JPH0597284A - Surface condition detection for carried medium - Google Patents

Surface condition detection for carried medium

Info

Publication number
JPH0597284A
JPH0597284A JP3256325A JP25632591A JPH0597284A JP H0597284 A JPH0597284 A JP H0597284A JP 3256325 A JP3256325 A JP 3256325A JP 25632591 A JP25632591 A JP 25632591A JP H0597284 A JPH0597284 A JP H0597284A
Authority
JP
Japan
Prior art keywords
medium
acoustic wave
reflected
wave
irregularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3256325A
Other languages
Japanese (ja)
Inventor
Kazuyuki Miyazawa
和幸 宮澤
Kichiji Takahashi
吉治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Asahi Electronics Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Asahi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Asahi Electronics Co Ltd filed Critical Hitachi Ltd
Priority to JP3256325A priority Critical patent/JPH0597284A/en
Publication of JPH0597284A publication Critical patent/JPH0597284A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/30Sensing or detecting means using acoustic or ultrasonic elements

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

PURPOSE:To clarify distinction of overlapping of two mediums and wrinkles in a medium by applying an ultrasonic wave pulse to a traveling medium such as a note periodically, and detecting irregularity of the medium from a period until its reflected wave has been received and a weighted output for distance information to the carried medium. CONSTITUTION:In an automatic cash dispenser, there is formed a distance measuring sensor 1 which receives at an electric acoustic wave converting element 3 for receiving, an acoustic wave which is emitted from an electric acoustic wave converting element 2 for transmitting and reflected by a medium 6 while a carried medium 6 such as a note is being transferred, and the outputted signal is inputted into a control part 7. Acoustic wave reflected time between a sensor 1 and the medium 6i s detected at an acoustic wave reflecting time detecting part 10 where the received reflected wave is input after being amplified, and the obtained reflecting time is classified into preset ranks and weighted at a prioritizing part 11. The weighted numerical values are integrated respectively for each transmitted medium at a respective convex part and concave part integrating circuits 13, 14, and the integrated results are compared with respective irregularity margin values to discriminate irregularity of the medium at a medium irregularity discriminating part 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は現金自動取引装置におけ
る紙幣搬送機構等の媒体搬送機構にて、一定速度で搬送
される媒体のしわ、折れ、破れ等の表面状態検出を行
う、搬送媒体監視装置に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medium carrying mechanism such as a banknote carrying mechanism in an automatic teller machine for detecting a surface state such as wrinkles, folds and tears of a medium carried at a constant speed. Applies to equipment.

【0002】[0002]

【従来の技術】現行の現金自動取扱装置の媒体搬送監視
は、媒体寸法、2枚重なり等を検出することにより行っ
ている。それらの検出方法としては例えば特開昭57−
209585公報に示されるような、透過光センサを使
用している。透過光センサは光源から光を放射し、その
光を紙幣が遮断することによる透過光量の変動によっ
て、上記情報を検出している。しかし、この方法では紙
幣のよれ、折れ等の情報は検出困難であった。
2. Description of the Related Art Monitoring of medium transportation of a current automatic cash handling apparatus is carried out by detecting medium size, overlapping of two sheets and the like. As a method for detecting them, for example, Japanese Patent Laid-Open No. 57-
A transmitted light sensor as shown in 209585 is used. The transmitted light sensor radiates light from a light source, and the above-mentioned information is detected by fluctuations in the amount of transmitted light due to the bill blocking the light. However, with this method, it is difficult to detect information such as bill skew and fold.

【0003】[0003]

【発明が解決しようとする課題】上記透過光センサのよ
うな、光の透過にて搬送媒体の情報を検出する場合、媒
体のしわ、折れの情報検出は困難であった。
In the case of detecting information on a carrier medium by transmitting light as in the transmitted light sensor, it has been difficult to detect information on wrinkles and folds of the medium.

【0004】本発明は、上記従来方式にて検出すること
が困難であった。搬送媒体のしわ、折れの検出を可能と
する、搬送媒体の表面状態検出方法を提供することを目
的とする。
The present invention is difficult to detect by the above conventional method. An object of the present invention is to provide a method of detecting the surface state of a carrier medium, which enables detection of wrinkles and breaks of the carrier medium.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、音波による非接触距離測定法を利用したも
のである。この距離測定法は一定周波数パルスにて距離
測定用センサとして用いる電気音波変換素子を駆動さ
せ、音波パルスを空中に発射し、対象物で反射した音波
パルスが音波電気変換素子に受信されるまでの時間を測
定し、その時間と音波が伝播する媒体の音波伝播速度に
より、距離測定用センサと対象物までの距離を求める方
法である。その分解能は電気音波変換素子の駆動周波数
を高くすることで向上するため、本発明では高周波用電
気変換素子を用い、媒体搬送路に一定周期で音波パルス
を発射し、遂次音波電気変換素子に受信される反射波に
て媒体の有無を検出し、媒体が有った場合はその反射波
受信時間より媒体との距離を算出し、あらかじめ設定さ
れたランクで区別して重みづけを行う。そして媒体1枚
毎に重みづけされた値を積分し、凸凹が無い媒体(基準
媒体)の場合の積分値と比較し、検出媒体の表面状態を
判定する方式とした。
In order to achieve the above object, the present invention utilizes a non-contact distance measuring method using sound waves. In this distance measuring method, an electric wave conversion element used as a distance measuring sensor is driven with a constant frequency pulse, a sound wave pulse is emitted into the air, and a sound wave pulse reflected by an object is received by the sound wave electric conversion element. This is a method in which time is measured and the distance between the distance measuring sensor and the object is determined by the time and the sound wave propagation velocity of the medium through which the sound wave propagates. Since the resolution is improved by increasing the driving frequency of the electro-acoustic transducer, in the present invention, a high-frequency electro-conversion element is used to emit a sound wave pulse at a constant cycle in the medium transport path to make the progressive sonic electro-conversion element. The presence or absence of a medium is detected from the received reflected wave, and if there is a medium, the distance to the medium is calculated from the reflected wave reception time, and weighting is performed by distinguishing by a preset rank. Then, the weighted value for each medium is integrated and compared with the integrated value in the case of a medium having no unevenness (reference medium) to determine the surface state of the detection medium.

【0006】[0006]

【作用】搬送媒体の凸凹検出には、音波による距離測定
法を利用する。
The distance measuring method using sound waves is used to detect the unevenness of the carrier medium.

【0007】距離測定用センサとして用いる電気音波変
換素子からは、高周波パルスが一定周期で媒体搬送路に
発信される。媒体通過時には、音波パルスはその媒体で
反射され、音波電気変換素子に受信される。その反射波
受信時間から媒体と距離測定用センサとの距離が検出で
き、また反射波受信回数より媒体の通過時間も検出でき
る。搬送媒体から得られた距離は、遂次あらかじめ設定
されたランクで区別され、ある数値に重みづけされる。
ここで重みづけ数値:Nは、基準媒体(凸凹のまったく
無い媒体)検出時をN=0として設定されるため、検出
媒体に凸凹があった場合、重みづけ数値:Nは凸部検出
時はN>0、凹部検出部はN<0となる。この重みづけ
数値:Nを媒体通過時間で、N>0,N<0の状態毎で
積分し、その値:Ntp(N>0積分値)、Ntn(N<0
積分値)と、媒体凸凹マージン値:±αとを比較するこ
とにより、媒体の表面状態を検出することができる。
From the electro-acoustic wave conversion element used as the distance measuring sensor, high frequency pulses are transmitted to the medium carrying path at a constant cycle. When passing through the medium, the acoustic wave pulse is reflected by the medium and is received by the acoustic-electric conversion element. The distance between the medium and the distance measuring sensor can be detected from the reflected wave reception time, and the passage time of the medium can be detected from the number of times the reflected wave is received. The distance obtained from the transport medium is successively distinguished by a preset rank and weighted to a certain numerical value.
Here, the weighted numerical value: N is set as N = 0 when the reference medium (a medium having no unevenness) is detected. Therefore, when the detected medium has irregularities, the weighted numerical value: N is set when the convex portion is detected. N> 0, and the concave portion detection unit has N <0. This weighting value: N is integrated for each state of N> 0 and N <0 by the medium transit time, and its value: Ntp (N> 0 integration value), Ntn (N <0
The surface state of the medium can be detected by comparing the integrated value) with the medium unevenness margin value: ± α.

【0008】[0008]

【実施例】以下本発明の実施例を図1〜図4により説明
する。
Embodiments of the present invention will be described below with reference to FIGS.

【0009】図1は本発明の構成を示す。搬送媒体−6
は図の矢印方向に一定速度で搬送され、距離測定用セン
サ部−1はこれに平行に取付けられる。距離測定用セン
サ部−1において、音波送信用電気音波変換素子−2
は、搬送媒体−6に送信音波−4が当たるように設置
し、また音波受信用音波電気変換素子−3は、搬送媒体
−6からの反射音波−5を効率良く受信できるように設
置し、それぞれ制御部−7に接続される。制御部−7に
おいてパルス発生部−8は、高周波パルスを発生させ、
一定周期で音波送信用電気音波変換素子−2を駆動す
る。反射波受信部−9にて、音波受信用音波電気変換素
子−3で受信した反射波を増幅し、音波反射時間検出部
−10において距離測定用センサ−1と搬送媒体−6間
での音波反射時間を検出する。ここで得た音波反射時間
は、重みづけ部−11においてあらかじめ設定されたラ
ンクに区別され重みづけされる。(本実施例では、検出
距離と、検出音波反射時間は比例関係があることから、
重みづけは音波反射時間で行うこととした)また重みづ
けは、基準媒体(凸凹無しの媒体)検出時の音波反射時
間を基準とした値がランク毎に設定されており、重みづ
け数値:Nはこれに応じて検出媒体の凸部、凹部に分け
て割りつけられる。Nは重みづけ数値積分部−12にお
いて、凸部積分回路−13及び凹部積分回路−14にて
それぞれ通過媒体1枚毎に積分される。(凸部積分値:
TP,凹部積分値:NTn)媒体凸凹判定部−15におい
て、各積分値:NTP,NTnはあらかじめ設定された、媒
体凸凹マージン値:±α(どの程度の凸凹を検出させる
かの設定値)と比較され、その結果媒体の凸凹が判定さ
れる。(例:NTP>α;NTn<α→凸ヨレ媒体,NTP
α;NTn>α→凹ヨレ媒体) 図2に、図1中A,B,C点の波形を示す。Aは音波送
信用電気音波変換素子−2の駆動パルスを示し、Bは音
波受信用音波電気変換素子−3にて受信された反射波を
示す。図中1,6は反射波が受信されていない状態、す
なわち搬送媒体が無いことを示し、また、2,3,4,
5は搬送紙幣が通過中で、その反射波が受信されている
ことを示す。B波形のVLは、ノイズ除去と反射波の立
上りを検出するためのスライスレベルで、このVLによ
りC:反射波検出パルスをつくり、音波反射時間:t2
〜t5が検出される。
FIG. 1 shows the configuration of the present invention. Carrier Medium-6
Is conveyed at a constant speed in the direction of the arrow in the figure, and the distance measuring sensor unit-1 is attached in parallel with this. In the distance measuring sensor section-1, an acoustic wave transmitting electric wave converting element-2
Is installed so that the transmission sound wave-4 hits the carrier medium-6, and the acoustic wave receiving acoustic-electric conversion element-3 is installed so as to efficiently receive the reflected sound wave-5 from the carrier medium-6, Each is connected to the control unit-7. In the control unit-7, the pulse generation unit-8 generates a high frequency pulse,
The sound wave transmission electric wave conversion element-2 is driven at a constant cycle. The reflected wave receiving unit-9 amplifies the reflected wave received by the sound wave receiving acoustic-electric conversion element-3, and the sound wave reflection time detecting unit-10 amplifies the sound wave between the distance measuring sensor-1 and the carrier medium-6. Detect the reflection time. The sound wave reflection time obtained here is weighted by being classified into a preset rank in the weighting unit-11. (In this embodiment, since the detection distance and the detection sound wave reflection time have a proportional relationship,
For weighting, a value based on the sound wave reflection time at the time of detecting a reference medium (medium having no unevenness) is set for each rank, and the weighting numerical value: N Are divided into convex portions and concave portions of the detection medium according to this. N is integrated for each passing medium in the weighted numerical integration unit-12 by the convex integration circuit-13 and the concave integration circuit-14. (Convex integral value:
N TP , recessed integral value: N Tn ) In the medium unevenness determination unit -15, each integrated value: N TP , N Tn is preset, medium unevenness margin value: ± α (how many unevennesses are to be detected (Setting value), and as a result, the unevenness of the medium is determined. (Example: N TP >α; N Tn <α → Convex twist medium, N TP <
α; N Tn > α → concave twisted medium) FIG. 2 shows waveforms at points A, B, and C in FIG. A indicates a drive pulse of the acoustic wave transmitting acoustic wave converting element-2, and B indicates a reflected wave received by the acoustic wave receiving acoustic wave converting element-3. In the figure, 1 and 6 indicate that no reflected wave is received, that is, there is no carrier medium.
5 indicates that the conveyed bill is passing and the reflected wave thereof is received. V L of the B waveform is a slice level for removing noise and detecting the rising of the reflected wave, and C: the reflected wave detection pulse is created by this V L , and the sound wave reflection time: t 2
~ T 5 is detected.

【0010】図3,図4は重みづけの方法を示す。図3
において、A点は基準媒体−1の距離検出位置を示し、
B−1〜6点は凸凹のある搬送媒体−2の距離検出位置
を示す。図4に送信波−S,A点反射波検出パルス、及
びB−1〜6点反射波検出パルスを示す。また図中の記
号:Nは重みづけ数値,NTPは凸部重みづけ数値積分
値、NTnは凹部重みづけ数値積分値を示す。重みづけを
行う前に、図4に示すようにあらかじめ基準媒体−1の
反射波検出パルスの立上り部をL0としたランクを等間
隔で+Ln〜−Lnまで、設定しておく。凸凹のある媒
体−2を検出した場合、その反射波検出パルスは必ず設
定されたランクにおいてはまり、そのランクに応じた重
みづけがされる。(例:B−1部…ランク:L1→重み
づけ:N=n1)よって凸部はN>0,凹部はN<0の
重みづけがされ、その積分値はNTP=n3+n4+n1
Tn=n1+n4+n1となる。
3 and 4 show a weighting method. Figure 3
, Point A indicates the distance detection position of the reference medium-1,
Points B-1 to 6 indicate distance detection positions of the transport medium-2 having irregularities. FIG. 4 shows transmitted wave-S, A point reflected wave detection pulses, and B-1 to 6 point reflected wave detection pulses. The symbol in the figure: N is a weighted numerical value, N TP is a convex weighted numerical integration value, and N Tn is a concave weighted numerical integration value. Before weighting, as shown in FIG. 4, the ranks in which the rising portion of the reflected wave detection pulse of the reference medium-1 is L0 are set in advance at equal intervals from + Ln to -Ln. When the medium-2 having irregularities is detected, the reflected wave detection pulse always fits in the set rank and is weighted according to the rank. (Example: B-1 Part ... Rank: L1 → Weighting: N = n 1) Accordingly protrusions N> 0, the recess is the weighting N <0, the integral value N TP = n 3 + n 4 + N 1 ,
N Tn = n 1 + n 4 + n 1 .

【0011】[0011]

【発明の効果】以上説明したように、本発明により一定
速度で搬送されている媒体の凸凹等の表面状態を検出す
ることが可能となり、自動現金取引装置等の媒体搬送機
構の監視項目が増え、媒体の2枚重なりとしわの区別が
明確となり、装置の信頼性が向上する。
As described above, according to the present invention, it becomes possible to detect the surface condition such as unevenness of the medium being conveyed at a constant speed, and the number of monitoring items of the medium conveying mechanism such as the automatic cash transaction apparatus increases. , The distinction between the overlapping of two media and wrinkles becomes clear, and the reliability of the apparatus is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成図である。FIG. 1 is a configuration diagram of the present invention.

【図2】図1の波形図である。FIG. 2 is a waveform diagram of FIG.

【図3】重みづけ数値設定方法を示す図である。FIG. 3 is a diagram showing a weighted numerical value setting method.

【図4】重みづけ数値設定方法を示す図である。FIG. 4 is a diagram showing a weighted numerical value setting method.

【符号の説明】[Explanation of symbols]

1…距離測定用センサ部、 2…音波送信用電気音波変換素子、 3…音波受信用音波電気変換素子、 7…制御部、 11…重みづけ部、 12…重みづけ数値積分部、 13…媒体凸凹判定部。 DESCRIPTION OF SYMBOLS 1 ... Distance measurement sensor part, 2 ... Sound wave transmission electric wave conversion element, 3 ... Sound wave reception sound wave / electric conversion element, 7 ... Control part, 11 ... Weighting part, 12 ... Weighted numerical integration part, 13 ... Medium Unevenness determination part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一定速度で搬送されている媒体に、音波送
信素子を用いて超音波パルスを周期的に当て、その反射
波が音波受信素子に受信されるまでの時間と、音波が伝
播する媒体の音波伝播速度から得られる搬送媒体と各音
波素子間の距離情報を、あらかじめ設定された法則に従
って重みづけをし、その積分値から媒体の凸凹を検出す
ることを特徴とする搬送媒体の表面状態検出方式。
1. A sound wave transmitting element is used to periodically apply an ultrasonic pulse to a medium that is being transported at a constant speed, and the time until the reflected wave is received by the sound wave receiving element and the sound wave propagates. Distance information between the carrier medium and each sonic element obtained from the sound wave propagation velocity of the medium, weighted according to a preset rule, the surface of the carrier medium characterized by detecting the unevenness of the medium from the integrated value State detection method.
JP3256325A 1991-10-03 1991-10-03 Surface condition detection for carried medium Pending JPH0597284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3256325A JPH0597284A (en) 1991-10-03 1991-10-03 Surface condition detection for carried medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3256325A JPH0597284A (en) 1991-10-03 1991-10-03 Surface condition detection for carried medium

Publications (1)

Publication Number Publication Date
JPH0597284A true JPH0597284A (en) 1993-04-20

Family

ID=17291106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3256325A Pending JPH0597284A (en) 1991-10-03 1991-10-03 Surface condition detection for carried medium

Country Status (1)

Country Link
JP (1) JPH0597284A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105291A1 (en) 2007-02-28 2008-09-04 Murata Manufacturing Co., Ltd. Medium fatigue detecting device and medium fatigue detecting method
US8827267B2 (en) 2012-09-05 2014-09-09 Pfu Limited Paper conveying apparatus, recovery method, and computer-readable, non-transitory medium
US8840107B2 (en) 2012-09-14 2014-09-23 Pfu Limited Paper conveyance apparatus
US8864131B2 (en) 2012-09-05 2014-10-21 Pfu Limited Paper conveying apparatus with sound detector, and recovery method
US8864130B2 (en) * 2012-08-24 2014-10-21 Pfu Limited Image reading apparatus with sound detector and sound signal generator
US8870181B2 (en) 2012-08-24 2014-10-28 Pfu Limited Paper conveying apparatus with side guide and sound detector
US8925920B2 (en) 2012-09-14 2015-01-06 Pfu Limited Paper conveying apparatus, abnormality detection method, and computer-readable, non-transitory medium
US9421763B2 (en) 2014-11-10 2016-08-23 Seiko Epson Corporation Recording apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105291A1 (en) 2007-02-28 2008-09-04 Murata Manufacturing Co., Ltd. Medium fatigue detecting device and medium fatigue detecting method
US8201453B2 (en) 2007-02-28 2012-06-19 Murata Manufacturing Co., Ltd. Medium fatigue detection apparatus and medium fatigue detection method
US8864130B2 (en) * 2012-08-24 2014-10-21 Pfu Limited Image reading apparatus with sound detector and sound signal generator
US8870181B2 (en) 2012-08-24 2014-10-28 Pfu Limited Paper conveying apparatus with side guide and sound detector
US8827267B2 (en) 2012-09-05 2014-09-09 Pfu Limited Paper conveying apparatus, recovery method, and computer-readable, non-transitory medium
US8864131B2 (en) 2012-09-05 2014-10-21 Pfu Limited Paper conveying apparatus with sound detector, and recovery method
US8840107B2 (en) 2012-09-14 2014-09-23 Pfu Limited Paper conveyance apparatus
US8925920B2 (en) 2012-09-14 2015-01-06 Pfu Limited Paper conveying apparatus, abnormality detection method, and computer-readable, non-transitory medium
US9421763B2 (en) 2014-11-10 2016-08-23 Seiko Epson Corporation Recording apparatus

Similar Documents

Publication Publication Date Title
US4223790A (en) Container inspection system
US8201453B2 (en) Medium fatigue detection apparatus and medium fatigue detection method
JPH02231532A (en) Filling condition measuring apparatus
US4651568A (en) Glass bottle inspection
JPH0597284A (en) Surface condition detection for carried medium
ZA200604066B (en) Method and apparatus for ultrasonic testing of an object
JPH02156391A (en) Method and apparatus for counting flat product within flake
JPH0943360A (en) Water infiltration detecting method
JPH08136643A (en) Ultrasonic distance measuring instrument
KR101276492B1 (en) Bill detecting apparatus using ultrasonic sensor and detecting method thereof
US20060244196A1 (en) Multiple sheet detection system
JP2001013118A (en) Electromagnetic ultrasonic probe
JPS59177241A (en) Sheet sensor
KR101538464B1 (en) Method for detecting number of transferring banknotes using double discharge logic of ultrasonic sensor
JPH0597282A (en) Dimension measurement for medium
US20220268609A1 (en) Ultrasonic Flowmeter and Method for Determining the Velocity of a Flowing Medium
JP3843642B2 (en) Edge detection method for metal plate
JP3512512B2 (en) Ultrasonic flow velocity measuring device
JPS60122370A (en) Flaw detector for thin plate
JPH11304448A (en) Medium detecting method
JP2002296343A (en) Ultrasonic head
RU2378624C2 (en) Method and device for control of liquid medium level with annunciation of availability of acoustic contact between transmitter and receiver of ultrasonic vibrations and surfaces of container walls
JPH0545455A (en) Ultrasonic detector
JPH08136320A (en) Ultrasonic level meter
JPH0599647A (en) Method for measuring paper length