JPH033716A - Deburring - Google Patents

Deburring

Info

Publication number
JPH033716A
JPH033716A JP13982689A JP13982689A JPH033716A JP H033716 A JPH033716 A JP H033716A JP 13982689 A JP13982689 A JP 13982689A JP 13982689 A JP13982689 A JP 13982689A JP H033716 A JPH033716 A JP H033716A
Authority
JP
Japan
Prior art keywords
shaft
spherical tool
servo motor
backward
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13982689A
Other languages
Japanese (ja)
Inventor
Hiroyuki Masuda
益田 寛之
Seiichi Fujisawa
藤澤 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13982689A priority Critical patent/JPH033716A/en
Publication of JPH033716A publication Critical patent/JPH033716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve productive efficiency and quality by keeping a rotary shaft parallel condition in one of openings to revolute a spherical tool and simultaneously to move them forward and backward in an axial direction, in a deburring method wherein the crossing portion of two openings the inner circumference of which are cylindrical faces is cutted by a spherical tool at the top end of the rotary shaft. CONSTITUTION:A machining center 1 is provided with each servo motor 2, 3, 4 for X shaft, Y shaft and Z shaft, and a main shaft motor 5 which are simultaneously controlled by a NC device 6 respectively. NC data on the basis of operating procedures are input to the NC device 6 via a taperecorder 6b. A work 7 is moved in the direction of the X shaft forwards and backward by the servo motor 2, the main shaft motor 5 is moved in the direction of the Y shaft forward and backward by the servo motor 3, a base 8 is moved in the direction of the Z shaft forward and backward by the servo motor 4. A rotoary shaft 10 is provided to the main shaft motor 5 and a spherical tool 9 furnished with a plurality of edges is fixed to the top end of the rotary shaft. A work 7 is fixed on a table for one of openings to be parallelled to the rotary shaft 10 and the rotary shaft 10 is inserted in the opening 11 to perform chamfering at the portion of crossing lines 13 by the spherical tool 9.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流体通路用の孔と孔との交線部分を内部に有
したあらゆる機械部品等の精密加工を行う場合に好適に
採用可能なデバリング方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention can be suitably employed when performing precision machining of any mechanical parts that have internal intersections between holes for fluid passages. related to deburring methods.

[従来の技術] 従来、この種の機械部品のデバリング作業は、熟練技能
者による、種々の切削工具を使用した手作業により行わ
れている。そして、デバリング作業後の仕上り状態は、
孔に挿入したファイバースコープ等を利用して確認する
ようにしている。
[Prior Art] Conventionally, this type of deburring work for mechanical parts has been carried out manually by skilled technicians using various cutting tools. The finished state after deburring work is as follows:
We try to check using a fiberscope inserted into the hole.

[発明が解決しようとする課題] ところが、部品内部に形成された三次元形状の交線部分
のデバリング作業を手作業により行うと、生産性が低い
」二に、品質のばらつきが多い。特に、孔と孔との交線
部分の目視が不可能な状態でのデバリング作業では、前
述のような不具合の発生率が高く、何等かの改善が望ま
れている。また、かかるデバリング作業には、豊富な技
能経験及び高度の技術が不可欠となるため、熟練技能者
の確保も困難となっている。
[Problems to be Solved by the Invention] However, when deburring the intersection lines of three-dimensional shapes formed inside parts is performed manually, productivity is low.Secondly, there are many variations in quality. Particularly, when deburring is performed in a state where the intersection lines between holes cannot be visually observed, the incidence of the above-mentioned problems is high, and some kind of improvement is desired. Moreover, since extensive technical experience and advanced technology are essential for such deburring work, it is difficult to secure skilled workers.

このような不具合を解消するために、例えば、孔と孔と
の交線の微小平面から法線方向に一定距離だけ偏心した
位置の軌跡を求め、次いで、回転軸の先端に装着した球
状工具の中心を前記軌跡上に位置させて、球状工具を回
転させながら、該球状工具でその軌跡をなぞることによ
り、交線部分を一定深さに切削する手法が考えられる。
In order to solve this problem, for example, the locus of a position eccentric by a certain distance in the normal direction from the microplane of the intersecting line between holes is determined, and then the trajectory of a spherical tool attached to the tip of the rotating shaft is determined. A possible method is to position the center on the trajectory and trace the trajectory with the spherical tool while rotating the spherical tool, thereby cutting the intersection line portion to a constant depth.

しかしながら、このような手法によると、前記軌跡を求
める際の計算が困難になる。しかも、球状工具の中心を
常に軌跡上に位置させて、該球状工具でその軌跡をなぞ
ると、回転軸と孔とが干渉してしまう恐れが高い。しか
して、回転軸の傾きを適宜変化させるようにすれば、回
転軸と孔との干渉を回避することが可能ではあるが、こ
のような方策によると、膨大な量のデータが必要となる
上に、回転軸の傾きを変化させるための格別な装置が必
要となる。
However, according to such a method, calculation when determining the trajectory becomes difficult. Moreover, if the center of the spherical tool is always positioned on the trajectory and the trajectory is traced with the spherical tool, there is a high possibility that the rotating shaft and the hole will interfere with each other. Although it is possible to avoid interference between the rotation axis and the hole by changing the inclination of the rotation axis appropriately, such a measure requires a huge amount of data and Therefore, a special device is required to change the inclination of the rotation axis.

本発明は、以上のような課題を一挙に解消することを目
的としている。
The present invention aims to solve the above problems all at once.

[課題を解決するための手段] 本発明は、上記目的を達成するために、次のような構成
を採用したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configuration.

すなわち、本発明にかかるデバリング方法は、内周が円
筒面により構成された孔と孔との交線部分を、回転軸の
先端に装着した球状工具により切削するようにしたデバ
リング方法であって、前記回転軸を一方の孔に平行に挿
入し、その孔の軸心と回転軸との平行状態を常に保ちつ
つ前記球状工具を公転させるとともに、この球状工具を
前記軸心方向に進退させて前記交線部分を切削するよう
にしたことを特徴とする。
That is, the deburring method according to the present invention is a deburring method in which a spherical tool attached to the tip of a rotary shaft cuts the intersection line between the holes whose inner periphery is constituted by a cylindrical surface, The rotating shaft is inserted in parallel to one of the holes, and the spherical tool is made to revolve while always maintaining the parallel state between the axis of the hole and the rotating shaft, and the spherical tool is moved back and forth in the direction of the axis. The feature is that the intersection line part is cut.

[作用] このような構成によれば、先ず、交差する孔と孔との交
線における座標値を一方の孔を基準にして求め、その座
標値を元にして、球状工具を公転させる際に該球状工具
の中心を位置させるべき同心円上の座標値を決定する。
[Function] According to such a configuration, first, the coordinate values on the line of intersection between two intersecting holes are determined using one of the holes as a reference, and based on that coordinate value, when the spherical tool is revolved, Coordinate values on a concentric circle where the center of the spherical tool should be located are determined.

次いで、球状工具の半径と、交線部分の切込み量と、前
記同心円と交線との距離から、球状工具を進退させるべ
き軸心方向の座標値を決定する。三軸方向の座標値が決
定すれば、球状工具の中心を前記同心円上に位置させて
、回転軸と軸心との平行を保った状態で、球状工具をそ
の同心円上で回転させながら公転させ、さらに、球状工
具を軸心方向の座標値に基づいて進退させることにより
、交線部分のデバリング作業を行うことになる。
Next, the coordinate values in the axial direction at which the spherical tool should be moved back and forth are determined from the radius of the spherical tool, the amount of cut at the intersection line, and the distance between the concentric circles and the intersection line. Once the coordinate values of the three axes are determined, the center of the spherical tool is located on the concentric circle, and the spherical tool is rotated and revolved on the concentric circle while keeping the rotation axis and the axis parallel to each other. Furthermore, by moving the spherical tool forward and backward based on the coordinate values in the axial direction, deburring work is performed at the intersection line portion.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

この実施例におけるデバリング方法は、第1図に概略的
に示すような既設のマシニングセンタ1を利用している
。マシニングセンタ1は、X軸周サーボモータ2と、Y
軸周サーボモータ3と、1Z軸用サーボモータ4と、主
軸モータ5を備えており、これらのモータをNC装置6
で同時制御するようにしたものである。X軸周サーボモ
ータ2は、送りねじ2aを介してテーブルに接続してあ
り、テーブル上に載置されたワーク7が送りねじ2aの
回転によりX軸方向へ進退移動されるようになっている
。Y軸周サーボモータ3は、基台8に固定してあり、送
りねじ3aを回転させると、送りねじ3aに保持させた
前記主軸モータ5がY軸方向へ進退移動するようになっ
ている。Z軸周サボモータ4の送りねじ4aを回転させ
ると、前記基台8が2軸方向へ進退移動するようになっ
ている。また、前記主軸モータ5には、先端に球状工具
9が固着された回転軸10を着脱自在に装着しである。
The deburring method in this embodiment utilizes an existing machining center 1 as schematically shown in FIG. The machining center 1 includes an X-axis circumferential servo motor 2 and a Y-axis circumferential servo motor 2.
It is equipped with a circumferential servo motor 3, a 1Z-axis servo motor 4, and a main shaft motor 5, and these motors are controlled by an NC device 6.
It is designed to be controlled simultaneously. The X-axis circumferential servo motor 2 is connected to the table via a feed screw 2a, and the workpiece 7 placed on the table is moved forward and backward in the X-axis direction by rotation of the feed screw 2a. . The Y-axis circumferential servo motor 3 is fixed to a base 8, and when the feed screw 3a is rotated, the main shaft motor 5 held by the feed screw 3a moves forward and backward in the Y-axis direction. When the feed screw 4a of the Z-axis circumferential servomotor 4 is rotated, the base 8 moves forward and backward in two axial directions. Further, the main spindle motor 5 is removably mounted with a rotary shaft 10 having a spherical tool 9 fixed to its tip.

NC装置6は、メモリー6aや出力インターフェース等
を内蔵したマイクロコンピュータユニットからなるもの
で、テープリーダ6bが入力インターフェース6Cを介
して接続されている。
The NC device 6 is composed of a microcomputer unit incorporating a memory 6a, an output interface, etc., and is connected to a tape reader 6b via an input interface 6C.

球状工具9は、球面形状の外周に複数の切刃を設けたも
ので、前記回転軸10と一体回転するようになっている
The spherical tool 9 has a plurality of cutting edges on the outer periphery of a spherical shape, and is configured to rotate integrally with the rotating shaft 10.

ワーク7は、内周が円筒面により構成された小径の一方
の孔11と、内周が円筒面により構成された大径の他方
の孔12とが内部で交差し、その交差部分に三次元形状
の交線13が形成されたものである。このワーク7を、
一方の孔11が前記回転軸10と平行になるようにテー
ブル上に固定し、その孔11に回転軸10を平行に挿入
して、先端の球状工具9で前記交線13部分の面取を行
うようにしている。
In the workpiece 7, one small-diameter hole 11 whose inner periphery is constituted by a cylindrical surface and the other large-diameter hole 12 whose inner periphery is constituted by a cylindrical surface intersect inside, and a three-dimensional A line of intersection 13 of the shape is formed. This work 7,
Fix one hole 11 on a table so that it is parallel to the rotating shaft 10, insert the rotating shaft 10 parallel to the hole 11, and chamfer the intersection line 13 using the spherical tool 9 at the tip. I try to do it.

交線13部分の面取を行うにあたり、第2図に概略的に
示すような作業手順に基づいて、NCデータを作製し、
そのNCデータを前記テープリーダ6b等を介してNC
装置6に人力している。先ず、ステップ21で、一方の
孔11と他方の孔12との交線13を、Z軸に平行な一
方の孔11側を基準にして求め、ステップ22に進む。
When chamfering the intersection line 13, NC data was created based on the work procedure as schematically shown in Figure 2.
The NC data is sent to the NC via the tape reader 6b, etc.
Equipment 6 is powered manually. First, in step 21, the intersection line 13 between one hole 11 and the other hole 12 is determined with reference to the one hole 11 side parallel to the Z axis, and the process proceeds to step 22.

この場合の交線13は、第3図に示すように、一方の孔
11の軸心11a上の点を中心とする円のX軸及びY軸
方向の座標値として求められる。ステップ22では、回
転軸10と前記軸心11aとの平行状態を保ちつつ球状
工具9を公転させる際に、その球状工具9の中心9aを
位置させるべき同心円14をXSYの座標値として求め
、ステップ23に進む。ステップ23では、交線]−3
1の各点N1〜Nnと交線1Bの中心13aとを結ぶ直
線と、前記同心円14との交点n1〜n、のX、Y座標
値を決定して、ステップ24に進む。ステップ24では
、交線13と球状工具9の中心9aとの距離α、交線1
3部分の切込み量d、球状工具9の半径rから、球状工
具9と交線13との接触点における角度θを求め、その
角度θに基づいてZの座標値を決定する。前記角度θは
、例えば、次式により求めることができる。
The intersection line 13 in this case is determined as the coordinate values in the X-axis and Y-axis directions of a circle centered on a point on the axis 11a of one of the holes 11, as shown in FIG. In step 22, the concentric circle 14 in which the center 9a of the spherical tool 9 should be located when the spherical tool 9 revolves while maintaining the parallel state between the rotating shaft 10 and the axis 11a is determined as an XSY coordinate value, and step Proceed to step 23. In step 23, the intersection line]-3
1 and the center 13a of the intersection line 1B, and the intersection points n1 to n with the concentric circle 14 are determined, and the process proceeds to step 24. In step 24, the distance α between the intersection line 13 and the center 9a of the spherical tool 9, the intersection line 1
The angle θ at the contact point between the spherical tool 9 and the intersection line 13 is determined from the depth of cut d of the three portions and the radius r of the spherical tool 9, and the coordinate value of Z is determined based on the angle θ. The angle θ can be determined, for example, by the following equation.

α−(r−d)  ・cosθ ただし、r くαくr (r−は、回転軸10の半径) ステップ25では、以」二の手順により求めた同心円1
4上の各魚群n1〜no間の座標値(X、Y、Z)を補
間し、これらの座標値を球状工具9の中心9aの座標デ
ータとして作製する。ステップ26では、NC装置6に
前記データを入力し、主軸モータ5を駆動しつつ、X軸
周サーボモータ2、Y軸周サーボモータ3及びZ軸周サ
ーボモータ4を同時制御して、交線13部分のデバリン
グ作業を実行する。すなわち、球状工具9は、交線13
から一定の距離」−でワーク7との間で相対的に円を描
きつつZ軸方向に進退し、交線13の形状に沿って三次
元移動を行いながら、交線13部分を一定深さに切削し
ていくことになる。
α−(r−d)・cosθ However, r ×α×r (r− is the radius of the rotating shaft 10) In step 25, the concentric circle 1 obtained by the following two steps is
The coordinate values (X, Y, Z) between each fish group n1 to no on 4 are interpolated, and these coordinate values are prepared as coordinate data of the center 9a of the spherical tool 9. In step 26, the data is input to the NC device 6, and while driving the main shaft motor 5, the X-axis circumferential servo motor 2, the Y-axis circumferential servo motor 3, and the Z-axis circumferential servo motor 4 are simultaneously controlled. Execute 13 parts of deburring work. That is, the spherical tool 9
Move forward and backward in the Z-axis direction while drawing a circle relative to the workpiece 7 at a certain distance from the workpiece 7, and while moving three-dimensionally along the shape of the intersection line 13, move the intersection line 13 part to a certain depth. It will be cut to .

したがって、このような構成によれば、ワーク7内に形
成された三次元形状の交線13部分の面取作業を、有効
に機械化することができるので、従来の手作業によるデ
バリング作業に比べて大巾に生産効率を高めることがで
きるとともに、品質を確実に安定させることができる。
Therefore, according to such a configuration, the chamfering work of the intersection line 13 portion of the three-dimensional shape formed in the workpiece 7 can be effectively mechanized, so that the chamfering work is more efficient than the conventional manual deburring work. Not only can production efficiency be greatly increased, but quality can also be reliably stabilized.

しかも、このような方策によれば、熟練作業を必要とせ
ず、既設のマシニングセンタ1等を有効に利用すること
ができる。
Moreover, according to such a measure, the existing machining center 1 etc. can be used effectively without requiring skilled work.

また、回転軸10と一方の孔11との平行状態を常に保
ちながら、球状工具9をワーク7との間で相対的に変化
させて3軸制御するようにしているので、回転軸10と
孔11との干渉を有効に防止することができるとともに
、マシニングセンタ1等を作動させるにあたってのデー
タ量が比較的少なく、実用性に優れたものとなっている
In addition, since the spherical tool 9 is controlled relative to the workpiece 7 while always maintaining the parallel state between the rotating shaft 10 and one hole 11, three-axis control is performed, so that the rotating shaft 10 and the hole 11 can be effectively prevented, and the amount of data needed to operate the machining center 1 etc. is relatively small, making it highly practical.

なお、マシニングセンタの代わりに、少なくとも、x、
ySzの3軸間時制御が行えるNC装置を備えたフライ
ス盤等を用いるようにしてもよい。
Note that instead of the machining center, at least x,
A milling machine or the like equipped with an NC device that can perform time control between three axes of ySz may be used.

また、本発明は、一方の孔と回転軸とを常に平行にすれ
ば、内周が円筒面をなす孔と孔とが直交する場合に限ら
ず、様々の角度でもって交差する場合にも有効に適用可
能である。
In addition, the present invention is effective not only when two holes whose inner peripheries are cylindrical are perpendicular to each other, but also when they intersect at various angles, as long as one hole and the rotation axis are always parallel to each other. Applicable to

さらに、上記実施例では、ワークを移動させるようにし
たが、ワークを固定した状態で球状工具を三軸方向へ移
動させるようにしてもよい。
Further, in the above embodiment, the workpiece is moved, but the spherical tool may be moved in three axial directions while the workpiece is fixed.

[発明の効果] 以上のような構成からなる本発明によれば、被切削物の
内部に形成された孔と孔との交線部分のデバリング作業
を無理なく機械化することができるので、製品の生産効
率を大巾に高めることができるとともに、品質を確実に
安定させることができる。
[Effects of the Invention] According to the present invention configured as described above, it is possible to easily mechanize the deburring work of the intersection line between the holes formed inside the workpiece, thereby improving the quality of the product. Production efficiency can be greatly increased, and quality can be reliably stabilized.

しかも、本発明によれば、デバリング作業を行うにあた
っての格別な熟練技術を必要とせず、既設の装置を有効
に利用することができるので、実用性に優れている。
Moreover, according to the present invention, no special skill is required to carry out the deburring work, and existing equipment can be used effectively, so it is highly practical.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は装置全体を概
略的に示す斜視図、第2図は作業手順を概略的に示すフ
ローチャート図、第3図及び第4図は要部を説明するた
めの図である。 1・・・マシニングセンタ 7・・・ワーク 9・・・球状工具 10・・・回転軸 11.12・・・孔 13・・・交線
The drawings show one embodiment of the present invention; FIG. 1 is a perspective view schematically showing the entire device, FIG. 2 is a flowchart schematically showing the work procedure, and FIGS. 3 and 4 show main parts. It is a figure for explaining. 1... Machining center 7... Work 9... Spherical tool 10... Rotating axis 11. 12... Hole 13... Intersection line

Claims (1)

【特許請求の範囲】[Claims] 内周が円筒面により構成された孔と孔との交線部分を、
回転軸の先端に装着した球状工具により切削するように
したデバリング方法であつて、前記回転軸を一方の孔に
平行に挿入し、その孔の軸心と回転軸との平行状態を常
に保ちつつ前記球状工具を公転させるとともに、この球
状工具を前記軸心方向に進退させて前記交線部分を切削
するようにしたことを特徴とするデバリング方法。
The intersection line between two holes whose inner periphery is composed of a cylindrical surface is
A deburring method in which cutting is performed using a spherical tool attached to the tip of a rotating shaft, the rotating shaft is inserted parallel to one hole, and the axis of the hole is always kept parallel to the rotating shaft. A deburring method characterized in that the spherical tool is caused to revolve, and the spherical tool is advanced and retreated in the axial direction to cut the intersection line portion.
JP13982689A 1989-05-31 1989-05-31 Deburring Pending JPH033716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13982689A JPH033716A (en) 1989-05-31 1989-05-31 Deburring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13982689A JPH033716A (en) 1989-05-31 1989-05-31 Deburring

Publications (1)

Publication Number Publication Date
JPH033716A true JPH033716A (en) 1991-01-09

Family

ID=15254379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13982689A Pending JPH033716A (en) 1989-05-31 1989-05-31 Deburring

Country Status (1)

Country Link
JP (1) JPH033716A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043266A (en) * 2011-08-26 2013-03-04 Kreuz:Kk Deburring device, deburring method, and method of manufacturing parts for automobile
WO2014122789A1 (en) 2013-02-06 2014-08-14 新日鐵住金株式会社 Multi-electrode electrogas arc welding method for thick steel plates and multi-electrode electrogas arc circumferential welding method for steel pipes
WO2016133162A1 (en) * 2015-02-18 2016-08-25 株式会社ジーベックテクノロジー Path calculation program, processing device, path calculation method, tool, and processed article
JP2018134706A (en) * 2017-02-22 2018-08-30 ジヤトコ株式会社 Deburring method, control device for deburring device, control program for deburring device
JP7201884B1 (en) * 2022-04-28 2023-01-10 ファナック株式会社 Arithmetic device, machine tool, machine tool controller, and arithmetic program
JP7201883B1 (en) * 2022-04-28 2023-01-10 ファナック株式会社 Arithmetic device, machine tool, machine tool controller, and arithmetic program
WO2023209999A1 (en) * 2022-04-28 2023-11-02 ファナック株式会社 Computation device, machine tool, machine tool control device, and computation program
WO2023210002A1 (en) * 2022-04-28 2023-11-02 ファナック株式会社 Calculation device, machine tool, control device for machine tool, and calculation program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043266A (en) * 2011-08-26 2013-03-04 Kreuz:Kk Deburring device, deburring method, and method of manufacturing parts for automobile
WO2014122789A1 (en) 2013-02-06 2014-08-14 新日鐵住金株式会社 Multi-electrode electrogas arc welding method for thick steel plates and multi-electrode electrogas arc circumferential welding method for steel pipes
WO2016133162A1 (en) * 2015-02-18 2016-08-25 株式会社ジーベックテクノロジー Path calculation program, processing device, path calculation method, tool, and processed article
JPWO2016133162A1 (en) * 2015-02-18 2017-12-28 株式会社ジーベックテクノロジー Track calculation program, machining apparatus, track calculation method, tool, and processed article
US10324448B2 (en) 2015-02-18 2019-06-18 Xebec Technology Co., Ltd. Path calculation program, processing apparatus, path calculation method, tool, and processed article
JP2018134706A (en) * 2017-02-22 2018-08-30 ジヤトコ株式会社 Deburring method, control device for deburring device, control program for deburring device
JP7201884B1 (en) * 2022-04-28 2023-01-10 ファナック株式会社 Arithmetic device, machine tool, machine tool controller, and arithmetic program
JP7201883B1 (en) * 2022-04-28 2023-01-10 ファナック株式会社 Arithmetic device, machine tool, machine tool controller, and arithmetic program
WO2023209999A1 (en) * 2022-04-28 2023-11-02 ファナック株式会社 Computation device, machine tool, machine tool control device, and computation program
WO2023210003A1 (en) * 2022-04-28 2023-11-02 ファナック株式会社 Computing device, machine tool, control device for machine tool, and computing program
WO2023210005A1 (en) * 2022-04-28 2023-11-02 ファナック株式会社 Computation device, machine tool, device for controlling machine tool, and computation program
WO2023210002A1 (en) * 2022-04-28 2023-11-02 ファナック株式会社 Calculation device, machine tool, control device for machine tool, and calculation program

Similar Documents

Publication Publication Date Title
JP2685071B2 (en) Numerical control unit
JP2541667B2 (en) Thread cutting machine
JPH0351548B2 (en)
CN106312158A (en) Chute machining method for inner wall face of case of aero-engine
EP0323517A1 (en) Profiling method
JP5670517B2 (en) Impeller with wings composed of surfaces made of straight elements and method of machining the same
JPH033716A (en) Deburring
JPS60155310A (en) Machining method and device thereof
US20020071732A1 (en) Corner cutting method and NC controller
JP7411815B2 (en) Machining center for blisk
JPS6399114A (en) Polygon machining control device
JP2005319531A (en) Numerical control machine tool and method for checking machining program
JPH089124B2 (en) Free curved surface processing method
JP2002273623A (en) Spiral bevel gear manufacturing device and spiral bevel gear manufacturing method
JPH0457007B2 (en)
JPH0720920A (en) Method for generating tool track data
JP3085339B2 (en) Machining method
JP2002144106A (en) Eccentric position spherical surface working method using nc lathe
JPS6268216A (en) Machining method for circular arc groove of work
JP2845710B2 (en) Machining method
JP2002137119A (en) Machining method for gear by machining center
KR100227183B1 (en) Multiple piston processing machine
CN211248598U (en) Multi-axis simultaneous movement 3D curved surface processing device
JP3093934B2 (en) Spindle rotation angle controlled cutting method using a bite tool
JP2898162B2 (en) Character line processing method