JPH059678A - Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability - Google Patents

Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability

Info

Publication number
JPH059678A
JPH059678A JP18915291A JP18915291A JPH059678A JP H059678 A JPH059678 A JP H059678A JP 18915291 A JP18915291 A JP 18915291A JP 18915291 A JP18915291 A JP 18915291A JP H059678 A JPH059678 A JP H059678A
Authority
JP
Japan
Prior art keywords
rolling
ironing
alloy
hot rolling
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18915291A
Other languages
Japanese (ja)
Inventor
Hiroaki Takeuchi
宏明 竹内
Shoichi Sakota
正一 迫田
Hiroshi Shibata
浩 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP18915291A priority Critical patent/JPH059678A/en
Publication of JPH059678A publication Critical patent/JPH059678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To obtain a thin Al alloy sheet for a drawless fin excellent in ironability by subjecting an Al alloy ingot having specified content of Si, Fe and Mn to homogenizing treatment, thereafter executing hot rolling, cold rolling or the like and distributing fine intermetallic compounds into the metallic structure of the thin sheet. CONSTITUTION:An alloy constituted of, by weight, 0.01 to 0.15% Si, 0.1 to 0.4% Fe, 0.1 to 0.4% Mn and the balance Al is melted. The ingot of the above ingot is subjected to homogenizing treatment and is thereafter subjected to rolling for >=7 passes to regulated its sheet thickness from 100mm to the one finished with the hot rolling as well as to regulate the finishing temp. of the rolling to >=200 deg.C. Next, the alloy is subjected to precipitation treatment at 200 to 350 deg.C for >=2hr and is subjected to cold rolling at >=80% draft, and the obtd. thin sheet is subjected to temperature annealing at 250 to 300 deg.C. Then, fine intermetallic compounds with >=0.1mum diameter are distributed into the metallic structure of the thin sheet by >=5 pieces/mum<3> as well as its specific resistance value is regulated to <=33.5nOMEGAm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は張り出し加工、しごき加
工、伸びフランジ加工を施してルームエアコン用フィン
として使用されるしごき加工性に優れたドローレスフィ
ン用アルミニウム合金薄板の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy thin plate for a drawless fin, which is excellent in ironing property and is used as a fin for a room air conditioner by subjecting it to overhanging, ironing and stretch-flange processing.

【0002】[0002]

【従来技術およびその課題】一般に空調用熱交換器のア
ルミニウム合金フィンは図1(イ)〜(ニ)に示すよう
に、プレート部(1)に熱交チューブを挿着するための
カラー部(2)を形成したものであり、プレート部形状
に応じて、フラットタイプ(イ)、ルーバータイプ
(ロ)、スリットタイプ(ハ)、コルゲートタイプ
(ニ)に区分される。またカラー部の成形方法はドロー
方式とドローレス方式に区分される。ドロー方式は図2
(イ)〜(ヘ)に示すように張り出し(イ)、絞り
(ロ)〜(ニ)、打ち抜き、バーリング(ホ)、リフレ
アー(ヘ)の工程からなり、張り出し加工が中心をなし
ている。従ってフィン材には優れた伸びが要求されてお
り、通常は厚さ0.13mm以上の厚いフィンの製造に
用いられている。また、ドローレス方式は図3(イ)〜
(ニ)に示すように打ち抜き、穴拡げ(イ)、バーリン
グ(ロ)、しごき(ハ)、リフレアー(ニ)の工程から
なり、しごき加工が中心をなしている。従ってフィン材
にはしごき加工性に優れる事が要求され、通常0.13
mm以下の薄いフィンの製造に用いられている。
2. Description of the Related Art Generally, an aluminum alloy fin for an air conditioner heat exchanger has a collar portion (for inserting a heat exchange tube in a plate portion (1) as shown in FIGS. 2) is formed, and is classified into a flat type (a), a louver type (b), a slit type (c), and a corrugated type (d) according to the shape of the plate portion. The molding method of the collar portion is classified into a draw method and a drawless method. Drawing method is shown in Figure 2.
As shown in (a) to (f), the process of overhanging (a), drawing (b) to (d), punching, burring (e), and flare (f) is the main process. Therefore, the fin material is required to have excellent elongation and is usually used for manufacturing a thick fin having a thickness of 0.13 mm or more. In addition, the drawless method is shown in Fig. 3 (a)-
As shown in (d), the process consists of punching, hole expansion (a), burring (b), ironing (c), and refraining (d), and ironing is the main process. Therefore, it is required that the fin material has excellent ironing workability.
It is used for manufacturing thin fins of less than mm.

【0003】最近、省エネルギー、省資源の面から熱交
換器の軽量化が望まれ、アルミニウム合金フィンにおい
ても、薄肉軽量化が図られ、フィンの製造にもドローレ
ス方式が多用されるようになった。ドローレス方式フィ
ンの成形時に生じる成形不良としては、しごき工程で発
生するしごき割れ、リフレアー工程で発生する花割れ等
がある。特にしごき割れはしごき率が高くなるほど発生
しやすくなりカラー部の特定高さ以上の製品寸法が得ら
れない等の問題があった。またこれらの割れは何れもカ
ラー部と熱交チューブの密着性を損ない、熱交特性を低
下させるとともに成形フィンの外観を害するものであ
り、製品としての価値を下げる場合があるため、これら
の成形不良の低減が強く望まれている。またコルゲート
タイプでは張り出し加工が行われるため、強度と同時に
高い伸びが要求されるが、従来の通常の製造方法で製造
したアルミニウム合金薄板では十分な強度、伸びが得ら
れないばかりか、成形性の良好なものが得られないとい
う欠点があった。
Recently, it has been desired to reduce the weight of the heat exchanger from the viewpoint of energy saving and resource saving, and the aluminum alloy fins have been made thinner and lighter, and the drawless method has been widely used for manufacturing the fins. .. Molding defects that occur during molding of the drawless fins include ironing cracks that occur during the ironing process and flower cracks that occur during the flare process. In particular, ironing cracks are more likely to occur as the ironing rate becomes higher, and there has been a problem that a product dimension larger than the specific height of the collar cannot be obtained. All of these cracks impair the adhesion between the collar part and the heat exchange tube, reduce the heat exchange characteristics and impair the appearance of the forming fins, and may reduce the value of the product. Reduction of defects is strongly desired. In addition, since corrugated type is subjected to overhanging processing, it requires high elongation at the same time as strength, but aluminum alloy thin plates manufactured by conventional ordinary manufacturing methods do not provide sufficient strength and elongation, as well as formability. There was a drawback that good products could not be obtained.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記問題点
を解決するために検討を重ねた結果、熱間圧延のパスス
ケジュールおよび圧下量を適性に制御し、熱間圧延時の
回復、再結晶を抑制することにより、粗大な旧粒界を含
まない、均一微細な金属組織をもつアルミニウム合金薄
板が得られ、この合金板がドローレスフィン用硬質フィ
ン材として十分な強度と伸び値を有し、しかもしごき性
に優れることを見出したのである。また、上記問題点を
解決するためにさらに検討を重ねた結果、以下に示す知
見も見出したのである。すなわち、熱間圧延後の析出処
理によりフィン材を組織制御すれば成形性は向上するこ
とを見出したのである。従来のドローレスフィン用硬質
アルミニウム材を用いた場合は、ドローレスフィン成形
工程中のしごき工程において、予加工で形成された転位
組織がしごき加工時の加工発熱により回復するため、し
ごき率が大きい場合すなわち加工発熱量が大きい場合に
は回復サブグレインを不均一に生じ、材料の破断抵抗力
がしごき力を下回る結果、そこを起点としてしごき割れ
が発生することを知見した。そこで、この知見に基づ
き、しごき加工時に回復しにくい、すなわち高温強度の
高い材料について鋭意検討を行った結果、熱間圧延後、
析出処理を1回以上行うことにより、成形加工前のアル
ミニウム合金板のアルミマトリックス中に微細な金属間
化合物が均一に分散され、しごき加工時の加工発熱によ
る回復サブグレインの成長を妨げる効果が得られ、しご
き性が向上するという知見を得たのである。また、微細
な金属間化合物を均一に分散させておくことにより、素
板自体の伸び値も向上するという知見を得たのである。
さらに検討を重ねた結果、上記に加えアルミニウムマト
リックス中の固溶量を低減させることにより、しごき成
形時の加工硬化が抑制され、しごき力が低減される結
果、さらにしごき性が向上することを見出したのであ
る。
Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors appropriately controlled the pass schedule and reduction amount of hot rolling, and recovered during hot rolling, By suppressing recrystallization, it is possible to obtain an aluminum alloy thin plate that does not contain coarse old grain boundaries and has a uniform fine metal structure, and this alloy plate has sufficient strength and elongation as a hard fin material for drawless fins. However, they have found that the ironing property is excellent. In addition, as a result of further studies to solve the above problems, the following findings have been found. That is, it has been found that if the structure of the fin material is controlled by the precipitation treatment after hot rolling, the formability is improved. When a conventional hard aluminum material for drawless fins is used, in the ironing process during the drawless fin forming process, the dislocation structure formed by pre-processing recovers due to the processing heat during ironing, so if the ironing rate is large It has been found that when the amount of heat generated by processing is large, recovery subgrains are non-uniformly generated, and the fracture resistance of the material falls below the ironing force, and as a result, ironing cracks occur. Therefore, based on this knowledge, it is difficult to recover during ironing, that is, as a result of diligent examination of a material having high high temperature strength, after hot rolling,
By performing the precipitation treatment once or more, fine intermetallic compounds are uniformly dispersed in the aluminum matrix of the aluminum alloy sheet before forming, and the effect of hindering the growth of recovery subgrains due to processing heat during ironing is obtained. Therefore, it was found that the ironing property is improved. Further, they have found that evenly dispersing the fine intermetallic compound improves the elongation value of the base plate itself.
As a result of further study, it was found that, in addition to the above, by reducing the amount of solid solution in the aluminum matrix, work hardening during ironing forming is suppressed and the ironing force is reduced, resulting in further improvement of ironing property. It was.

【0005】すなわち、本発明は、Si0.01〜0.
15重量%、Fe0.10〜0.40重量%、Mn0.
10〜0.40重量%、を含み、残部Alと不可避的不
純物とからなる合金鋳塊に均質化処理を施した後、直ち
に熱間圧延を施し、その熱間圧延を板厚100mmから
熱間圧延上りの板厚となるまでの圧延を7パス以上とな
るような圧下率で、かつ熱間圧延終了温度が200℃以
上となるように行い、続いて冷間圧延を行う前、あるい
は行った後に、200〜350℃の温度で2時間以上保
持する析出処理を1回以上行い、その後圧下率80%以
上の冷間圧延を行い、続いて得られた薄板に250〜3
00℃の温度で調質焼鈍を施すことにより、得られた薄
板の金属組織中に直径が0.1μm以下の微細な金属間
化合物を5個/μm3 以上分布させ、かつ比抵抗値を3
3.5nΩm以下とすることを特徴とするしごき加工性
に優れたドローレスフィン用アルミニウム合金薄板の製
造方法である。
That is, according to the present invention, Si0.01-0.
15% by weight, Fe 0.10 to 0.40% by weight, Mn0.
The alloy ingot containing 10 to 0.40% by weight, the balance of which is Al and unavoidable impurities, is homogenized, and then immediately hot-rolled. Rolling was carried out until the plate thickness reached the rolled thickness at a rolling reduction of 7 passes or more and at a hot rolling end temperature of 200 ° C. or more, and then before or after cold rolling. After that, a precipitation treatment of holding at a temperature of 200 to 350 ° C. for 2 hours or more is performed once or more, and then cold rolling is performed at a reduction rate of 80% or more, and subsequently the obtained thin plate is subjected to 250 to 3
By performing temper annealing at a temperature of 00 ° C., fine intermetallic compounds having a diameter of 0.1 μm or less are distributed in the metal structure of the obtained thin plate in an amount of 5 / μm 3 or more, and a specific resistance value of 3 is obtained.
It is a method for producing an aluminum alloy thin plate for drawless fins having excellent ironing workability, which is characterized in that it is 3.5 nΩm or less.

【0006】[0006]

【作用】次に、合金組成を本発明の通り限定した理由を
説明する。本発明に係るアルミニウム合金板はSi0.
01〜0.15重量%、Fe0.10〜0.40重量
%、Mn0.10〜0.40重量%を含み、残部Alと
不可避的不純物とからなることを特徴とする。Si、F
eおよびMn成分には一部アルミニウムに固溶し、薄板
の強度を高める効果に加え、合金板中にAl−Fe系、
Al−Fe−Mn系、Al−(Fe、Mn)−Si系の
非常に硬い金属間化合物となって均一に分散し、しごき
加工における工具との焼き付きを防止し、しごき性を向
上する効果がある。さらにMn成分には合金薄板の伸び
値を向上する効果がある。ここで、Si添加量が0.0
1重量%未満、Fe添加量が0.10重量%未満、Mn
添加量が0.10重量%未満では所望の強度、伸びが得
られないばかりか金属間化合物の数および大きさが減少
するため焼き付きが多発し、しごき性が劣化するため好
ましくない。一方、Si添加量が0.15重量%より多
く、Fe添加量が0.40重量%より多く、かつMn添
加量が0.40重量%より多くなると、しごき加工時に
加工硬化が促進され易くなるとともに、金属間化合物の
粗大化を生じて、しごき加工時、リフレアー加工時にそ
の金属間化合物が割れ起点となるため成形性が劣化す
る。したがって、Si添加量は0.01〜0.15重量
%、Fe添加量は0.10〜0.40重量%、Mn添加
量は0.10〜0.40重量%であることが必要であ
る。本発明で金属間化合物の直径を0.1μm径以下と
規定したのは、径が0.1μmを超えるとサブグレイン
粒界の移動を遅延する効果が小さくなり回復サブグレイ
ンが発生しやすくなるためである。さらに直径0.1μ
m径以下の金属間化合物の分布を数密度にして5個/μ
3 以上と規定したのは、5個/μm3 未満では上記の
効果が得られにくく、したがってしごき性向上効果がな
いためである。なお、上記金属間化合物はマトリックス
中に不均一に分布しても効果が少なく望ましくは均一に
分散させた方が効果が高い。本発明は上記の微細金属間
化合物分布に加え、成形加工前の金属組織の比抵抗値を
33.5nΩm以下とすることを特徴とする。これは加
工硬化性を支配する添加元素固溶量を比抵抗値で数値化
したものであり、固溶量の指標となる比抵抗値が33.
5nΩmを超える場合は、加工硬化し易くなって、しご
き加工時に割れが生じやすくなるためである。したがっ
て、比抵抗値が33.5nΩm以下であることが必要で
ある。
Next, the reason why the alloy composition is limited as in the present invention will be explained. The aluminum alloy plate according to the present invention has a Si0.
It is characterized in that it contains 01 to 0.15% by weight, Fe 0.10 to 0.40% by weight, Mn 0.10 to 0.40% by weight, and the balance is Al and inevitable impurities. Si, F
The e and Mn components are partly solid-dissolved in aluminum and have the effect of increasing the strength of the thin plate.
It becomes an extremely hard intermetallic compound of Al-Fe-Mn type and Al- (Fe, Mn) -Si type and is dispersed uniformly, preventing seizure with a tool during ironing and improving the ironing property. is there. Further, the Mn component has an effect of improving the elongation value of the alloy thin plate. Here, the amount of Si added is 0.0
Less than 1% by weight, Fe addition amount less than 0.10% by weight, Mn
If the addition amount is less than 0.10% by weight, not only the desired strength and elongation cannot be obtained, but also the number and size of the intermetallic compounds decrease, so that seizure frequently occurs and ironing property deteriorates, which is not preferable. On the other hand, when the Si addition amount is more than 0.15% by weight, the Fe addition amount is more than 0.40% by weight, and the Mn addition amount is more than 0.40% by weight, work hardening is easily promoted during ironing. At the same time, the intermetallic compound becomes coarse, and the intermetallic compound becomes a crack starting point during the ironing process and the flare process, which deteriorates the formability. Therefore, it is necessary that the Si addition amount is 0.01 to 0.15% by weight, the Fe addition amount is 0.10 to 0.40% by weight, and the Mn addition amount is 0.10 to 0.40% by weight. .. In the present invention, the diameter of the intermetallic compound is defined as 0.1 μm or less because the effect of delaying the movement of the subgrain grain boundaries becomes small and the recovery subgrains are likely to occur when the diameter exceeds 0.1 μm. Is. Diameter 0.1μ
The distribution of intermetallic compounds with a diameter of m or less is set to a number density of 5 / μ
The reason for defining as m 3 or more is that if the number is less than 5 pieces / μm 3 , the above effect is difficult to be obtained, and therefore the ironing property is not improved. The intermetallic compound has little effect even if it is unevenly distributed in the matrix, and it is more effective if it is dispersed uniformly. The present invention is characterized in that, in addition to the above-mentioned fine intermetallic compound distribution, the specific resistance value of the metal structure before forming is 33.5 nΩm or less. This is a numerical representation of the solid solution amount of the additive element that governs the work hardenability, and the specific resistance value as an index of the solid solution amount is 33.
This is because if it exceeds 5 nΩm, work hardening is likely to occur, and cracks are likely to occur during ironing. Therefore, it is necessary that the specific resistance value is 33.5 nΩm or less.

【0007】次に本発明の製造方法について説明する。
本発明は、直径が0.1μm以下の微細な金属間化合物
の析出を促進すると共に、元素固溶量の低減を図ること
を目的としており、そのためにまず均質化処理後、熱間
圧延において板厚100mmから熱間圧延上りの板厚と
なるまでの圧延を7パス以上となるような軽圧下率で、
かつ熱間圧延終了温度を200℃以上とするように熱間
圧延を行うことである。ここで7パス未満では、最終パ
ス終了後、微細な金属間化合物の析出が促進されず、固
溶量も低減されないために、しごき加工時に割れが生じ
やすくなる等の問題が起こる。また、7パス未満では、
1パス毎の圧下量が大きくなるため、パス毎に回復、再
結晶を繰り返す結果、最終パス終了後の熱間圧延板中に
旧粒界を多数生じる結果となり、これが冷間圧延後も残
留し不均一な金属組織となり、成形性の低下を招くため
である。また熱間圧延終了温度を200℃以上としたの
は200℃未満では金属間化合物の析出が難しくなるか
らである。尚熱間圧延上りの板厚は3〜10mm程度で
ある。ここで、均質化処理は常法に基づき行えば良い
が、500〜620℃で短時間、望ましくは3時間以内
の保持を行い、熱間圧延前の添加元素固溶量を高くすれ
ば熱間圧延時の回復、再結晶がより抑制されるため上記
の熱間圧延の効果が高い。さらに本発明では、直径0.
1μm以下の微細な金属間化合物の析出を促進すると共
に、固溶量の低減を図ることを目的として、熱間圧延
後、冷間圧延を行う前に、あるいは行った後に、200
〜350℃の温度で2時間以上保持する析出処理を1回
以上行うことが必要である。ここで、析出処理温度が2
00℃未満では、その効果が不十分であり、350℃よ
り高い場合、金属間化合物が粗大化し、温度によっては
再結晶粒を生じて、これが割れの起点となるために、か
えって成形性が劣化してしまう。したがって、析出処理
温度は200〜350℃であることが必要である。さら
に、熱間圧延後、冷間圧延を行う前に、あるいは行った
後、この析出処理を1回より多く行えば、それだけ直径
0.1μm以下の微細な金属間化合物の析出が促進され
ると共に、固溶量もより低減されることから、1回より
多く行うことが望ましい。続いて圧下率80%以上の冷
間圧延を行うのは、80%未満ではドローレスフィン用
フィン材として必要な強度が不足するためである。ま
た、得られた薄板に250〜300℃の温度で調質焼鈍
を施すことにより、コルゲートタイプドローレスフィン
材として必要なコルゲート加工性(張出し性)が得られ
る。ここで、調質温度が250℃未満では十分な成形性
が得られず、300℃より高い温度で調質焼鈍した場
合、再結晶粒を生じて、これが割れの起点となるため、
かえって成形性が劣化してしまう。したがって、得られ
た薄板を250〜300℃の温度で調質焼鈍を施す必要
がある。
Next, the manufacturing method of the present invention will be described.
The present invention aims to promote the precipitation of fine intermetallic compounds having a diameter of 0.1 μm or less and to reduce the amount of elemental solid solution. Therefore, first, after homogenization treatment, the sheet is hot-rolled. Rolling from a thickness of 100 mm to a plate thickness after hot rolling with a light reduction rate of 7 passes or more,
In addition, hot rolling is performed so that the hot rolling end temperature is 200 ° C. or higher. If the number of passes is less than 7, the precipitation of fine intermetallic compounds will not be promoted after the final pass and the amount of solid solution will not be reduced, so that problems such as easy cracking during ironing will occur. Also, with less than 7 passes,
Since the amount of reduction in each pass is large, recovery and recrystallization are repeated in each pass, resulting in many old grain boundaries in the hot-rolled sheet after the end of the final pass, which remains after cold-rolling. This is because the metal structure becomes non-uniform and the formability is deteriorated. Moreover, the reason why the hot rolling finish temperature is set to 200 ° C. or higher is that precipitation of an intermetallic compound becomes difficult at less than 200 ° C. The plate thickness after hot rolling is about 3 to 10 mm. Here, the homogenizing treatment may be carried out based on a conventional method, but if it is held at 500 to 620 ° C. for a short time, preferably within 3 hours, and if the amount of the added element solid solution before hot rolling is increased, the hot working is performed. Since the recovery and recrystallization during rolling are further suppressed, the effect of the above hot rolling is high. Further, in the present invention, the diameter is 0.
For the purpose of promoting the precipitation of fine intermetallic compounds of 1 μm or less and reducing the solid solution amount, after hot rolling, before cold rolling or after hot rolling, 200
It is necessary to carry out the precipitation treatment at a temperature of 350 ° C for 2 hours or more once or more. Here, the precipitation treatment temperature is 2
If the temperature is lower than 00 ° C, the effect is insufficient, and if the temperature is higher than 350 ° C, the intermetallic compound becomes coarse and recrystallized grains are generated depending on the temperature, which becomes a starting point of cracking, which rather deteriorates the formability. Resulting in. Therefore, the precipitation treatment temperature needs to be 200 to 350 ° C. Furthermore, if the precipitation treatment is performed more than once after hot rolling and before or after cold rolling, the precipitation of fine intermetallic compounds having a diameter of 0.1 μm or less is promoted as much. Since the amount of solid solution is further reduced, it is desirable to carry out more than once. The reason why cold rolling is performed at a rolling reduction of 80% or more is because the strength required as a fin material for drawless fins is insufficient at less than 80%. Further, by subjecting the obtained thin plate to temper annealing at a temperature of 250 to 300 ° C., corrugation workability (overhanging property) required as a corrugated type drawless fin material can be obtained. Here, when the tempering temperature is less than 250 ° C., sufficient formability cannot be obtained, and when tempering annealing is performed at a temperature higher than 300 ° C., recrystallized grains are generated, and this becomes a starting point of cracking.
On the contrary, the moldability deteriorates. Therefore, it is necessary to heat-treat the obtained thin plate at a temperature of 250 to 300 ° C.

【0008】[0008]

【実施例】【Example】

〔実施例1〕 表1に示す組成の合金鋳塊を水冷鋳造により作製し、そ
の鋳塊(厚さ400mm)を片面10mmずつ両面面削
後、表2に示した条件で均質化処理を施した後、直ちに
熱間圧延を行い、厚さ6mmの熱間圧延板を得た。熱延
板に冷間圧延を行う前に、あるいは行った後、表2に示
す条件下で析出処理を行い、続いて冷間圧延を行い厚さ
0.115mmの薄板とした後、250〜300℃の範
囲で調質焼鈍を施して引張強さが14.0〜15.5k
gf/mm2 のドローレスフィン用薄板を得た。このよ
うにして得られたフィン材の直径が0.1μm以下の微
細な金属間化合物の分布状態、比抵抗値および成形性の
評価結果を表3に示す。ここで、金属間化合物の分布状
態は、透過型電子顕微鏡を用いて金属間化合物の粒子径
およびその粒子の一定体積中の存在数を測定した。な
お、その粒子径は粒子の投影面積と等しい面積の円の直
径とした。電気比抵抗値については、JIS規格に基づ
きダブルブリッジを用いて調質焼鈍後の薄板を測定し
た。しごき加工性は、ドローレスフィン実機により、直
径8.29mmの第2アイアニングダイスと直径8.2
4mmの第2アイアニングポンチを用い、しごき率78
%の苛酷条件でフィンカラー部を160個成形した時の
しごき割れ不良率で評価した。コルゲート加工性は、ド
ローレスフィン実機により、成形高さ1.3mmのコル
ゲート板を用いてコルゲート部を100個成形した時の
割れの有無により評価した。
[Example 1] Alloy ingots having the compositions shown in Table 1 were produced by water cooling casting, the ingots (thickness 400 mm) were machined on both sides by 10 mm on each side, and then homogenized under the conditions shown in Table 2. Immediately after that, hot rolling was performed to obtain a hot rolled plate having a thickness of 6 mm. Before or after cold rolling the hot-rolled sheet, a precipitation treatment is performed under the conditions shown in Table 2, followed by cold rolling to form a thin sheet having a thickness of 0.115 mm, and then 250 to 300. Tensile strength of 14.0 to 15.5k after temper annealing in the range of ℃
A thin plate for a drawless fin having a gf / mm 2 was obtained. Table 3 shows the evaluation results of the distribution state, the specific resistance value and the formability of the fine intermetallic compound having the fin material thus obtained with the diameter of 0.1 μm or less. Here, regarding the distribution state of the intermetallic compound, the particle diameter of the intermetallic compound and the number of the particles present in a given volume were measured using a transmission electron microscope. The particle diameter was the diameter of a circle having an area equal to the projected area of the particles. Regarding the electrical resistivity, the thin plate after temper annealing was measured using a double bridge based on JIS standard. The ironing workability is the same as the drawless fin actual machine with the second ironing die with a diameter of 8.29 mm and the diameter of 8.2.
Using a 4 mm second ironing punch, the ironing rate is 78
% Was evaluated by the defective rate of ironing cracks when 160 fin collar parts were molded under severe conditions. The corrugation processability was evaluated by the presence or absence of cracks when 100 corrugated parts were molded with a drawless fin actual machine using a corrugated plate having a molding height of 1.3 mm.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【表3】 [Table 3]

【0012】表1,2,3から明らかなように本発明法
による合金板試料No.1〜7は従来法による合金板試料
No.13に比べ、しごき性、コルゲート性に優れてい
る。これは、本発明法による合金板は従来法による合金
板試料No.13に比べ、0.1μm以下の微細な金属間
化合物が数多く均一に存在しており、これらの微細金属
間化合物がしごき加工時に回復サブグレインの成長を抑
制する結果、しごき加工時の材料の破断抵抗を高めるた
めであり、それに加え、本発明法による合金板は従来法
による合金板に比べ成形加工前のアルミマトリックス中
の添加金属の固溶量がかなり低減され、しごき加工時の
加工硬化が抑制され、しごき力もかなり低減されている
ためである。図4は熱間圧延板の金属組織の顕微鏡写真
(20,000倍)で、(イ)は本発明法によるもの
(試料No.5)であり、(ロ)は比較法によるもの(試
料No.9)であり、(ハ)は従来法によるもの(試料N
o.13)である。又図5(イ)、(ロ)、(ハ)は、
前記図4(イ)、(ロ)、(ハ)に対応する最終冷延調
質板の金属組織のマクロ写真である。従来法による合金
板(試料No.13)は熱間圧延時に回復、再結晶が進行
し、熱間圧延板はかなり旧粒界を含む再結晶組織を呈す
る〔図4(ハ)〕のに対し、本発明法による合金板(試
料No.5)は回復、再結晶が抑制され、旧粒界が殆ど見
られない均一な加工組織を呈する〔図4(イ)〕。これ
が図5(イ)〜(ハ)に示すように最終冷延調質板のマ
クロ組織に顕著な差を生じる。すなわち従来法による合
金板図4(ハ)は旧粒界が顕著な組織を示すのに対して
本発明法による合金板図4(イ)は旧粒界が殆ど見られ
ない均一な加工組織であり、このため、より応力集中源
の少ない本発明法による合金板は従来法による合金板に
比べしごき加工時の不均一変形が小さく、しごき加工性
が向上するものと考えられる。これに対し、本発明法に
よる合金板の範囲からはずれる、すなわち熱間圧延時の
パス回数が少ない比較法による合金板試料No.8、No.
10〜12は、図4(ロ)、図5(ロ)に示すように従
来法による合金板と同様な再結晶組織を呈しており、し
ごき性も劣っている。さらに、本発明による合金板の範
囲からはずれる比較合金板試料No.8〜12はしごき
性、コルゲート性のいずれかが劣化することがわかる。
すなわち、Fe、Si、Mn含有のいずれかが上限を超
える比較合金板試料No.9は、所定の製造条件で薄板を
作製しても加工前の固溶量を低減することができず、伸
び値は低下しないものの、しごき加工時に著しい加工硬
化を生じて割れが多発する。一方、Fe、Si、Mn含
有量のいずれかが下限未満の比較合金板試料No.11、
12は、微細金属間化合物が少なく、しごき加工時に回
復し易くなるため苛酷なしごき条件下ではしごき破断を
起こしやすい。また、析出処理温度が本発明範囲からは
ずれる比較合金板試料No.8、10、11はいずれも微
細な金属間化合物数が少なく、固溶量も多いため、しご
き性、コルゲート性の向上が見られない。
As is clear from Tables 1, 2, and 3, alloy plate sample No. 1 to 7 are alloy plate samples by the conventional method
No. Excellent in ironing and corrugating properties compared to No. 13. This is because the alloy plate according to the present invention is the alloy plate sample No. according to the conventional method. Compared with No. 13, many fine intermetallic compounds of 0.1 μm or less are uniformly present, and these fine intermetallic compounds suppress the growth of recovery subgrains during ironing, and as a result, fracture of the material during ironing. In order to increase the resistance, in addition to that, in the alloy sheet according to the present invention, the solid solution amount of the additive metal in the aluminum matrix before forming is considerably reduced as compared with the alloy sheet according to the conventional method, and work hardening during ironing This is because it is suppressed and the ironing force is considerably reduced. FIG. 4 is a photomicrograph (20,000 times) of the metallographic structure of the hot-rolled sheet. (A) is according to the method of the present invention (sample No. 5), and (b) is according to the comparative method (sample No. 5). .9), and (c) is obtained by the conventional method (Sample N).
o. 13). 5 (a), (b) and (c)
It is a macro photograph of the metal structure of the final cold-rolled tempered sheet corresponding to the above-mentioned FIG. The alloy plate (Sample No. 13) prepared by the conventional method recovers during hot rolling and recrystallization progresses, whereas the hot rolled plate exhibits a recrystallized structure including old grain boundaries [Fig. 4 (c)]. The alloy plate (Sample No. 5) produced by the method of the present invention has a uniform work structure in which recovery and recrystallization are suppressed and old grain boundaries are hardly seen [FIG. 4 (a)]. This causes a significant difference in the macrostructure of the final cold-rolled tempered sheet, as shown in FIGS. That is, the alloy plate according to the conventional method in Fig. 4 (c) shows a structure in which the old grain boundaries are prominent, whereas the alloy plate in accordance with the method in the present invention in Fig. 4 (a) has a uniform work structure in which old grain boundaries are hardly seen. Therefore, it is considered that the alloy sheet according to the method of the present invention, which has a smaller number of stress concentration sources, has less uneven deformation during ironing and is improved in ironing workability than the alloy sheet according to the conventional method. On the other hand, the alloy plate sample No. according to the comparative method, which is out of the range of the alloy plate according to the method of the present invention, that is, the number of passes during hot rolling is small. 8, No.
As shown in FIGS. 4 (b) and 5 (b), Nos. 10 to 12 exhibit a recrystallized structure similar to that of the alloy plate produced by the conventional method, and the ironing property is poor. Further, the comparative alloy plate sample No. outside the range of the alloy plate according to the present invention. It can be seen that either the ironing property of 8 to 12 or the corrugating property is deteriorated.
That is, the comparative alloy plate sample No. 1 containing any of Fe, Si, and Mn exceeds the upper limit. No. 9 cannot reduce the amount of solid solution before working even if a thin plate is manufactured under predetermined manufacturing conditions, and the elongation value does not decrease, but significant work hardening occurs during ironing and cracking frequently occurs. On the other hand, comparative alloy plate sample No. 1 having Fe, Si, or Mn content less than the lower limit. 11,
No. 12 has a small amount of fine intermetallic compounds and is easily recovered during ironing, so that ironing breakage easily occurs under severe ironing conditions. Further, the comparative alloy plate sample No. whose precipitation treatment temperature deviates from the range of the present invention. In Nos. 8, 10 and 11, since the number of fine intermetallic compounds was small and the amount of solid solution was large, ironing property and corrugation property were not improved.

【0013】〔実施例2〕 表3に示す調質焼鈍前の本発明法合金板試料No.5およ
び比較法合金板試料No.9、11を用いて、表4に示す
温度で調質焼鈍を行ない、引張試験およびドローレスフ
ィン実機による成形性試験を行った。その結果を表4に
併記する。なお、成形試験の条件は実施例1に記載した
条件と同条件である。
Example 2 As shown in Table 3, the alloy plate sample No. of the present invention method before temper annealing was used. 5 and comparative method alloy plate sample No. Using Nos. 9 and 11, temper annealing was performed at the temperatures shown in Table 4, and a tensile test and a formability test using a drawless fin actual machine were performed. The results are also shown in Table 4. The molding test conditions are the same as those described in Example 1.

【0014】[0014]

【表4】 [Table 4]

【0015】表4から明らかなように、本発明法合金板
試料No.5は250〜300℃の調質焼鈍を施したこと
により、比較法合金板試料No.9、11に比べてしごき
性が優れると共に、コルゲート性も良好である。また調
質焼鈍温度が本発明の範囲を外れる比較法合金試料No.
5′、5″はしごき性、コルゲート性が劣る。
As is apparent from Table 4, the alloy plate sample No. of the method of the present invention. No. 5 was subjected to temper annealing at 250 to 300 ° C., so that the comparative alloy plate sample No. The ironing property is excellent as compared with 9 and 11, and the corrugation property is also good. Further, the alloy alloy sample No. of the comparative method whose tempering annealing temperature is out of the range of the present invention.
5 ′, 5 ″ is inferior in ironing property and corrugation property.

【0016】[0016]

【発明の効果】このように本発明法によって得られたフ
ィン材用アルミニウム合金薄板は、ドローレス方式フィ
ン成形におけるしごき性、コルゲート性に優れ、不良率
を著しく低減し得るという顕著な効果を奏するものであ
る。
As described above, the aluminum alloy thin plate for fin material obtained by the method of the present invention has excellent ironing property and corrugation property in drawless fin formation, and has a remarkable effect of significantly reducing the defect rate. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ)〜(ニ)はそれぞれ熱交換器のアルミニ
ウムフィンの形態を示す断面図であり、(イ)はフラッ
トタイプ、(ロ)はルーバータイプ、(ハ)はスリット
タイプ、(ニ)はコルゲートタイプである。
1A to 1D are cross-sectional views showing a form of an aluminum fin of a heat exchanger, FIG. 1A is a flat type, FIG. 1B is a louver type, and FIG. 1C is a slit type. D) is a corrugated type.

【図2】(イ)〜(ヘ)はドロー方式によるフィンの成
形方法を、それぞれ断面図で示す説明図。
2A to 2F are explanatory views each showing a cross-sectional view of a fin forming method by a draw method.

【図3】(イ)〜(ニ)はドローレス方式によるフィン
の成形方法を、それぞれ断面図で示す説明図。
3A to 3D are explanatory views each showing a cross-sectional view of the fin forming method by the drawless method.

【図4】(イ)〜(ハ)は熱間圧延板の金属組織の顕微
鏡写真 (イ)本発明法による合金板 (ロ)比較法に
よる合金板 (ハ)従来法による合金板。
4 (a) to (c) are micrographs of the metallographic structure of the hot-rolled sheet. (B) Alloy sheet according to the method of the present invention (b) Alloy sheet according to the comparative method (c) Alloy sheet according to the conventional method.

【図5】(イ)〜(ハ)は最終圧延調質板の金属組織の
マクロ写真 (イ)本発明法による合金板 (ロ)比較
法による合金板 (ハ)従来法による合金板。
5 (a) to (c) are macrophotographs of the metal structure of the final rolled heat-treated plate (a) Alloy plate according to the method of the present invention (b) Alloy plate according to the comparative method (c) Alloy plate according to the conventional method.

Claims (1)

【特許請求の範囲】 【請求項1】 Si0.01〜0.15重量%、Fe
0.10〜0.40重量%、Mn0.10〜0.40重
量%を含み、残部Alと不可避的不純物とからなる合金
鋳塊に均質化処理を施した後、直ちに熱間圧延を施し、
その熱間圧延を板厚100mmから熱間圧延上りの板厚
となるまでの圧延を7パス以上となるような圧下率で、
かつ熱間圧延終了温度が200℃以上となるように行
い、続いて冷間圧延を行う前、あるいは行った後に、2
00〜350℃の温度で2時間以上保持する析出処理を
1回以上行い、その後圧下率80%以上の冷間圧延を行
い、続いて得られた薄板に250〜300℃の温度で調
質焼鈍を施すことにより、得られた薄板の金属組織中に
直径が0.1μm以下の微細な金属間化合物を5個/μ
3 以上分布させ、かつ比抵抗値を33.5nΩm以下
とすることを特徴とするしごき加工性に優れたドローレ
スフィン用アルミニウム合金薄板の製造方法。
Claims 1. Si 0.01 to 0.15% by weight, Fe
The alloy ingot containing 0.10 to 0.40% by weight and Mn 0.10 to 0.40% by weight and the balance Al and unavoidable impurities were homogenized and then immediately hot rolled.
The hot rolling is performed at a reduction ratio such that the rolling from the plate thickness of 100 mm to the plate thickness after the hot rolling becomes 7 passes or more,
And so that the hot rolling end temperature is 200 ° C. or higher, and then before or after cold rolling, 2
Precipitation treatment of holding at a temperature of 00 to 350 ° C for 2 hours or more is performed once or more, and then cold rolling is performed at a reduction rate of 80% or more, and then the obtained thin plate is temper annealed at a temperature of 250 to 300 ° C. By applying 5 micron intermetallic compounds with a diameter of 0.1 μm or less in the metal structure of the obtained thin plate.
m 3 is more distributed, and the ratio method of manufacturing an aluminum alloy sheet for Dolores fins the resistance excellent ironing properties, characterized by the following 33.5Enuomegaemu.
JP18915291A 1991-07-02 1991-07-02 Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability Pending JPH059678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18915291A JPH059678A (en) 1991-07-02 1991-07-02 Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18915291A JPH059678A (en) 1991-07-02 1991-07-02 Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability

Publications (1)

Publication Number Publication Date
JPH059678A true JPH059678A (en) 1993-01-19

Family

ID=16236309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18915291A Pending JPH059678A (en) 1991-07-02 1991-07-02 Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability

Country Status (1)

Country Link
JP (1) JPH059678A (en)

Similar Documents

Publication Publication Date Title
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
JP3345839B2 (en) Method of manufacturing high strength aluminum alloy fin material for forming
JP3810902B2 (en) Aluminum alloy fin material and method for producing aluminum alloy fin material
JP4275560B2 (en) Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
JPH05271833A (en) High strength aluminum alloy fin material for forming and its production
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2931136B2 (en) Method for producing aluminum alloy sheet for drawless fin with excellent hole enlargement processability
JP5830451B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP2009299104A (en) High temperature forming method for al-mg-si based alloy sheet, and formed product
JPH059636A (en) Thin aluminum alloy sheet for drawless fin having excellent ironing property and production thereof
JP2931137B2 (en) Manufacturing method of aluminum alloy sheet for drawless fins with excellent ironing workability
JPH059678A (en) Manufacture of thin aluminum alloy sheet for drawless fin excellent in ironability
JP4704557B2 (en) Aluminum alloy fin material excellent in reflaring formability and its manufacturing method
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
CN113832389A (en) Cold extrusion round steel and manufacturing method thereof
JPH05230579A (en) High strength thin aluminum alloy sheet for fin of air conditioner and its production
JPH05156412A (en) Production of aluminum alloy sheet for drawless fin having excellent formability
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
CN109807556A (en) A kind of preparation method of sedan-chair vehicle-used warm air blower fin material
JPH032343A (en) Aluminum alloy for heat-exchanger fin
JP2007131881A (en) Method of producing aluminum alloy sheet for forming and aluminum alloy sheet for forming
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
JPS5910987B2 (en) Aluminum alloy with excellent formability and method for manufacturing its thin plate