JPH059803B2 - - Google Patents

Info

Publication number
JPH059803B2
JPH059803B2 JP58197489A JP19748983A JPH059803B2 JP H059803 B2 JPH059803 B2 JP H059803B2 JP 58197489 A JP58197489 A JP 58197489A JP 19748983 A JP19748983 A JP 19748983A JP H059803 B2 JPH059803 B2 JP H059803B2
Authority
JP
Japan
Prior art keywords
cutting tool
rotary table
central axis
cutting
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58197489A
Other languages
Japanese (ja)
Other versions
JPS6091405A (en
Inventor
Takeshi Ooashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP19748983A priority Critical patent/JPS6091405A/en
Publication of JPS6091405A publication Critical patent/JPS6091405A/en
Publication of JPH059803B2 publication Critical patent/JPH059803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34161Superposition curves, combine xy slides with other xy or polar slides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49118Machine end face, control C-axis and X-axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、工作機械において被加工物を載置
するテーブルと切削工具を保持する刃物台とを相
互に移動させて被加工物の輪郭の切削を能率よく
達成する数値制御装置に関するものである。
[Detailed Description of the Invention] [Technical Field to Which the Invention Pertains] The present invention relates to a machine tool in which a table on which a workpiece is placed and a turret that holds a cutting tool are mutually moved to form a contour of the workpiece. This invention relates to a numerical control device that efficiently accomplishes cutting.

〔従来技術とその問題点〕[Prior art and its problems]

今日、数値制御装置によつて制御される工作機
械として、例えば第1図に示す立旋盤が普及して
いる。この立旋盤は、被加工物を載置するための
回転テーブルRTと、切削工具MTを保持しこれ
を左右(X軸方向)および上下(Z軸方向)に移
動可能に位置決めする刃物台TBとを備え、回転
テーブルRT上に載置した被加工物に対しボーリ
ング加工およびターニング加工を数値制御プログ
ラムに基づいて自動的に行うよう構成されてい
る。
BACKGROUND ART Today, as a machine tool controlled by a numerical control device, for example, a vertical lathe shown in FIG. 1 is in widespread use. This vertical lathe includes a rotary table RT for placing the workpiece, a tool rest TB for holding the cutting tool MT and positioning it so that it can move left and right (X-axis direction) and up and down (Z-axis direction). It is configured to automatically perform boring and turning on a workpiece placed on the rotary table RT based on a numerical control program.

しかるに、この種の立旋盤は、被加工物を載置
する回転テーブルを回転させながら切削加工を行
うものであるため、主として大型の円筒体もしく
は円錐体の表面切削加工に利用される。しかしな
がら、今日数値制御装置による工作機械の加工精
度の向上に伴い、被加工物に対する複雑な形状の
切削加工の要求が高くなつている。例えば、円錐
台の一部に四角柱部分の加工を要する被加工物の
場合、従来の立旋盤では角面体の連続加工が不可
能なため、円錐台の部分のみを立旋盤で切削加工
を行つた後、被加工物を別の旋盤に段取り変えを
行つた後角面体の切削加工を行う必要があり、段
取り変えの作業と芯合せに手間が掛るばかりでな
く、多大な加工時間を要し、製造コストの低減に
も限界があつた。
However, since this type of vertical lathe performs cutting while rotating a rotary table on which a workpiece is placed, it is mainly used for surface cutting of large cylindrical bodies or conical bodies. However, as the machining accuracy of machine tools using numerical control devices has improved, there has been an increasing demand for cutting workpieces into complex shapes. For example, in the case of a workpiece that requires machining a square prism part on a part of a truncated cone, it is impossible to continuously machine the prismatic part with a conventional vertical lathe, so only the truncated cone part is cut with the vertical lathe. After that, it is necessary to change the setup of the workpiece to another lathe and then cut the rectangular face piece, which not only takes time and effort to change the setup and align, but also requires a large amount of machining time. However, there were limits to the reduction of manufacturing costs.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、被加工物を回転テーブル上に
載置し、この被加工物に対し左右および上下に移
動可能な切削工具で切削加工を行う工作機械にお
いて、被加工物の回転と切削工具の左右および必
要に応じて上下の移動を相対的に行い、被加工物
に対する角面体の連続加工を簡便に行うことがで
きる数値制御装置を提供するにある。
An object of the present invention is to provide a machine tool in which a workpiece is placed on a rotary table and a cutting tool that is movable horizontally and vertically performs cutting on the workpiece. It is an object of the present invention to provide a numerical control device that can relatively move horizontally and vertically as necessary, and easily perform continuous machining of a prismatic body on a workpiece.

〔発明の要点〕[Key points of the invention]

本発明は、断面が多角形の角面体からなる被加
工物を載置する回転テーブルと、この回転テーブ
ルに対し所定の2軸方向に移動可能な切削工具と
を設けた工作機械を備え、回転テーブルの中心軸
Cに対しこれと平行に切削工具をその中心軸Z方
向に移動すると共に前記回転テーブルの中心軸C
と切削工具の中心軸Zとにそれぞれ直交する所定
軸X方向に切削工具を移動して回転テーブル上の
角面体被加工物の切削工具を行うよう構成した数
値制御装置において、 回転テーブルの中心軸Cから切削工具の中心軸
Zまでの距離xと、 回転テーブルの中心軸Cから角面体被加工物の
切削面までの距離rに切削工具の半径Rを加えた
距離R0と、 切削工具の中心軸Z方向の距離zと、 角面体被加工物に対する切削工具による切削移
動距離と、 回転テーブルの中心軸Cにおける回転角θとの
相互関係により、前記距離x,z,および回転
角θに関しサーボ機構を制御する微小移動量Δ
,Δz,ΔxおよびΔθを演算するため、予め設定
した移動速度指令F′に基づき、角面体被加工物の
切削面L方向への分速Fと切削工具の中心軸Z方
向への分速Fzを次式 の関係に基づいて、前記各方向に対するサンプリ
ング周期毎の微小移動量Δ,Δzを演算し、 さらにこれらの微小移動量Δ,Δzをサンプ
リング周期毎に累積して算出した各移動量からサ
ンプリング周期毎に分配すべき回転軸指令Δθo
よび直線軸指令ΔXoをデイジタル微分解析機によ
り演算してサーボ機構の制御値を決定する演算処
理部を設け、 前記演算処理部で演算された制御値に基づいて
回転テーブルと切削工具とを同時に所定のタイミ
ングでサンプル値制御し、 角面体被加工物の側面に対する平面切削の連続
加工を行うサーボ機構を設けることを特徴とす
る。
The present invention provides a machine tool equipped with a rotary table on which a workpiece made of a polygonal prismatic body is placed, and a cutting tool movable in two predetermined axes with respect to the rotary table. The cutting tool is moved parallel to the central axis C of the table in the direction of its central axis Z, and the central axis C of the rotary table is moved.
In a numerical control device configured to cut a prismatic workpiece on a rotary table by moving the cutting tool in a predetermined axis X direction perpendicular to the central axis Z of the rotary table and the central axis Z of the rotary table, The distance x from C to the center axis Z of the cutting tool, the distance R0 obtained by adding the radius R of the cutting tool to the distance r from the center axis C of the rotary table to the cutting surface of the prismatic workpiece, and the distance R0 of the cutting tool. Due to the interrelationship between the distance z in the central axis Z direction, the cutting movement distance of the cutting tool with respect to the prismatic workpiece, and the rotation angle θ at the central axis C of the rotary table, the distance x, z and the rotation angle θ are Minute movement amount Δ that controls the servo mechanism
, Δz, Δx, and Δθ, based on the preset movement speed command F', the minute velocity F in the direction of the cutting surface L of the prismatic workpiece and the minute velocity F in the direction of the central axis Z of the cutting tool. z is the following formula Based on the relationship, calculate the minute movement amounts Δ, Δz for each sampling period in each direction, and then calculate the amount of movement for each sampling period from each movement amount calculated by accumulating these minute movement amounts Δ, Δz for each sampling period. An arithmetic processing unit is provided that determines a control value for the servo mechanism by calculating a rotational axis command Δθ o and a linear axis command ΔX o to be distributed to a digital differential analyzer using a digital differential analyzer, and based on the control value calculated by the arithmetic processing unit. The present invention is characterized in that it is equipped with a servo mechanism that simultaneously controls the rotary table and the cutting tool at predetermined timing with sample values, and performs continuous plane cutting on the side surface of the prismatic workpiece.

すなわち、本発明においては、角面体被加工物
を載置した回転テーブルをその中心軸Cにおいて
回転させると同時に回転変位する角面体被加工物
に対し切削工具の所定軸X方向の移動を行なうこ
とにより、角面体被加工物の側面に対し平面切削
を容易に実現することができる。
That is, in the present invention, the rotary table on which the prismatic workpiece is mounted is rotated about its central axis C, and at the same time, the cutting tool is moved in the direction of the predetermined axis X with respect to the rotationally displaced prismatic workpiece. Accordingly, plane cutting can be easily realized on the side surface of the prismatic workpiece.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明に係る数値制御装置の実施例につ
き、角面体の連続切削加工を行う立旋盤を例示し
て以下詳細に説明する。
Next, an embodiment of the numerical control device according to the present invention will be described in detail by exemplifying a vertical lathe that performs continuous cutting of a prismatic body.

第2図乃至第4図は、立旋盤において、回転テ
ーブルに載置した被加工物と切削工具との位置関
係を示した説明図である。なお、本発明に係る数
値制御装置は、第1図に示す構成からなる立旋盤
にそのまま適用することができる。
FIGS. 2 to 4 are explanatory diagrams showing the positional relationship between a workpiece placed on a rotary table and a cutting tool in a vertical lathe. Note that the numerical control device according to the present invention can be applied as is to a vertical lathe having the configuration shown in FIG.

第2図において、参照符号10は回転テーブ
ル、12は刃物台に取付けられたスピンドルを示
す。回転テーブル10上にはその水平面に対し垂
直な中心軸Cを中心として被加工物14が回転自
在に載置されている。また、スピンドル12の先
端部には、前記中心軸Cと平行な軸線Z上を上下
に移動し得るよう切削工具16を取付け、しかも
この切削工具16は前記中心軸Cと軸線Zとのな
す同一平面内(X軸方向)において被加工物14
に対し接近離反するよう構成配置される。これら
の基本構成は、従来の立旋盤の構成並びに機能と
全く同様である。
In FIG. 2, reference numeral 10 indicates a rotary table, and 12 indicates a spindle attached to a tool rest. A workpiece 14 is placed on the rotary table 10 so as to be rotatable about a central axis C perpendicular to the horizontal surface of the rotary table 10 . Further, a cutting tool 16 is attached to the tip of the spindle 12 so as to be able to move up and down on an axis Z parallel to the central axis C. Workpiece 14 in the plane (X-axis direction)
The structure is arranged so that it approaches and moves away from the object. These basic configurations are exactly the same as those of conventional vertical lathes.

そこで、本発明においては、回転テーブル10
上に載置した被加工物14に対しその側面を平面
切削するため、回転テーブル10の回転中心(C
軸)に対しX軸上で変位する切削工具16を被加
工物14との相対関係で移動し得るよう構成する
ことを特徴とするものである。
Therefore, in the present invention, the rotary table 10
In order to planarly cut the side surface of the workpiece 14 placed on it, the rotation center (C) of the rotary table 10 is
This is characterized in that the cutting tool 16, which is displaced on the X-axis with respect to the X-axis, is configured to be movable relative to the workpiece 14.

従つて、本発明においては、被加工物14と切
削工具16との基本位置を第3図に示すように定
め、一定時間経過後の被加工物14と切削工具1
6との位置関係が第4図に示すようになるとすれ
ば、被加工物14と切削工具16との相対的に移
動する位置関係は次のように求めることができ
る。
Therefore, in the present invention, the basic positions of the workpiece 14 and the cutting tool 16 are determined as shown in FIG.
If the positional relationship between the workpiece 14 and the cutting tool 16 is as shown in FIG. 4, the relative movement positional relationship between the workpiece 14 and the cutting tool 16 can be determined as follows.

まず、第4図に示す被加工物14と切削工具1
6との位置関係につき、次のように定義する。
First, the workpiece 14 and cutting tool 1 shown in FIG.
The positional relationship with 6 is defined as follows.

θ:回転テーブル10の回転角(被加工物14
の回転角でもある) x:回転テーブル10の中心Ocと、切削工具
16の中心Ozとの離間距離 r:回転テーブル10の中心Ocから被加工物
14の切削しようとする輪郭までの距離 R:切削工具16の回転半径 :被加工物14と切削工具16の接触点Pの
輪郭移動距離 R0:R0=R+r 以上の定義に基づき、第4図の状態から次の関
係式が成立する。
θ: rotation angle of the rotary table 10 (workpiece 14
(It is also the rotation angle of Distance R: Radius of rotation of the cutting tool 16: Distance of contour movement of the contact point P between the workpiece 14 and the cutting tool 16 R 0 : R 0 = R + r Based on the above definition, the following relational expression can be obtained from the state shown in Fig. 4. To establish.

x22+R0 2 R0/x=cosθ または =R0tanθ x=R0/cosθ また、前記の定義に基づき、被加工物14と切
削工具16との移動指令を次のように定める。
x 2 = 2 +R 0 2 R 0 /x=cosθ or = R 0 tanθ .

X:x距離方向(X軸方向)への移動 θ:回転テーブル10の回転角θ方向への移動 Z:Z軸方向への移動 L:距離方向への移動 F′:移動速度指令 F:移動速度指令F′のL方向への分速Z=0の
時の移動速度F′ この場合、移動速度指令F′は所定値として予め
与えられ、また移動速度Fも所定値として与えら
れるか、または移動指令X,θから計算により予
め求めることができる。さらに移動指令Zがある
場合は、Z方向の分速Fzも予め求めることがで
きる。
X: Movement in the x distance direction (X-axis direction) θ: Movement in the rotation angle θ direction of the rotary table 10 Z: Movement in the Z-axis direction L: Movement in the distance direction F': Movement speed command F: Movement Travel speed F' when the minute speed Z = 0 of the speed command F' in the L direction In this case, the travel speed command F' is given in advance as a predetermined value, and the travel speed F is also given as a predetermined value, or It can be calculated in advance from the movement commands X and θ. Furthermore, if there is a movement command Z, the minute velocity Fz in the Z direction can also be determined in advance.

以上の定義に基づき、第2図乃至第4図の状態
から次の関係式が成立する。
Based on the above definition, the following relational expression is established from the states shown in FIGS. 2 to 4.

前記式(1),(2)からLおよびZ方向に対するサン
プリング周期毎の微小移動量ΔおよびΔzは、
予め計算することができ、しかもこれらの値は一
定値であるため一度計算すればよいことになる。
従つて、これらの微小移動量をサンプリング周期
毎に累積すると次式のようになる。
From the above equations (1) and (2), the minute movement amounts Δ and Δz for each sampling period in the L and Z directions are:
They can be calculated in advance, and since these values are constant values, they only need to be calculated once.
Therefore, when these minute movements are accumulated for each sampling period, the following equation is obtained.

oo-1+Δ ……(3) zo=zo-1+Δz ……(4) 但し、n,n−1は今回または前回のサンプリ
ング周期を表わす。
o = o-1 +Δ...(3) z o =z o-1 +Δz...(4) However, n and n-1 represent the current or previous sampling period.

前記式(3),(4)で求めたL方向の移動量oo
−1を使用してθ方向の移動量θo,θo-1を求めると
次式のようになる。
The amount of movement in the L direction obtained using equations (3) and (4) above, o and o
-1 to find the movement amounts θ o and θ o-1 in the θ direction, the following equations are obtained.

θo=tan-1 o/R0 ……(5) θo-1=tan-1 o-1/R0 ……(6) 但し、R0=r+Rとする(第4図参照)。 θ o =tan -1 o /R 0 ... (5) θ o -1 = tan -1 o -1 /R 0 ... (6) However, R 0 = r + R (see Figure 4).

従つて、サンプリング周期毎に分配すべき回転
軸指令Δθoは、前記式(5),(6)と同様にして次式の
ようになる。
Therefore, the rotational axis command Δθ o to be distributed for each sampling period is expressed by the following equation in the same way as the above equations (5) and (6).

Δθo=θo−θo-1= tan-1 o/R0−tan-1 o-1/R0 ……(7) さらに、前記式(5),(6)で得られたθ方向の移動
量θo,θo-1を使用してX方向の移動量xo,xo-1
求めると次式のようになる。
Δθ o = θ o −θ o-1 = tan -1 o /R 0 −tan -1 o-1 /R 0 ...(7) Furthermore, the θ direction obtained from the above equations (5) and (6) If the moving amounts x o and x o-1 in the X direction are calculated using the moving amounts θ o and θ o-1 of , the following equations are obtained.

xo=R0/cosθo ……(8) xo-1=R0/cosθo-1 ……(9) 但し、R0=r+Rとする(第4図参照)。 x o = R 0 /cosθ o ...(8) x o-1 = R 0 /cosθ o-1 ...(9) However, R 0 =r+R (see Figure 4).

従つて、前記式(8),(9)からサンプリング周期毎
に分配すべき直線軸指令Δxoは、前記式(7)と同様
にして次式のようになる。
Therefore, from the above equations (8) and (9), the linear axis command Δx o to be distributed for each sampling period is expressed by the following equation, similar to the above equation (7).

Δxo=xo−xo-1 =R0/cosθo−R0/cosθo-1 ……(10) 以上の演算結果から、本発明においては、前記
式(1)〜(10)を数値制御装置の演算処理部でデイジタ
ル微分解析を行い、サーボ機構に対して所定の出
力Δθo,Δxoを入力することにより、切削工具を
被加工物14の一側面に対し第5図に示す経路1
8にして輪郭切削することができる。
Δx o = x o −x o-1 = R 0 /cosθ o −R 0 /cosθ o-1 ...(10) From the above calculation results, in the present invention, the above equations (1) to (10) are By performing digital differential analysis in the arithmetic processing section of the numerical control device and inputting predetermined outputs Δθ o and Δx o to the servo mechanism, the cutting tool is moved to one side of the workpiece 14 as shown in FIG. Route 1
8 for contour cutting.

また、同様にして、サーボ機構に対して所定の
出力Δθo,Δxo,Δzを入力することにより、切削
工具を被加工物14の一側面に対し第6図に示す
経路20にて輪郭切削することができる。
Similarly, by inputting predetermined outputs Δθ o , Δx o , and Δ z to the servo mechanism, the cutting tool is moved along the contour along the path 20 shown in FIG. 6 on one side of the workpiece 14. Can be cut.

なお、前記式(3)〜(10)において、o-1,zo-1
θo-1,xo-1には正負の符号を与え、初期位置から
の補間の方向やo-1またはθo-1の符号の反転を
判別して、(±)の演算子のいずれか一方を選択
するようにする。また、指令の与え方で、被加工
物14の他側面に対しても連続して第5図に示す
ような経路で輪郭切削することができることは勿
論である。さらに、数値制御装置においては、前
記式(1)〜(10)の演算を実行する場合、(±)演算子
が反転する時点に対しサーボ機構の遅れがあるた
め、例えば被加工物14に対して第7図に破線で
示すような不整切削が行われる可能性がある。こ
のため、前記式(1)〜(10)の演算処理に際し、(±)
演算子が反転する時点において、サーボ機構の遅
れを考慮してエラー判定を行うことにより、第7
図に示すような不整切削を軽減することができ
る。
In addition, in the above formulas (3) to (10), o-1 , z o-1 ,
Give positive and negative signs to θ o-1 and x o-1 , determine the direction of interpolation from the initial position and the reversal of the sign of o-1 or θ o-1 , and select either of the (±) operators. or choose one. It goes without saying that depending on how the command is given, contour cutting can also be performed continuously on the other side of the workpiece 14 along the path shown in FIG. 5. Furthermore, in a numerical control device, when executing the calculations of equations (1) to (10) above, there is a delay in the servo mechanism relative to the point at which the (±) operator is reversed. Therefore, irregular cutting as shown by the broken line in FIG. 7 may occur. Therefore, when calculating the above equations (1) to (10), (±)
By making an error determination in consideration of the delay of the servo mechanism at the time when the operator is reversed, the seventh
Irregular cutting as shown in the figure can be reduced.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかな通り、本発明に係
る数値制御装置は、前述した演算式〔式(3)〜(10)〕
をコンピユータを使用した演算処理部においてデ
イジタル微分解析(DDA)的に演算し、得られ
たデータに基づいてサーボ機構を制御することに
より、相対的に移動する回転テーブルと切削工具
との関係において被加工物に対し平面的な輪郭切
削を容易に実現することができる。なお、サーボ
機構の制御系としては、速度検出器および位置検
出器を設けて所定のタイミングでサンプリングを
行うサンプル値制御方式が採用される。
As is clear from the above-mentioned embodiments, the numerical control device according to the present invention uses the above-mentioned calculation formulas [Equations (3) to (10)]
is calculated using digital differential analysis (DDA) in an arithmetic processing unit using a computer, and the servo mechanism is controlled based on the obtained data to calculate Planar contour cutting can be easily achieved on the workpiece. Note that as a control system for the servo mechanism, a sample value control method is adopted in which a speed detector and a position detector are provided and sampling is performed at a predetermined timing.

このようにして、本発明に係る数値制御装置に
よれば、回転テーブル上の被加工物に対し上下
(Z軸方向)および左右(X軸方向)に切削工具
を移動し得るよう制御する工作機械において、回
転テーブル上の被加工物に対し、従来困難とされ
た平面輪郭切削が可能となり、ボーリング加工お
よびターニング加工を行う大型の被加工物におけ
る部分的な平面切削加工も同一の工作機械で同時
に達成できるため、工作機械の多機能化と共にそ
の利用率を高めることができ、複雑な形状の被加
工物の量産化と共に加工コストの低減を実現する
ことができる。
In this way, according to the numerical control device according to the present invention, a machine tool can be controlled to move a cutting tool vertically (in the Z-axis direction) and left and right (in the X-axis direction) with respect to a workpiece on a rotary table. , it is now possible to perform plane contour cutting on workpieces on a rotary table, which was previously considered difficult, and it is now possible to perform partial plane cutting on large workpieces that are subjected to boring and turning operations at the same time using the same machine tool. Since this can be achieved, machine tools can be made multifunctional and their utilization rate can be increased, and processing costs can be reduced as well as mass production of workpieces with complex shapes.

また、本発明装置によれば、角面体被加工物に
対し単位角度毎のデータでなく、多角形の交点
(始点、終点)のみのデータでよく、途中の経路
については数値制御装置内部で自動計算して、切
削工具の数値制御を簡便かつ容易に達成すること
ができる。
Furthermore, according to the device of the present invention, instead of data for each unit angle for a prismatic workpiece, only the data for the intersection points of the polygons (starting point, end point) is required, and intermediate paths are automatically determined within the numerical control device. Through calculation, numerical control of cutting tools can be achieved simply and easily.

以上、本発明の好適な実施例について説明した
が、本発明の精神を逸脱しない範囲内において
種々の設計変更をなし得ることは勿論である。
Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は数値制御装置によつて制御される立旋
盤の一構成例を示す斜視図、第2図は本発明に係
る数値制御装置によつて制御される回転テーブル
上の被加工物と切削工具との相対的位置関係を示
す斜視図、第3図および第4図は第2図に示す被
加工物と切削工具との移動状態を解析した平面説
明図、第5図は本発明に係る数値制御装置によつ
て被加工物の切削を行つた場合の一実施例を示す
説明図、第6図は本発明に係る数値制御装置によ
つて被加工物の切削を行つた場合の別の実施例を
示す説明図、第7図は本発明に係る数値制御装置
において演算式中の演算子の符号が反転する時に
サーボ機構の遅れにより発生可能な不整切削状態
説明図である。 RT……回転テーブル、MT……切削工具、TB
……刃物台、10……回転テーブル、12……ス
ピンドル、14……被加工物、16……切削工
具、18……切削経路、20……切削経路。
Fig. 1 is a perspective view showing an example of the configuration of a vertical lathe controlled by a numerical control device, and Fig. 2 shows a workpiece on a rotary table and a cutting machine controlled by a numerical control device according to the present invention. A perspective view showing the relative positional relationship with the tool, FIGS. 3 and 4 are plan explanatory views analyzing the movement state of the workpiece and cutting tool shown in FIG. 2, and FIG. 5 is a diagram according to the present invention. An explanatory diagram showing one embodiment of the case where a workpiece is cut by a numerical control device, and FIG. FIG. 7 is a diagram illustrating an irregular cutting state that can occur due to a delay in a servo mechanism when the sign of an operator in an arithmetic expression is reversed in the numerical control device according to the present invention. RT...Rotary table, MT...Cutting tool, TB
...Turret, 10... Rotary table, 12... Spindle, 14... Workpiece, 16... Cutting tool, 18... Cutting path, 20... Cutting path.

Claims (1)

【特許請求の範囲】 1 断面が多角形の角面体からなる被加工物を載
置する回転テーブルと、この回転テーブルに対し
所定の2軸方向に移動可能な切削工具とを設けた
工作機械を備え、回転テーブルの中心軸Cに対し
これと平行に切削工具をその中心軸Z方向に移動
すると共に前記回転テーブルの中心軸Cと切削工
具の中心軸Zとにそれぞれ直交する所定軸X方向
に切削工具を移動して回転テーブル上の角面体被
加工物の切削加工を行うよう構成した数値制御装
置において、 回転テーブルの中心軸Cから切削工具の中心軸
Zまでの距離xと、 回転テーブルの中心軸Cから角面体被加工物の
切削面までの距離rに切削工具の半径Rを加えた
距離R0と、 切削工具の中心軸Z方向の距離zと、 角面体被加工物に対する切削工具による切削移
動距離と、 回転テーブルの中心軸Cにおける回転角θとの
相互関係により、前記距離x,z,および回転
角θに関しサーボ機構を制御する微小移動量Δ
,Δz,ΔxおよびΔθを演算するため、予め設定
した移動速度指令F′に基づき、角面体被加工物の
切削面L方向への分速Fと切削工具の中心軸Z方
向への分速Fzを次式 の関係に基づいて、前記各方向に対するサンプリ
ング周期毎の微小移動量Δ,Δzを演算し、 さらにこれらの微小移動量Δ,Δzをサンプ
リング周期毎に累積して算出した各移動量からサ
ンプリング周期毎に分配すべき回転軸指令Δθo
よび直線軸指令ΔXoをデイジタル微分解析機によ
り演算してサーボ機構の制御値を決定する演算処
理部を設け、 前記演算処理部で演算された制御値に基づいて
回転テーブルと切削工具とを同時に所定のタイミ
ングでサンプル値制御し、 角面体被加工物の側面に対する平面切削の連続
加工を行うサーボ機構を設けることを特徴とする
数値制御装置。
[Scope of Claims] 1. A machine tool equipped with a rotary table on which a workpiece consisting of a polygonal polyhedron in cross section is placed, and a cutting tool movable in two predetermined axes with respect to the rotary table. and moving the cutting tool in the direction of the central axis Z parallel to the central axis C of the rotary table and in the direction of a predetermined axis X perpendicular to the central axis C of the rotary table and the central axis Z of the cutting tool, respectively. In a numerical control device configured to move a cutting tool to cut a prismatic workpiece on a rotary table, the distance x from the central axis C of the rotary table to the central axis Z of the cutting tool, and the distance x of the rotary table Distance R 0 which is the sum of the radius R of the cutting tool to the distance r from the central axis C to the cutting surface of the prismatic workpiece, Distance z of the cutting tool in the direction of the central axis Z, and Cutting tool for the prismatic workpiece Due to the interrelationship between the cutting movement distance according to
, Δz, Δx, and Δθ, based on the preset movement speed command F', the minute velocity F in the direction of the cutting surface L of the prismatic workpiece and the minute velocity F in the direction of the central axis Z of the cutting tool. z is the following formula Based on the relationship, calculate the minute movement amounts Δ, Δz for each sampling period in each direction, and then calculate the amount of movement for each sampling period from each movement amount calculated by accumulating these minute movement amounts Δ, Δz for each sampling period. An arithmetic processing unit is provided that determines a control value for the servo mechanism by calculating a rotational axis command Δθ o and a linear axis command ΔX o to be distributed to each other using a digital differential analyzer, and based on the control value calculated by the arithmetic processing unit. A numerical control device comprising: a servo mechanism that simultaneously controls sample values of a rotary table and a cutting tool at predetermined timing, and performs continuous plane cutting on a side surface of a prismatic workpiece.
JP19748983A 1983-10-24 1983-10-24 Numerical controller Granted JPS6091405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19748983A JPS6091405A (en) 1983-10-24 1983-10-24 Numerical controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19748983A JPS6091405A (en) 1983-10-24 1983-10-24 Numerical controller

Publications (2)

Publication Number Publication Date
JPS6091405A JPS6091405A (en) 1985-05-22
JPH059803B2 true JPH059803B2 (en) 1993-02-08

Family

ID=16375319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19748983A Granted JPS6091405A (en) 1983-10-24 1983-10-24 Numerical controller

Country Status (1)

Country Link
JP (1) JPS6091405A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396172U (en) * 1990-01-18 1991-10-01
JP2005071016A (en) 2003-08-22 2005-03-17 Fanuc Ltd Numerical control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256290A (en) * 1975-11-01 1977-05-09 Kawasaki Heavy Ind Ltd High precision trajectory control system
JPS5424156A (en) * 1977-07-26 1979-02-23 Kanegafuchi Chemical Ind Method of preventing damage of hair ring and cloth in case when hook of hair planting sewing machine again rise and fall and its device
JPS5518313A (en) * 1978-07-18 1980-02-08 Fanuc Ltd Wire cut discharge processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256290A (en) * 1975-11-01 1977-05-09 Kawasaki Heavy Ind Ltd High precision trajectory control system
JPS5424156A (en) * 1977-07-26 1979-02-23 Kanegafuchi Chemical Ind Method of preventing damage of hair ring and cloth in case when hook of hair planting sewing machine again rise and fall and its device
JPS5518313A (en) * 1978-07-18 1980-02-08 Fanuc Ltd Wire cut discharge processor

Also Published As

Publication number Publication date
JPS6091405A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
KR860002744A (en) Operation method of numerical control machine tool
CN103941640B (en) Five-axis machine tool is realized the continuous method of machining locus
JP2672970B2 (en) Machine tool for machining non-circular cross-section body work and its control method
JP5957872B2 (en) Processing method and processing apparatus
CN108620952A (en) A kind of hole internal diameter On-line Measuring Method
CN109530935A (en) The method for processing regular hole using mechanical arm is cut by laser
JPS63318246A (en) Contour copying apparatus
JPH03121754A (en) Noncontact tracing control device
JPH059803B2 (en)
CN104174938B (en) There is on-line checkingi and the enveloping worm machining tool revising machining functions
JPS6114836A (en) Coordinates system correcting device of machining position
JPH1128641A (en) Plate machining device
JPH033716A (en) Deburring
JPS61197103A (en) Numerically controlled lathe unit
JPS6250252B2 (en)
JPS58137005A (en) Instantaneous processing and simultaneous multi-axis controller
CN105033770B (en) A kind of numerically-controlled machine tool of multiaxis multi-panel processing
CN109702645A (en) A kind of lathe that main shaft is swingable and spindle swing angle control method
JP3344811B2 (en) Tool path data generation method
JPH04152011A (en) Smooth profile working system
JPS61173845A (en) Method of controlling measurement of cutter tip in lathe
TAKESHIMA et al. C4 Finished Test Piece Example for Five-axis Machining Centers (Multi-axis control machining)
JPS6268216A (en) Machining method for circular arc groove of work
KR100227183B1 (en) Multiple piston processing machine
CN117840518A (en) Efficient and precise face gear grinding processing method