on the fluorescence side, because the sensitivity characteristics of the spectroscope and the detector are unique. Therefore, the fluorescence spectrum appearing on the detector is apparent. In order to obtain a true spectrum, it is necessary to perform spectrum correction in consideration of the above-mentioned device characteristics (also called device function or wavelength characteristic).
【0004】この種のスペクトル補正の従来技術として
は、例えば特開平2−259533号公報等に開示され
るようにフォトダイオードを用いてスペクトル補正を行
うもの等種々提案されているが、従来より最も高感度で
信頼できるスペクトル補正技術として評価されているも
のに、木下、御橋編「蛍光測定」(学会出版センタ−)
2章.4「見かけ」の蛍光スペクトルと「真」の蛍光ス
ペクトル(63頁から70頁)において論じられている
ように、励起側については光量子計法、蛍光側について
は、光量子計法と標準光源を用いる方法を併用したもの
がある。Various prior arts of this type of spectrum correction have been proposed, such as the one in which spectrum correction is performed by using a photodiode as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-259533. "Fluorescence measurement" edited by Kinoshita and Mihashi, which has been evaluated as a highly sensitive and reliable spectrum correction technology (Academic Publication Center)
Chapter 2. 4. As discussed in "Apparent" Fluorescence Spectra and "True" Fluorescence Spectra (pages 63 to 70), the photon meter method is used for the excitation side and the photon meter method and the standard light source are used for the fluorescence side. There is a combination of methods.
【0005】ここで、上記文献に記載されたスペクトル
補正について説明する。Here, the spectrum correction described in the above document will be described.
【0006】〔励起側の補正〕励起側の補正に用いる光
量子計法は、高濃度のローダミンBの溶液が600nm
までの波長域において充分に高い吸光度を示す性質を利
用する。実際には、ローダミンB溶液を三角セルに入れ
試料ホルダーにセットし、蛍光側の分光器の波長を61
5nmより長波長側に設定し(発光の内部遮蔽効果の影
響を抑えるためである)、励起側分光器の波長を走査し
て光検出器からの信号を記録し励起光強度の波長特性を
求め、これに基づき一定の励起光強度に相当する補正を
行う。[Correction on the Excitation Side] The photonmeter method used for the correction on the excitation side is 600 nm for a high-concentration rhodamine B solution.
Utilizing the property of exhibiting sufficiently high absorbance in the wavelength range up to. Actually, put the Rhodamine B solution in a triangular cell and set it in the sample holder, and set the wavelength of the spectroscope on the fluorescence side to 61.
It is set to a wavelength side longer than 5 nm (to suppress the influence of the internal blocking effect of light emission), the wavelength of the excitation side spectroscope is scanned, the signal from the photodetector is recorded, and the wavelength characteristic of the excitation light intensity is obtained. Based on this, a correction corresponding to a constant excitation light intensity is performed.
【0007】〔蛍光側の補正〕蛍光側の補正では、前記
光量子計法と標準光源を用いる方法が併用される。標準
光源を用いる方法は、黒体輻射を基準にして分光出力特
性が正確に求められている標準タングステンランプ若し
くはこのランプをもとに校正された二次標準ランプ(副
標準光源)を用い、ランプの放射光を蛍光側分光器で波
長走査しつつ検知することで、蛍光側の波長特性を求め
る。この標準光源方法は600nmより長波長側の領域
の蛍光側の波長特性を知る上で現在のところ信頼できる
唯一の方法とされている。[Correction on Fluorescence Side] In the correction on the fluorescence side, the above-described photon counting method and a method using a standard light source are used together. The method using the standard light source is to use a standard tungsten lamp whose spectral output characteristics are accurately determined based on black body radiation or a secondary standard lamp (sub-standard light source) calibrated based on this lamp. The wavelength characteristic on the fluorescence side is obtained by detecting the radiated light of 1 while scanning the wavelength with the fluorescence side spectroscope. At present, this standard light source method is considered to be the only reliable method for knowing the wavelength characteristic on the fluorescence side in the region longer than 600 nm.
【0008】そして、600nm以下の領域はローダミ
ンB溶液を用いた光量子計法でカバーしている。すなわ
ち、まず上記の励起側で用いたローダミンBの要領で励
起光の分光特性Iex(λ)を求める。次に試料ホルダ
ー位置に光拡散素子をセットして、励起光を導きつつ励
起側と蛍光側の分光器を同じ波長で走査して検出器の出
力H(λi)を計る。このH(λi)とIex(λ)の
比から600nm以下の蛍光側の波長特性が求まる。The region of 600 nm or less is covered by the photon measurement method using the Rhodamine B solution. That is, first, the spectral characteristic Iex (λ) of the excitation light is obtained by the procedure of Rhodamine B used on the excitation side. Next, a light diffusing element is set at the position of the sample holder, and the excitation side and the fluorescence side spectroscopes are scanned at the same wavelength while guiding the excitation light, and the output H (λi) of the detector is measured. From this ratio of H (λi) and Iex (λ), the wavelength characteristic on the fluorescence side of 600 nm or less can be obtained.
【0009】[0009]
【発明が解決しようとする課題】上記従来技術では、蛍
光側については、ロ−ダミンBを用いた光量子計法と標
準光源を用いる方法との併用により、通常の分光蛍光光
度計の測定波長域(200〜900nm)に対する光度
計の波長特性を求めることができるが、励起側について
は、ロ−ダミンBを用いた光量子計法以外、信頼できる
有効な方法がないため、200〜600nmの範囲外に
ついては波長特性を求めることができない。従って、装
置全体としてみれば、600nm以上の波長域で充分な
スペクトル補正を伴いつつ試料分析を行うことができな
い。In the above-mentioned prior art, on the fluorescence side, the measurement wavelength range of a usual spectrofluorophotometer is obtained by the combined use of the photon meter method using Rhodamine B and the method using a standard light source. The wavelength characteristic of the photometer for (200-900 nm) can be obtained, but there is no reliable and effective method other than the photon-meter method using Rhodamin B on the excitation side, so that it is outside the range of 200-600 nm. For, the wavelength characteristics cannot be obtained. Therefore, as a whole of the apparatus, it is impossible to perform sample analysis in the wavelength range of 600 nm or more with sufficient spectrum correction.
【0010】本発明は以上の点に鑑みてなされ、その目
的は、分光蛍光光度計において、前述したような励起側
についても蛍光側と同様に例えば600nm以上の波長
特性を高精度に、しかも蛍光側の波長特性測定に用いた
既存の標準光源又は副標準光源を利用して求め、測定対
象波長ひいては試料の測定レンジを広げることができる
スペクトル補正技術を提供することにある。The present invention has been made in view of the above points, and it is an object of the present invention to provide a spectrofluorometer with a highly accurate wavelength characteristic of, for example, 600 nm or more on the excitation side as well as the fluorescence side. It is an object of the present invention to provide a spectrum correction technique which can be obtained by using an existing standard light source or sub-standard light source used for measuring the wavelength characteristic of the side, and which can widen the measurement target wavelength and thus the measurement range of the sample.
【0011】[0011]
【課題を解決するための手段】本発明は上記目的を達成
するために、基本的には次のようなスペクトル補正技術
を提案する。In order to achieve the above object, the present invention basically proposes the following spectrum correction technique.
【0012】すなわち、光源、励起側分光器、蛍光側分
光器、蛍光検知器、蛍光信号値(蛍光スペクトル値)か
ら測定結果を算出する演算器を備えた分光蛍光光度計の
スペクトル補正を行う場合に、所定の波長領域(例えば
600nm以上或いはその近くの値以上の波長領域)の
蛍光側光学系の波長特性を標準光源又は副標準光源を利
用して求め、且つ前記所定の波長領域について前記励起
側分光器,蛍光側分光器により励起側,蛍光側の両波長
を一致させながら同時走査して蛍光スペクトルを測定
し、この測定された蛍光スペクトル値と前記標準光源
(又は副標準光源)を利用して求めた前記蛍光側光学系
の波長特性との比演算により前記所定の波長領域におけ
る励起側光学系の波長特性を算出し、以上のようにして
求まる励起側光学系の波長特性及び蛍光側波長特性に基
づきスペクトル補正関数を定める(これを第1の課題解
決手段とする)。That is, when performing spectrum correction of a spectrofluorometer equipped with a light source, an excitation-side spectroscope, a fluorescence-side spectroscope, a fluorescence detector, and a calculator for calculating a measurement result from a fluorescence signal value (fluorescence spectrum value) In addition, the wavelength characteristic of the fluorescence side optical system in a predetermined wavelength range (for example, a wavelength range of 600 nm or more or a value close thereto) is obtained by using a standard light source or a sub-standard light source, and the excitation is performed for the predetermined wavelength range. Side spectroscope and fluorescence side spectroscope simultaneously measure both fluorescence wavelengths on the excitation side and the fluorescence side to measure the fluorescence spectrum, and use the measured fluorescence spectrum value and the standard light source (or sub-standard light source) The wavelength characteristic of the excitation side optical system in the predetermined wavelength region is calculated by the ratio calculation with the wavelength characteristic of the fluorescence side optical system obtained in the above, and the excitation side optical system is obtained as described above. Determining the spectral correction function based on the length properties and fluorescence side wavelength characteristic (referred to as first means for solving problems).
【0013】さらに、その応用として、上記の第1の課
題解決手段に加えて、光量子計法を併用して上記の所定
の領域以外の波長域(例えば600nm以下の波長域)
についての波長特性を求める手段を提案する。Further, as an application thereof, in addition to the above first means for solving the problems, a wavelength range other than the above-mentioned predetermined range (for example, a wavelength range of 600 nm or less) is used by using an optical quantum meter method in combination.
We propose a method to obtain the wavelength characteristic of.
【0014】すなわち、上記のような分光蛍光光度計の
スペクトル補正を行う場合に、まず、測定範囲の波長領
域λを第1,第2の波長領域λ1,λ2に分けておく
(λ1<λ2)。ここで、領域λ1,λ2は適宜任意に
選択され、例えば後述の実施例ではλ1が200〜50
0nm、λ2が500〜900nmとしてある。そし
て、上記の領域λ1,λ2を前提として、第1の波長領
域λ1の励起側光学系の波長特性Fex1(λEX)を
光量子計法により求める工程イ、第2の波長領域λ2の
蛍光側光学系の波長特性Fem2(λEM)を標準光源
又は副標準光源を利用して求める工程ロ、第1の波長領
域λ1及び第2の波長領域λ2の全波長領域について前
記励起側分光器,蛍光側分光器により励起側,蛍光側の
両波長を一致させながら同時走査して蛍光スペクトルを
測定する工程ハ、前記工程ハで測定された蛍光スペクト
ル値のうち第1の波長領域λ1に対応の測定値F1(λ
EX,λEM),第2の波長領域λ2に対応の測定値F
2(λEX,λEM)を分けて、測定値F1(λEX,
λEM)と前記工程イで求めた波長特性Fex1(λE
X)との比演算より第1の波長領域λ1の蛍光側光学系
の波長特性Fem1(λEM)を求め、一方、測定値F
2(λEX,λEM)と前記工程ロで求めた波長特性F
em2(λEM)との比演算により第2の波長領域λ2
の励起側光学系の波長特性Fex2(λEX)とを求め
る工程ニ、前記イ〜ニの工程により求まる各波長特性よ
り第1,第2の波長領域λ1,λ2ごとの励起側,蛍光
側各々のスペクトル補正関数Gex1(λEX)、Ge
m1(λEM)とGex2(λEX),Gem2(λE
M)を求める(これを第2の課題解決手段とする)。That is, when performing the spectrum correction of the spectrofluorophotometer as described above, first, the wavelength region λ of the measurement range is divided into the first and second wavelength regions λ1 and λ2 (λ1 <λ2). .. Here, the regions λ1 and λ2 are arbitrarily selected, and for example, in a later-described embodiment, λ1 is 200 to 50.
0 nm and λ2 are set to 500 to 900 nm. Then, on the premise of the above-mentioned regions λ1 and λ2, a step of obtaining the wavelength characteristic Fex1 (λEX) of the excitation side optical system in the first wavelength region λ1 by the photon counting method, the fluorescence side optical system in the second wavelength region λ2 For obtaining the wavelength characteristic Fem2 (λEM) of the above using a standard light source or a sub-standard light source, b, the excitation side spectroscope and the fluorescence side spectroscope for all wavelength regions of the first wavelength region λ1 and the second wavelength region λ2 Step c in which both the excitation side and the fluorescence side wavelengths are simultaneously scanned with each other to measure the fluorescence spectrum, and the measurement value F1 (corresponding to the first wavelength region λ1 among the fluorescence spectrum values measured in the step c) λ
EX, λEM), the measured value F corresponding to the second wavelength region λ2
2 (λEX, λEM) are divided and measured value F1 (λEX,
λEM) and the wavelength characteristic Fex1 (λE
X), the wavelength characteristic Fem1 (λEM) of the fluorescence side optical system in the first wavelength region λ1 is obtained by the ratio calculation, and the measured value F
2 (λEX, λEM) and the wavelength characteristic F obtained in the step b
The second wavelength region λ2 is calculated by the ratio calculation with em2 (λEM).
Of the wavelength characteristic Fex2 (λEX) of the excitation-side optical system, and the excitation side and the fluorescence side of each of the first and second wavelength regions λ1 and λ2 based on the wavelength characteristics obtained by the steps a to d. Spectral correction function Gex1 (λEX), Ge
m1 (λEM) and Gex2 (λEX), Gem2 (λE
M) is obtained (this is the second means for solving the problem).
【0015】さらにその応用として、上記第2の課題解
決手段のようにして求めた各波長領域λ1,λ2ごとの
補正関数、すなわちGex1(λEX),Gem1(λ
EM)とGex2(λEX),Gem2(λEM)を記
憶し、実測される蛍光スペクトル値の所属する波長領域
λ1,λ2に応じて上記補正関数Gex1(λEX),
Gem1(λEM)或いはGex2(λEX),Gem
2(λEM)のいずれかを読み出して見かけのスペクト
ル値の補正演算を行う手段を備えたスペクトル補正機能
付きの分光蛍光光度計を提案する(これを第3の課題解
決手段とする)。Further, as an application thereof, a correction function for each of the wavelength regions λ1 and λ2 obtained by the second problem solving means, that is, Gex1 (λEX), Gem1 (λ
EM) and Gex2 (λEX), Gem2 (λEM) are stored, and the correction functions Gex1 (λEX), Gex1 (λEX), according to the wavelength regions λ1, λ2 to which the actually measured fluorescence spectrum values belong.
Gem1 (λEM) or Gex2 (λEX), Gem
We propose a spectrofluorophotometer with a spectrum correction function, which is provided with a means for reading out any one of 2 (λEM) and performing a correction calculation of an apparent spectrum value (this will be referred to as a third means for solving problems).
【0016】[0016]
【作用】第1の課題解決手段の作用…標準光源又は副標
準光源から放射される光を蛍光側光学系の分光器で所定
の波長領域λで走査しつつ蛍光検知器で測定すると、結
果は、標準光源(副標準光源)の波長特性Fc(λE
M)と蛍光側光学系の波長特性Fem(λEM)との積
となり、Fc(λEM)が既知であることから比演算に
よりFem(λEM)が求まる。また、前記所定の波長
領域λについて励起側,蛍光側の両波長を一致させなが
ら同時走査して得た蛍光スペクトル値をF(λEX,λ
EM)とする。この蛍光スペクトル値F(λEX,λE
M)には、蛍光側光学系の波長特性Fem(λEM)の
ほかに励起側光学系の波長特性Fex(λEX)が含ま
れ、これを式で表せば、次式で表される。Operation of the first problem-solving means: When light emitted from the standard light source or the sub-standard light source is scanned by the spectroscope of the fluorescence side optical system in the predetermined wavelength region λ and measured by the fluorescence detector, the result is , Wavelength characteristics of standard light source (sub-standard light source) Fc (λE
M) becomes the product of the wavelength characteristic Fem (λEM) of the fluorescence side optical system, and Fc (λEM) is known, so that Fem (λEM) is obtained by the ratio calculation. Further, the fluorescence spectrum value obtained by simultaneous scanning while making both wavelengths on the excitation side and the fluorescence side coincide with each other in the predetermined wavelength region λ is F (λEX, λ
EM). This fluorescence spectrum value F (λEX, λE
M) includes the wavelength characteristic Fex (λEX) of the excitation side optical system in addition to the wavelength characteristic Fem (λEM) of the fluorescence side optical system, which is expressed by the following equation.
【0017】[0017]
【数2】 Fex(λEX)×Fem(λEM)=F(λEX,λEM) すなわち、Fem(λEM)及びF(λEX,λEM)
が既知であることから、上記式を成立させることで、波
長領域λにおける励起側波長特性Fex(λEX)をF
(λEX,λEM)とFem(λEM)との比演算によ
り算出できる。そして、このような600nm以上で信
頼できる標準光源又は副標準光源を用いる方法及び数2
式を用いることで、従来、光量子計法では測定できなか
った600nm以上の励起側光学系の波長特性を知り、
ひいてはこの600nm以上の励起側波長特性と蛍光側
波長特性に基づき励起側,蛍光側の双方の補正関数Ge
x(λEX),Gem(λEM)を求めることができる
(通常、補正関数は波長特性の逆数で表される)。Fex (λEX) × Fem (λEM) = F (λEX, λEM) That is, Fem (λEM) and F (λEX, λEM)
Is known, the pump side wavelength characteristic Fex (λEX) in the wavelength region λ can be defined as F by satisfying the above equation.
It can be calculated by the ratio calculation of (λEX, λEM) and Fem (λEM). Then, a method using a standard light source or a sub-standard light source that is reliable at 600 nm or more and
By using the formula, we know the wavelength characteristics of the excitation side optical system of 600 nm or more, which could not be measured by the conventional photon measurement method.
As a result, based on the excitation-side wavelength characteristic and the fluorescence-side wavelength characteristic of 600 nm or more, both the excitation-side and fluorescence-side correction functions Ge
x (λEX) and Gem (λEM) can be obtained (normally, the correction function is represented by the reciprocal of the wavelength characteristic).
【0018】第2の課題解決手段の作用…工程イ〜ハで
求めた、第1の波長領域λ1の励起側波長特性Fex1
(λEX)、第2の波長領域λ2の蛍光側波長特性Fe
m2(λEM)、測定対象の全波長領域λ1,λ2の蛍
光スペクトル値F1(λEX,λEM),F2(λE
X,λEM)は全て既存の信頼性の高い方法を用いて求
めることができる。Operation of the second means for solving the problem ... Excitation-side wavelength characteristic Fex1 of the first wavelength region λ1 obtained in steps I to C
(ΛEX), fluorescence-side wavelength characteristic Fe of the second wavelength region λ2
m2 (λEM), fluorescence spectrum values F1 (λEX, λEM), F2 (λE) in all wavelength regions λ1 and λ2 to be measured
X, λEM) can all be obtained by using the existing highly reliable method.
【0019】上記の既知の実測データFex1(λE
X)、Fem2(λEM)、(λEX,λEM),F2
(λEX,λEM)と、未知たる第1の波長領域λ1の
蛍光側波長特性Fem1(λEM)及び第2の波長領域
λ2の励起側波長特性Fex2(λEX)とには次式が
成立する。The above-mentioned known actual measurement data Fex1 (λE
X), Fem2 (λEM), (λEX, λEM), F2
The following expression holds for (λEX, λEM) and the unknown fluorescence-side wavelength characteristic Fem1 (λEM) of the first wavelength region λ1 and the excitation-side wavelength characteristic Fex2 (λEX) of the second wavelength region λ2.
【0020】[0020]
【数3】λ1について Fex1(λEX)×Fem1
(λEM)=F1(λEX,λEM) λ2について Fex2(λEX)×Fem2(λE
M)=F2(λEX,λEM) 上記式から、工程ニのように、既知データのF1(λE
X,λEM)とFex1(λEX)との比演算より第1
の波長領域λ1の蛍光側波長特性Fem1(λEM)を
求め、既知データのF2(λEX,λEM)とFem2
(λEM)との比演算により第2の波長領域λ2の励起
側光学系の波長特性Fex2(λEX)とが求められ
る。[Expression 3] About λ1 Fex1 (λEX) × Fem1
(ΛEM) = F1 (λEX, λEM) About λ2 Fex2 (λEX) × Fem2 (λE
M) = F2 (λEX, λEM) From the above formula, F1 (λE
X, λEM) and Fex1 (λEX) ratio calculation
Of the fluorescence side wavelength characteristic Fem1 (λEM) in the wavelength region λ1 of F2 (λEX, λEM) and Fem2 of known data.
The wavelength characteristic Fex2 (λEX) of the excitation-side optical system in the second wavelength region λ2 is obtained by the ratio calculation with (λEM).
【0021】そして、以上の全ての波長特性が求まるこ
とで、第1の波長領域λ1の励起側の補正関数Gex1
(λEX),蛍光側の補正関数Gem1(λEM)及び
第2の波長領域λ2の励起側の補正関数Gex2(λE
X),蛍光側の補正関数Gem2(λEM)を次のよう
にして求めることができる。Then, by obtaining all of the above wavelength characteristics, the correction function Gex1 on the excitation side of the first wavelength region λ1 is obtained.
(ΛEX), the correction function Gem1 (λEM) on the fluorescence side, and the correction function Gex2 (λE on the excitation side of the second wavelength region λ2.
X), the correction function Gem2 (λEM) on the fluorescence side can be obtained as follows.
【0022】[0022]
【数4】・λ1について、 Gex1(λEX)=Fex1(λA)/Fex1(λEX) Gem1(λEM)=Fem1(λA)/Fem1(λEM) ・λ2について Gex2(λEX)=Fex2(λA)/Fex2(λEX) Gem2(λEM)=Fem2(λA)/Fem2(λEM) λA:スペクトルの相対的形状を補正するために、見か
けのスペクトル値のうちの一つを基準として適当に選ん
だものなお、この第2の課題解決手段において述べた要
素のうち、λ2、Fex2(λEX),Fem2(λE
M),Gex2(λEX),Gem2(λEX)のそれ
ぞれが第1の課題解決手段で述べたλ,Fex(λE
X),Fem(λEM),Gex(λEX),Gem
(λEX)に相当する。For λ1, Gex1 (λEX) = Fex1 (λA) / Fex1 (λEX) Gem1 (λEM) = Fem1 (λA) / Fem1 (λEM) ・ For λ2 Gex2 (λEX) = Fex2 (λA) / Fex2 (ΛEX) Gem2 (λEM) = Fem2 (λA) / Fem2 (λEM) λA: A value appropriately selected with reference to one of the apparent spectral values in order to correct the relative shape of the spectrum. Among the elements described in the second means for solving problems, λ2, Fex2 (λEX), Fem2 (λE
M), Gex2 (λEX), and Gem2 (λEX) are respectively λ and Fex (λE) described in the first means for solving problems.
X), Fem (λEM), Gex (λEX), Gem
This corresponds to (λEX).
【0023】この課題解決手段によれば、従来の光量子
計法,標準光源(又は副標準光源)を利用した方法に比
べて、従来は200〜600nmまでの励起側・蛍光側
のスペクトル補正しかできなかったものを200〜90
0nmまでの励起側・蛍光側のスペクトル補正を可能に
する。According to this means for solving the problem, compared with the conventional photon-meter method and the method using the standard light source (or the sub-standard light source), only the excitation side / fluorescence side spectrum correction of 200 to 600 nm can be conventionally performed. What was not 200-90
Enables spectral correction of excitation side and fluorescence side up to 0 nm.
【0024】第3の課題解決手段の作用…上記の第2の
課題解決手段で求めたスペクトル補正関数Gex1(λ
EX),Gem1(λEM)とGex2(λEX),G
em(λEM)をスペクトル測定に用いた波長に応じて
記憶部から読み出すことで、自動的なスペクトルデータ
処理により真のスペクトルを演算できる。Operation of the third means for solving problems ... Spectral correction function Gex1 (λ
EX), Gem1 (λEM) and Gex2 (λEX), G
By reading em (λEM) from the storage unit according to the wavelength used for spectrum measurement, the true spectrum can be calculated by automatic spectrum data processing.
【0025】[0025]
【実施例】本発明の一実施例を図面に基づき説明する。An embodiment of the present invention will be described with reference to the drawings.
【0026】図1は本発明のスペクトル補正の一例を示
すフローチャート、図2はそのスペクトル補正に用いる
装置の波長特性を求めるための説明図、図3は図2に対
応する波形説明図、図4は本発明の適用対象となる分光
蛍光光度計の構成図である。FIG. 1 is a flow chart showing an example of the spectrum correction of the present invention, FIG. 2 is an explanatory view for obtaining wavelength characteristics of an apparatus used for the spectrum correction, FIG. 3 is a waveform explanatory view corresponding to FIG. 2, and FIG. [Fig. 3] is a configuration diagram of a spectrofluorophotometer to which the present invention is applied.
【0027】まず、図4により、分光蛍光光度計につい
て説明する。First, a spectrofluorometer will be described with reference to FIG.
【0028】図4において、光源1から放射される光線
は、励起側分光器2に入射する。励起側分光器2の設定
波長は、パルスモ−タ3によって変えられる。パルスモ
−タ3の動作は、コンピュ−タ4の中にあらかじめプロ
グラムされており、インタフェ−ス5を介して制御され
る。所期の励起波長を操作パネル6でキ−インすること
によって、励起側分光器2の波長が設定される。励起側
分光器によって取り出された単色光は、試料セル7内の
測定試料8を照射し、試料8から放射された蛍光は蛍光
側分光器9に入射する。蛍光側分光器9はパルスモ−タ
10によって駆動されるが、その動作はパルスモ−タ3
と同様に、コンピュ−タ4により制御される。蛍光側分
光器9により選択された波長の蛍光は、検知器11に入
射し、電気信号に変換される。その電気信号は、アナロ
グ−デジタル変換器12によってデジタル信号に変えら
れる。一方、励起側分光器2から取り出された単色光の
一部は、光源光量モニタのためビ−ムスプリッタ13を
介して、モニタ検知器14に入射し、電気信号に変換さ
れる。この電気信号も、アナログ−デジタル変換器12
によってデジタル信号に変えられる。検知器11からの
デジタル信号(S)と、モニタ検知器14からのデジタ
ル信号(M)は、コンピュ−タ4に送られ、比(S/
M)が算出され、この比が各波長における蛍光強度とし
て、コンピュ−タ4に記憶される。In FIG. 4, the light beam emitted from the light source 1 enters the excitation side spectroscope 2. The set wavelength of the excitation side spectroscope 2 can be changed by the pulse motor 3. The operation of the pulse motor 3 is preprogrammed in the computer 4 and is controlled via the interface 5. The wavelength of the excitation side spectroscope 2 is set by keying in the desired excitation wavelength on the operation panel 6. The monochromatic light extracted by the excitation side spectroscope illuminates the measurement sample 8 in the sample cell 7, and the fluorescence emitted from the sample 8 enters the fluorescence side spectroscope 9. The fluorescence side spectroscope 9 is driven by the pulse motor 10, and its operation is the pulse motor 3.
Is controlled by the computer 4 in the same manner as. The fluorescence of the wavelength selected by the fluorescence-side spectroscope 9 enters the detector 11 and is converted into an electric signal. The electrical signal is converted into a digital signal by the analog-digital converter 12. On the other hand, part of the monochromatic light extracted from the excitation-side spectroscope 2 enters the monitor detector 14 via the beam splitter 13 for monitoring the light source light amount, and is converted into an electric signal. This electrical signal is also used by the analog-digital converter 12
Can be converted into a digital signal. The digital signal (S) from the detector 11 and the digital signal (M) from the monitor detector 14 are sent to the computer 4 and the ratio (S /
M) is calculated, and this ratio is stored in the computer 4 as the fluorescence intensity at each wavelength.
【0029】コンピュータ4には、後述のロ−ダミンB
による光量子計15(図2)を用いて求める第1の波長
領域λ1(λ1は200〜600nm)における励起側
光学系の波長特性(励起側波長特性)、副標準光源(図
3,標準光源により校正された2次ランプ)16を用い
て求める第2の波長領域λ2(λ2は500〜900n
m)の蛍光側光学系の波長特性(蛍光側波長特性)、及
びこれらの波長特性を利用して所定の関係式により第1
の波長領域λ1の蛍光側波長特性,第2の波長領域λ2
の励起側波長特性ひいてはスペクトル補正関数Gex1
(λEX),Gem1(λEM),Gex2(λE
X),Gem2(λEM)を求めるプログラムがコンピ
ュ−タ4内に記憶されている。求められた各波長領域λ
1,λ2の励起側、蛍光側の波長特性及び補正関数は、
コンピュ−タ4内のRAMに記憶され、未知試料の真の
スペクトル測定、算出に使われる。The computer 4 is equipped with a Rhodamine B, which will be described later.
Wavelength characteristic (excitation side wavelength characteristic) of the excitation side optical system in the first wavelength region λ1 (where λ1 is 200 to 600 nm) obtained using the photon meter 15 (FIG. 2) according to The second wavelength region λ2 (λ2 is 500 to 900 n) obtained by using the calibrated secondary lamp 16
m) the wavelength characteristic of the optical system on the fluorescence side (wavelength characteristic of the fluorescence side), and the first relation based on a predetermined relational expression using these wavelength characteristics.
Wavelength region λ1 fluorescence side wavelength characteristic, second wavelength region λ2
Excitation side wavelength characteristic and, by extension, spectrum correction function Gex1
(ΛEX), Gem1 (λEM), Gex2 (λE
X) and Gem2 (λEM) are stored in the computer 4. Each wavelength range λ obtained
The wavelength characteristics and the correction function of the excitation side and the fluorescence side of 1, λ2 are
It is stored in the RAM in the computer 4 and used for true spectrum measurement and calculation of an unknown sample.
【0030】次に、装置の波長特性及びスペクトル補正
関数を求める手順について、図1〜図3を用いて説明す
る。Next, the procedure for obtaining the wavelength characteristics and the spectrum correction function of the device will be described with reference to FIGS.
【0031】図1のステップS1〜S4に示すように、
波長特性及びスペクトル補正関数を求める手順は、4段
階に大別される。As shown in steps S1 to S4 of FIG.
The procedure for obtaining the wavelength characteristic and the spectrum correction function is roughly classified into four stages.
【0032】ステップS1では、ロ−ダミンBを用いて
第1の波長領域λ1(本例では200〜600nm)に
ついての励起側波長特性を測定する。これに相当するの
が図2の(a)で、ロ−ダミンBを入れた三角セル(光
量子計)15を試料セル位置にセットし、蛍光波長を6
40nmに固定しておく。このときに、励起側分光器2
を波長走査して200〜600nmについての励起スペ
クトルを測定すると、結果が図3(a)に示すような波
長領域λ1の励起側波長特性Fex1(λEX)とな
り、これをコンピュ−タ4に記憶する。In step S1, Rhodamine B is used to measure the wavelength characteristic on the excitation side in the first wavelength region λ1 (200 to 600 nm in this example). 2 (a) corresponds to this, in which the triangular cell (photometer) 15 containing rhodamine B is set at the sample cell position, and the fluorescence wavelength is set to 6
It is fixed at 40 nm. At this time, the excitation side spectroscope 2
When the excitation spectrum for 200 to 600 nm is measured by scanning the wavelength of the wavelength, the result becomes the excitation side wavelength characteristic Fex1 (λEX) of the wavelength region λ1 as shown in FIG. 3 (a), which is stored in the computer 4. ..
【0033】ステップS2では、副標準光源16によ
り、第2の波長領域λ2(本例では500〜900n
m)についての蛍光側波長特性を測定する。すなわち図
2の(b)に示すように、副標準光源16から放射され
る光線を蛍光側分光器9に入射させる。蛍光側分光器9
により500〜900nmまで波長走査して蛍光スペク
トルを測定すると、結果は、副標準光源16の波長特性
Fc(λEM)と蛍光側光学系の波長特性Fem2(λ
EM)との積となる。ここで使用する副標準光源16
は、タングステンランプを用いたもので、その波長特性
は2995°Kにおける黒体放射の式と一致することが
確かめられているものである。このため、Fc(λE
M)は既知であり、比演算により図3の(b)に示すよ
うなFem2(λEM)を求めることができ、これをコ
ンピュ−タ4内に記憶する。In step S2, the sub-standard light source 16 causes the second wavelength region λ2 (in this example, 500 to 900 n).
The wavelength characteristic on the fluorescence side for m) is measured. That is, as shown in FIG. 2B, the light beam emitted from the sub-standard light source 16 is made incident on the fluorescence side spectroscope 9. Fluorescence side spectroscope 9
When the fluorescence spectrum is measured by scanning the wavelength from 500 to 900 nm with the result, the result is the wavelength characteristic Fc (λEM) of the sub-standard light source 16 and the wavelength characteristic Fem2 (λ of the fluorescence side optical system.
EM). Sub-standard light source 16 used here
Is a tungsten lamp, and its wavelength characteristics have been confirmed to match the equation for black body radiation at 2995 ° K. Therefore, Fc (λE
M) is known, and Fem2 (λEM) as shown in FIG. 3B can be obtained by the ratio calculation, and this is stored in the computer 4.
【0034】ステップS3では、全波長域λ1,λ2に
ついて励起側、蛍光側両波長を、同一波長、同一速度で
走査したスペクトルを測定する。すなわち図2の(c)
に示すように、この場合には試料セル位置に拡散素子1
7をセットする。拡散素子17それ自体は波長依存性を
持たないため、結果は次式に示すように励起側分光器2
の波長特性と蛍光側分光器9の波長特性の積となる。こ
の測定結果は図3の(c)に示す。In step S3, a spectrum obtained by scanning both excitation-side and fluorescence-side wavelengths at the same wavelength and at the same speed for all wavelength ranges λ1 and λ2 is measured. That is, (c) of FIG.
In this case, as shown in FIG.
Set 7. Since the diffusing element 17 itself does not have wavelength dependence, the result is as shown in the following equation:
And the wavelength characteristic of the fluorescence side spectroscope 9. The measurement result is shown in FIG.
【0035】[0035]
【数5】λ1<500nmについて Fex1(λE
X)×Fem1(λEM)=F1(λEX,λEM) λ2>500nmについて Fex2(λEX)×Fe
m2(λEM)=F2(λEX,λEM) λEX=λEM 上記の内、Fex1(λEX)とFem2(λEM)は
前記の操作により既に求められているため、それらとF
1(λEX,λEM),F2(λEX,λEM)の比演
算によりFem1(λEM)とFex2(λEX)を求
める。## EQU5 ## For λ1 <500 nm, Fex1 (λE
X) × Fem1 (λEM) = F1 (λEX, λEM) For λ2> 500 nm Fex2 (λEX) × Fe
m2 (λEM) = F2 (λEX, λEM) λEX = λEM Among the above, Fex1 (λEX) and Fem2 (λEM) have already been obtained by the above operation, so
Fem1 (λEM) and Fex2 (λEX) are obtained by the ratio calculation of 1 (λEX, λEM) and F2 (λEX, λEM).
【0036】ステップ4では、以上の操作により求めら
れた波長特性から、励起側、蛍光側各々の全波長域λ
1,λ2にわたるスペクトル補正関数Gex1(λE
X)、Gem1(λEM)及びGex2(λEX),G
em2(λEM)を求める。In step 4, from the wavelength characteristics obtained by the above operation, the entire wavelength range λ of each of the excitation side and the fluorescence side is determined.
Spectral correction function Gex1 (λE
X), Gem1 (λEM) and Gex2 (λEX), G
Determine em2 (λEM).
【0037】これらのスペクトル補正関数は、未知試料
について測定した見かけのスペクトルに乗じることによ
り、真のスペクトルを求めるためのものである。蛍光光
度計で得られたスペクトルは、縦軸が任意単位であり、
ここで補正スペクトルと言っている意味は、強度につい
て絶対単位を与えるものではなく、スペクトルの相対的
な形状を補正すると言うことである。しかし、補正後の
値が補正前のものと大幅に違うことは好ましくないた
め、補正関数の値は1に近くなるように、適当な波長の
値が1となるように規格化する。この場合には、500
nmの値〔Fex1(500)、Fex2(500)、
Fem1(500)、Fem2(500)〕で各関数を
規格化し、次の式により補正関数を算出する。These spectrum correction functions are for obtaining the true spectrum by multiplying the apparent spectrum measured for the unknown sample. The spectrum obtained by the fluorometer is an arbitrary unit on the vertical axis,
The meaning referred to as a correction spectrum here does not give an absolute unit for the intensity, but means to correct the relative shape of the spectrum. However, it is not preferable that the value after correction is significantly different from the value before correction, and therefore the value of the correction function is normalized so that it becomes close to 1, and the value of the appropriate wavelength becomes 1. In this case, 500
nm value [Fex1 (500), Fex2 (500),
Fem1 (500), Fem2 (500)] standardizes each function, and a correction function is calculated by the following equation.
【0038】[0038]
【数6】・λ1(500nm以下)について Gex1(λEX)=Fex1(500)/Fex1(λEX) Gem1(λEM)=Fem1(500)/Fem1(λEM) ・λ2(500nm以上)について Gex2(λEX)=Fex2(500)/Fex2(λEX) Gem2(λEM)=Fem2(500)/Fem2(λEM) 以上のようにして求められたスペクトル補正関数は、コ
ンピュ−タ4内に記憶される。For λ1 (500 nm or less) Gex1 (λEX) = Fex1 (500) / Fex1 (λEX) Gem1 (λEM) = Fem1 (500) / Fem1 (λEM) ・ For λ2 (500 nm or more) Gex2 (λEX) = Fex2 (500) / Fex2 (λEX) Gem2 (λEM) = Fem2 (500) / Fem2 (λEM) The spectral correction function obtained as described above is stored in the computer 4.
【0039】そしてステップ5にて未知試料測定後、次
の式により補正スペクトルを求めるために使用される。After the unknown sample is measured in step 5, it is used to obtain a corrected spectrum by the following formula.
【0040】[0040]
【数7】・λ1について Ic(λEX、λEM)=I
(λEX、λEM)×Gex1(λEX)×Gem1
(λEM) ・λ2について Ic(λEX、λEM)=I(λE
X、λEM)×Gex2(λEX)×Gem2(λE
M) 上式でIcは補正スペクトル、Iは補正前のスペクトル
である。## EQU00007 ## Regarding .lambda.1 Ic (.lambda.EX, .lambda.EM) = I
(ΛEX, λEM) × Gex1 (λEX) × Gem1
(ΛEM) For λ2 Ic (λEX, λEM) = I (λE
X, λEM) × Gex2 (λEX) × Gem2 (λE
M) In the above formula, Ic is the corrected spectrum and I is the spectrum before the correction.
【0041】本実施例によれば、励起側,蛍光側の双方
の波長特性を200〜900nmにわたり信頼性の高い
方法により求め、これに基づく励起側及び蛍光側双方の
スペクトル補正関数をそれぞれ波長領域200〜500
nmと500〜900nmとの領域に分けてきめ細かく
設定して蛍光スペクトル値を精度良く補正演算でき、し
かも、コンピュータのデータ処理により真のスペクトル
を自動的に求める効果がある。According to the present embodiment, the wavelength characteristics on both the excitation side and the fluorescence side are obtained by a highly reliable method over 200 to 900 nm, and the spectrum correction functions on both the excitation side and the fluorescence side based on this are obtained in the wavelength range. 200-500
nm and 500 to 900 nm are finely set and the fluorescence spectrum value can be accurately corrected and calculated, and the true spectrum is automatically obtained by computer data processing.
【0042】[0042]
【発明の効果】以上のように本発明によれば、分光蛍光
光度計の励起側、蛍光側における波長特性ひいてはそれ
に基づくスペクトル補正関数を従来以上に広く求めしか
も信頼性の高い手法を用いて求めることができ、試料の
測定レンジを高精度を保ちつつ広げることができる。As described above, according to the present invention, the wavelength characteristics on the excitation side and the fluorescence side of the spectrofluorometer, and thus the spectrum correction function based on the wavelength characteristics, are obtained more widely than before, and a method with high reliability is used. Therefore, the measurement range of the sample can be expanded while maintaining high accuracy.
【図1】本発明のスペクトル補正の一例を示すフローチ
ャート。FIG. 1 is a flowchart showing an example of spectrum correction of the present invention.
【図2】上記スペクトル補正に用いる装置の波長特性を
求めるための説明図。FIG. 2 is an explanatory diagram for obtaining wavelength characteristics of a device used for the spectrum correction.
【図3】図2に対応する波形説明図。FIG. 3 is a waveform explanatory diagram corresponding to FIG.
【図4】本発明の適用対象となる分光蛍光光度計の構成
図。FIG. 4 is a configuration diagram of a spectrofluorophotometer to which the present invention is applied.
1…光源、2…励起側分光器、3…励起側パルスモー
タ、4…コンピュータ(スペクトル補正手段)、5…イ
ンターフェース、6…操作パネル、7…試料セル、8…
測定試料、9…蛍光側分光器、10…蛍光側パルスモー
タ、11…検知器、12…A/D変換器、13…ビーム
スプリッタ、14…モニタ検知器、15…光量子計、1
6…副標準光源、17…拡散素子。DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Excitation side spectroscope, 3 ... Excitation side pulse motor, 4 ... Computer (spectrum correction means), 5 ... Interface, 6 ... Operation panel, 7 ... Sample cell, 8 ...
Measurement sample, 9 ... Fluorescence side spectroscope, 10 ... Fluorescence side pulse motor, 11 ... Detector, 12 ... A / D converter, 13 ... Beam splitter, 14 ... Monitor detector, 15 ... Photoquantum meter, 1
6 ... Sub-standard light source, 17 ... Diffusing element.
Claims (6)
光検知器、蛍光信号値(蛍光スペクトル値)から測定結
果を算出する演算器を備えた分光蛍光光度計のスペクト
ル補正を行う場合に、所定の波長領域の蛍光側光学系の
波長特性を標準光源又は標準光源により校正された光源
(副標準光源)を利用して求め、且つ前記所定の波長領
域について前記励起側分光器,蛍光側分光器により励起
側,蛍光側の両波長を一致させながら同時走査して蛍光
スペクトルを測定し、この測定された蛍光スペクトル値
と前記標準光源又は副標準光源を利用して求めた前記蛍
光側光学系の波長特性との比演算により前記所定の波長
領域における励起側光学系の波長特性を算出し、この励
起側光学系の波長特性及び前記蛍光側光学系の波長特性
に基づきスペクトル補正関数を定めることを特徴とする
分光蛍光光度計のスペクトル補正方法。1. When performing spectrum correction of a spectrofluorometer equipped with a light source, an excitation-side spectroscope, a fluorescence-side spectroscope, a fluorescence detector, and a calculator that calculates a measurement result from a fluorescence signal value (fluorescence spectrum value). In addition, the wavelength characteristics of the fluorescence side optical system in a predetermined wavelength region are obtained by using a standard light source or a light source calibrated by a standard light source (sub-standard light source), and the excitation side spectroscope, fluorescence in the predetermined wavelength region. The excitation side and the fluorescence side are simultaneously scanned by the side spectroscope while measuring the fluorescence spectrum at the same time, and the measured fluorescence spectrum value and the fluorescence side obtained by using the standard light source or the sub-standard light source. The wavelength characteristic of the excitation side optical system in the predetermined wavelength region is calculated by a ratio calculation with the wavelength characteristic of the optical system, and the spectrum is calculated based on the wavelength characteristic of the excitation side optical system and the wavelength characteristic of the fluorescence side optical system. A spectral correction method for a spectrofluorophotometer, which comprises defining a correction function.
標準光源としてタングステンランプを用い、前記所定の
波長領域は600nmより長波長側の領域を含み、前記
励起側,蛍光側の両波長を一致させながらの同時走査に
よる蛍光スペクトル測定には光拡散素子を光路上にセッ
トして行うことを特徴とする分光蛍光光度計のスペクト
ル補正方法。2. The tungsten lamp is used as the standard light source or the sub-standard light source according to claim 1, wherein the predetermined wavelength region includes a region longer than 600 nm, and both the excitation side and the fluorescence side have the same wavelength. A spectral correction method for a spectrofluorometer, which comprises setting a light diffusing element on the optical path for fluorescence spectrum measurement by simultaneous scanning while performing.
光検知器、蛍光信号値(蛍光スペクトル値)から測定結
果を算出する演算器を備えた分光蛍光光度計のスペクト
ル補正を行う場合に、測定範囲の波長領域λを第1波長
領域λ1,λ2に分け(λ1<λ2)、 第1の波長領域λ1の励起側光学系の波長特性Fex1
(λEX)を光量子計法により求める工程イ、 第2の波長領域λ2の蛍光側光学系の波長特性Fem2
(λEM)を標準光源又は標準光源により校正された光
源(副標準光源)を利用して求める工程ロ、 第1の波長領域λ1及び第2の波長領域λ2の全波長領
域について前記励起側分光器,蛍光側分光器により励起
側,蛍光側の両波長を一致させながら同時走査して蛍光
スペクトルを測定する工程ハ、 前記工程ハで測定された蛍光スペクトル値のうち第1の
波長領域λ1に対応の測定値F1(λEX,λEM),
第2の波長領域λ2に対応の測定値F2(λEX,λE
M)を分けて、測定値F1(λEX,λEM)と前記工
程イで求めた波長特性Fex1(λEX)との比演算よ
り第1の波長領域λ1の蛍光側光学系の波長特性Fem
1(λEM)を求め、一方、測定値F2(λEX,λE
M)と前記工程ロで求めた波長特性Fem2(λEM)
との比演算により第2の波長領域λ2の励起側光学系の
波長特性Fex2(λEX)とを求める工程ニ、 前記イ〜ニの工程により求まる各波長特性より第1,第
2の波長領域λ1,λ2ごとの励起側,蛍光側各々のス
ペクトル補正関数Gex1(λEX)、Gem1(λE
M)とGex2(λEX),Gem2(λEM)を求め
ることを特徴とする分光蛍光光度計のスペクトル補正方
法。3. When performing spectrum correction of a spectrofluorometer equipped with a light source, an excitation-side spectroscope, a fluorescence-side spectroscope, a fluorescence detector, and a calculator that calculates a measurement result from a fluorescence signal value (fluorescence spectrum value). In addition, the wavelength region λ of the measurement range is divided into first wavelength regions λ1 and λ2 (λ1 <λ2), and the wavelength characteristic Fex1 of the excitation side optical system in the first wavelength region λ1
Step (a) of obtaining (λEX) by the photon measurement method, wavelength characteristic Fem2 of the fluorescence side optical system in the second wavelength region λ2
Step (b) for obtaining (λEM) by using a standard light source or a light source (sub-standard light source) calibrated by the standard light source, the excitation side spectroscope for all wavelength regions of the first wavelength region λ1 and the second wavelength region λ2 A step c of simultaneously scanning the fluorescence side spectroscope while matching both wavelengths on the excitation side and the fluorescence side to measure the fluorescence spectrum, which corresponds to the first wavelength region λ1 of the fluorescence spectrum values measured in the step c. Measured value F1 (λEX, λEM) of
The measured value F2 (λEX, λE corresponding to the second wavelength region λ2
M), and the wavelength characteristic Fem of the fluorescence-side optical system in the first wavelength region λ1 is calculated from the ratio calculation of the measured value F1 (λEX, λEM) and the wavelength characteristic Fex1 (λEX) obtained in step a.
1 (λEM) is obtained, while the measured value F2 (λEX, λE
M) and the wavelength characteristic Fem2 (λEM) obtained in the step B
And the wavelength characteristic Fex2 (λEX) of the excitation-side optical system in the second wavelength region λ2 by the ratio calculation with the first and second wavelength regions λ1 based on the respective wavelength characteristics obtained in the steps a to d. , Λ2 for each of the excitation-side and fluorescence-side spectral correction functions Gex1 (λEX), Gem1 (λE
M) and Gex2 (λEX) and Gem2 (λEM) are determined, and a spectrum correction method for a spectrofluorometer.
計の蛍光スクリーンとしてローダミンBを用い、前記工
程ロの標準光源又は副標準光源としてタングステンラン
プを用い、前記第1の波長領域は600nm以下で20
0nm以上の範囲の中から設定し、前記第2の波長領域
は、前記第1の波長領域以上で900nm以下の範囲を
含む(第1,第2の領域が一部重複してもよい)ように
設定したことを特徴とする分光蛍光光度計のスペクトル
補正方法。4. The method according to claim 3, wherein Rhodamine B is used as the fluorescent screen of the photon meter in the step b, a tungsten lamp is used as the standard light source or the sub-standard light source in the step b, and the first wavelength region is 600 nm or less. 20
It is set from a range of 0 nm or more, and the second wavelength region includes a range of 900 nm or less in the first wavelength region or more (the first and second regions may partially overlap). A spectral correction method for a spectrofluorophotometer, characterized in that:
程ハでは光拡散素子を光路上にセットしてスペクトル測
定を行うことを特徴とする分光蛍光光度計のスペクトル
補正方法。5. The spectrum correction method for a spectrofluorophotometer according to claim 3 or 4, wherein in the step C, a light diffusing element is set on an optical path to perform spectrum measurement.
光検知器、蛍光信号値(蛍光スペクトル値)から測定結
果を算出する演算器を備えた分光蛍光光度計において、 励起側光学系及び蛍光側光学系の波長特性に影響される
見かけの蛍光スペクトル値を補正する手段を有し、この
スペクトル補正手段は、測定範囲の波長領域λを第1波
長領域λ1と第2の波長領域λ2とに分けて(λ1<λ
2)、これらの波長領域λ1,λ2ごとに次の関係式で
予め求めた補正関数Gex1(λEX),Gem1(λ
EM)とGex2(λEX),Gem2(λEM)を記
憶し、 【数1】・λ1について Fex1(λEX)×Fem
1(λEM)=F1(λEX,λEM) ・λ2について Fex2(λEX)×Fem2(λE
M)=F2(λEX,λEM) ここで、Fex1(λEX):光量子計法により求めた
第1の波長領域λ1の励起側光学系の波長特性 F1(λEX,λEM):第1の波長領域λ1において
励起側波長と蛍光側波長を一致させつつ励起側分光器及
び蛍光側分光器を同時に波長走査して得られたスペクト
ル測定値 Fem1(λEM):F1(λEX,λEM)とFex
1(λEX,λEM)との比演算より得た第1の波長領
域λ1の蛍光側光学系の波長特性 Fem2(λEX):標準光源又は標準光源により校正
された光源(副標準光源)を用いて求めた第2の波長領
域λ2の蛍光側光学系の波長特性 F2(λEX,λEM):第2の波長領域λ2において
励起側波長と蛍光側波長を一致させつつ励起側分光器及
び蛍光側分光器を同時に波長走査して得られたスペクト
ル測定値 Fex2(λEM):F2(λEX,λEM)とFem
2(λEX,λEM)との比演算より得た第2波長領域
λ2の励起側光学系の波長特性 ・λ1について、 Gex1(λEX)=Fex1(λA)/Fex1(λEX) Gem1(λEM)=Fem1(λA)/Fem1(λEM) ・λ2について Gex2(λEX)=Fex2(λA)/Fex2(λEX) Gem2(λEM)=Fem2(λA)/Fem2(λEM) ここで、Gex1(λEX):λ1の励起側光学系の補
正スペクトル関数 Gem1(λEM):λ1の蛍光側光学系の補正スペク
トル関数 Gex2(λEX):λ2の励起側光学系の補正スペク
トル関数 Gem2(λEM):λ2の蛍光側光学系の補正スペク
トル関数 λA:スペクトルの相対的形状を補正するために、見か
けのスペクトル値のうちの一つを基準として適当に選ん
だもの 前記記憶したλ1,λ2のいずれかの補正スペクトル関
数を実測される蛍光スペクトル値の測定波長領域λ1,
λ2に応じて読み出して見かけのスペクトル値の補正演
算を行うよう設定したことを特徴とするスペクトル補正
機能付き分光蛍光光度計。6. A spectrofluorometer comprising a light source, an excitation-side spectroscope, a fluorescence-side spectroscope, a fluorescence detector, and a calculator for calculating a measurement result from a fluorescence signal value (fluorescence spectrum value), wherein an excitation-side optical system is provided. And a means for correcting the apparent fluorescence spectrum value influenced by the wavelength characteristic of the fluorescence side optical system, and this spectrum correcting means changes the wavelength range λ of the measurement range to the first wavelength range λ1 and the second wavelength range λ2. Divided into (λ1 <λ
2), correction functions Gex1 (λEX) and Gem1 (λ) obtained in advance by the following relational expressions for each of these wavelength regions λ1 and λ2.
EM) and Gex2 (λEX) and Gem2 (λEM) are stored, and for λ1 Fex1 (λEX) × Fem
1 (λEM) = F1 (λEX, λEM) for λ2 Fex2 (λEX) × Fem2 (λE
M) = F2 (λEX, λEM) where Fex1 (λEX): wavelength characteristic of the excitation side optical system in the first wavelength region λ1 obtained by the photon counting method F1 (λEX, λEM): first wavelength region λ1 In the above, the spectral measurement values obtained by simultaneously scanning the wavelengths of the excitation-side spectroscope and the fluorescence-side spectrograph while matching the excitation-side wavelength and the fluorescence-side wavelength are Fem1 (λEM): F1 (λEX, λEM) and Fex.
1 (λEX, λEM) wavelength characteristic of the fluorescence side optical system of the first wavelength region λ1 obtained by the ratio calculation with 1 (λEX, λEM) Fem2 (λEX): using a standard light source or a light source (sub-standard light source) calibrated by the standard light source Obtained wavelength characteristic of the fluorescence side optical system in the second wavelength region λ2 F2 (λEX, λEM): Excitation side spectroscope and fluorescence side spectroscope while matching the excitation side wavelength and the fluorescence side wavelength in the second wavelength region λ2 Measurement values obtained by simultaneously scanning wavelengths of Fex2 (λEM): F2 (λEX, λEM) and Fem
Wavelength characteristics of the excitation side optical system in the second wavelength region λ2 obtained by the ratio calculation with 2 (λEX, λEM). For λ1, Gex1 (λEX) = Fex1 (λA) / Fex1 (λEX) Gem1 (λEM) = Fem1 About (λA) / Fem1 (λEM) · λ2 Gex2 (λEX) = Fex2 (λA) / Fex2 (λEX) Gem2 (λEM) = Fem2 (λA) / Fem2 (λEM) where Gex1 (λEX): λ1 excitation Correction spectrum function of side optical system Gem1 (λEM): Correction spectrum function of fluorescence side optical system of λ1 Gex2 (λEX): Correction spectrum function of excitation side optical system of λ2 Gem2 (λEM): Correction of fluorescence side optical system of λ2 Spectral function λA: In order to correct the relative shape of the spectrum, one of the apparent spectral values was selected as a reference. And said storage .lambda.1, measurement wavelength region of the fluorescence spectrum values measured one of the compensation spectrum function of .lambda.2 .lambda.1,
A spectrofluorometer with a spectrum correction function, which is set to read out according to λ2 and perform correction calculation of an apparent spectrum value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23470591A JP3207882B2 (en) | 1991-09-13 | 1991-09-13 | Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23470591A JP3207882B2 (en) | 1991-09-13 | 1991-09-13 | Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0572039A true JPH0572039A (en) | 1993-03-23 |
JP3207882B2 JP3207882B2 (en) | 2001-09-10 |
Family
ID=16975101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23470591A Expired - Lifetime JP3207882B2 (en) | 1991-09-13 | 1991-09-13 | Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3207882B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0682307A (en) * | 1992-02-12 | 1994-03-22 | Perkin Elmer Corp:The | Standardizing method for spectroscope apparatus and spectroscope apparatus |
WO2004044564A1 (en) * | 2002-11-14 | 2004-05-27 | Arkray, Inc. | Measuring instrument and fluorometric method |
KR100809629B1 (en) * | 2006-08-31 | 2008-03-05 | 한국과학기술원 | The confocal raman/uv-vis/fluorescence spectroscopy for the combinatorial structural analysis of novel catalysts, materials, and biomolecules |
JP2008070172A (en) * | 2006-09-13 | 2008-03-27 | Hitachi High-Technologies Corp | Spectrophotofluorometer and its correction method |
WO2010073778A1 (en) * | 2008-12-25 | 2010-07-01 | 浜松ホトニクス株式会社 | Spectrometer, spectrometry, and spectrometry program |
JP2012007930A (en) * | 2010-06-23 | 2012-01-12 | Shimadzu Corp | Fluorescence spectrophotometer |
JP2012026731A (en) * | 2010-07-20 | 2012-02-09 | Hitachi High-Technologies Corp | Spectrophotofluorometer and spectrum correction method for the same |
JP2016151426A (en) * | 2015-02-16 | 2016-08-22 | 株式会社島津製作所 | Spectrophotofluorometer and method for creating correction function used therein |
JP2017156310A (en) * | 2016-03-04 | 2017-09-07 | パナソニックヘルスケアホールディングス株式会社 | Fluorometry device |
CN112747902A (en) * | 2019-10-30 | 2021-05-04 | 大塚电子株式会社 | Optical measurement method and processing apparatus |
-
1991
- 1991-09-13 JP JP23470591A patent/JP3207882B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0682307A (en) * | 1992-02-12 | 1994-03-22 | Perkin Elmer Corp:The | Standardizing method for spectroscope apparatus and spectroscope apparatus |
WO2004044564A1 (en) * | 2002-11-14 | 2004-05-27 | Arkray, Inc. | Measuring instrument and fluorometric method |
US7256892B2 (en) | 2002-11-14 | 2007-08-14 | Arkray, Inc. | Measuring instrument and fluorometric method |
KR100809629B1 (en) * | 2006-08-31 | 2008-03-05 | 한국과학기술원 | The confocal raman/uv-vis/fluorescence spectroscopy for the combinatorial structural analysis of novel catalysts, materials, and biomolecules |
JP2008070172A (en) * | 2006-09-13 | 2008-03-27 | Hitachi High-Technologies Corp | Spectrophotofluorometer and its correction method |
JP2010151632A (en) * | 2008-12-25 | 2010-07-08 | Hamamatsu Photonics Kk | Spectrometer, spectrometry, and spectrometric program |
WO2010073778A1 (en) * | 2008-12-25 | 2010-07-01 | 浜松ホトニクス株式会社 | Spectrometer, spectrometry, and spectrometry program |
US8462337B2 (en) | 2008-12-25 | 2013-06-11 | Hamamatsu Photonics K.K. | Spectrometer, spectrometry, and spectrometry program |
JP2012007930A (en) * | 2010-06-23 | 2012-01-12 | Shimadzu Corp | Fluorescence spectrophotometer |
JP2012026731A (en) * | 2010-07-20 | 2012-02-09 | Hitachi High-Technologies Corp | Spectrophotofluorometer and spectrum correction method for the same |
JP2016151426A (en) * | 2015-02-16 | 2016-08-22 | 株式会社島津製作所 | Spectrophotofluorometer and method for creating correction function used therein |
JP2017156310A (en) * | 2016-03-04 | 2017-09-07 | パナソニックヘルスケアホールディングス株式会社 | Fluorometry device |
CN112747902A (en) * | 2019-10-30 | 2021-05-04 | 大塚电子株式会社 | Optical measurement method and processing apparatus |
JP2021071339A (en) * | 2019-10-30 | 2021-05-06 | 大塚電子株式会社 | Optical measurement method and processing device |
Also Published As
Publication number | Publication date |
---|---|
JP3207882B2 (en) | 2001-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2847899A (en) | Method of and apparatus for spectrochemical analysis | |
EP0091126B1 (en) | Fluorimeter | |
JP4710393B2 (en) | Excitation spectrum correction method in fluorescence spectrophotometer | |
JPH0765933B2 (en) | Spectrofluorometer | |
JPH0572039A (en) | Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function | |
US3936190A (en) | Fluorescence spectrophotometer for absorption spectrum analysis | |
RU2083961C1 (en) | Method of measurement of temperature and emissivity of surface | |
JPH04157350A (en) | Fluorescent measurement apparatus | |
JPS6140928B2 (en) | ||
JP3102485B2 (en) | Spectrophotometer | |
JP4146697B2 (en) | Temperature measuring method and temperature measuring device | |
JP2021121803A (en) | Microparticle measuring system and microparticle measuring method | |
JP3230565B2 (en) | Optical spectrum analyzer | |
Schramm et al. | Calibration of fast-response temperature sensitive paints for their application in hypersonic high enthalpy flows | |
US6057912A (en) | Method for Blackbody lamp reference compensation using a single silicon photodiode | |
JPH0829336A (en) | Taste value measuring apparatus | |
JPH0599627A (en) | Measuring apparatus for film thickness | |
JP3212107B2 (en) | Spectrometry | |
JP2755418B2 (en) | Optical sensor spectral sensitivity measurement method | |
JPH0641916B2 (en) | Spectrofluorometer | |
JP2017021045A (en) | Information processing device | |
JPS6280522A (en) | Spectrofluorophotometer | |
SU1732189A1 (en) | Temperature determining method | |
Buhr et al. | Intercomparison of visual diffuse transmission density measurements | |
JPH07225186A (en) | Fluorescence/raman spectrophotometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070706 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080706 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080706 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20090706 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20090706 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20100706 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20110706 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20110706 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20120706 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 11 |