JPH059629A - High touchness titanium alloy and production thereof - Google Patents

High touchness titanium alloy and production thereof

Info

Publication number
JPH059629A
JPH059629A JP19087091A JP19087091A JPH059629A JP H059629 A JPH059629 A JP H059629A JP 19087091 A JP19087091 A JP 19087091A JP 19087091 A JP19087091 A JP 19087091A JP H059629 A JPH059629 A JP H059629A
Authority
JP
Japan
Prior art keywords
alloy
strength
toughness
treatment
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19087091A
Other languages
Japanese (ja)
Inventor
Atsuhiko Kuroda
篤彦 黒田
Minoru Okada
岡田  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19087091A priority Critical patent/JPH059629A/en
Publication of JPH059629A publication Critical patent/JPH059629A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably provide a Ti alloy having high strength and satisfactory toughness necessary for a structural material. CONSTITUTION:A Ti alloy having a compsn. consisting of 4.0-7.0% Al, 3.0-5.0% V, 0.5-5.0% Fe, 0.1-5.0% Mn and the balance Ti with inevitable impurities is subjected to soln. heat treatment by heating to 750-950 deg.C and cooling to room temp. at <=10 deg.C/sec cooling rate. The alloy is then aged by heating and holding at 400-700 deg.C for 15min-8hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、化学工業設備・機器
類,エネルギ−開発設備・機器類,一般工業用構造材等
として優れた性能を発揮する高靱性チタン合金(以降
“Ti合金”と記す)並びにその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION This invention relates to a high toughness titanium alloy (hereinafter referred to as "Ti alloy") which exhibits excellent performance as chemical industrial equipment / equipment, energy development equipment / equipment, structural material for general industry, etc. Note) and its manufacturing method.

【0002】[0002]

【従来技術とその課題】一般に、Ti合金は優れた耐食性
を有しているほか、比強度(強度/比重)が高い材料と
しても知られており、その高強度,低比重の特性を活か
した構造材としての需要も著しい伸びを示してきた。な
お、Ti合金としては高温強度や溶接性に優れる“α
型”、常温強度,破壊靱性,冷間加工性及び熱処理性に
優れる“β型”、並びに両者の特性を併せ持つとされる
“α+β型”のものが従来から知られているが、構造材
料では上記α+β型合金が実用性に優るとして適用材の
主流をなしている。そして、このα+β型Ti合金の中で
最も多量に製造され使用実績の多いものとして“Ti−6
Al−4V合金”が挙げられ、これが実用Ti合金の代表た
る地位を築いている。
2. Description of the Related Art In general, Ti alloys have excellent corrosion resistance and are also known as materials with high specific strength (strength / specific gravity). Utilizing the characteristics of high strength and low specific gravity Demand for structural materials has also grown significantly. As a Ti alloy, it has excellent high temperature strength and weldability.
“Type”, “β type” which is excellent in normal temperature strength, fracture toughness, cold workability and heat treatment property, and “α + β type” which is said to have both characteristics, are known as structural materials. The above α + β type alloys have become the mainstream of applicable materials because of their superiority in practicality, and it is "Ti-6" that is the most manufactured and most used among the α + β type Ti alloys.
"Al-4V alloy" is mentioned, and it has established a typical position as a practical Ti alloy.

【0002】これらTi合金は、高強度を得るため、通
常、使用に際して熱処理が施される。該熱処理として
は、前記Ti−6Al−4V合金材の場合を例に採ると“焼
鈍処理”を採用することもあるが、一般には“溶体化処
理”とこれに続いて“時効処理”を行う“2段階熱処理
(溶体化時効処理:STA)”を施して使用に供され
る。例えば、米国の規格であるASM4967Eでは、
Ti−6Al−4V合金を対象として「955℃±15℃に
1〜2時間加熱し攪拌された冷却水中に焼入れた後、5
38℃±8℃に4〜8時間保持して時効処理を施す」こ
とが規定されている。これは、高温域から急冷すること
によりマルテンサイト相を形成させ、続く時効処理にて
これを微細なα相とβ相とに分解することで、Ti−6Al
−4V合金に高い強度を安定して付与せしめるために定
められたものである。
In order to obtain high strength, these Ti alloys are usually subjected to heat treatment during use. As the heat treatment, "annealing treatment" may be adopted when the case of the Ti-6Al-4V alloy material is taken as an example, but generally, "solution treatment" and "aging treatment" are subsequently performed. "Two-step heat treatment (solution treatment aging treatment: STA)" is applied for use. For example, in the American standard ASM4967E,
For Ti-6Al-4V alloy, "5 hours after quenching in cooling water stirred at 955 ° C ± 15 ° C for 1-2 hours.
"Aging treatment is performed by holding at 38 ° C ± 8 ° C for 4 to 8 hours." This is because Ti-6Al is formed by forming a martensite phase by rapidly cooling it from a high temperature region and then decomposing it into fine α and β phases in the subsequent aging treatment.
It is defined in order to stably impart high strength to the -4V alloy.

【0003】ところが、構造材として熱い期待が込めら
れている前記α+β型のTi合金は、一方で靱性が期待に
沿うほど十分でなく、高性能の構造材を念頭においた場
合には「亀裂に対する抵抗が弱い」との指摘もなされて
いた。即ち、上記Ti合金に従来から実施されてきた溶体
化時効処理を施すと、合金の強化は可能であるが同時に
靱性値の低下も大きくなり、構造材としては今一つ問題
があると言わざるを得なかった。
On the other hand, the α + β type Ti alloy, which is expected to be hot as a structural material, does not have sufficient toughness on the other hand. The resistance was weak. " That is, when the above-mentioned Ti alloy is subjected to the solution aging treatment that has been conventionally performed, it is possible to strengthen the alloy, but at the same time, the toughness value is also greatly decreased, and there is another problem as a structural material. There wasn't.

【0004】従って、Ti合金を構造材として用いる場合
には、高い強度の確保のみを主眼とするのではなく、良
好な靱性値の付与にも大きな注意を注ぐ必要があった
が、現在までのところ十分に満足できる優れた強度と靱
性を同時に示すTi合金は見出されていない。
Therefore, when a Ti alloy is used as a structural material, it has been necessary not only to secure high strength but also to give a good toughness value. However, no Ti alloy has been found that exhibits both excellent strength and toughness that are fully satisfactory.

【0005】このようなことから、本発明が目的とした
のは、これからの構造材として要求される室温(25
℃)での強度が0.2%耐力で105.0kgf/mm2以上を示し、か
つ室温におけるシャルピ−衝撃値:3.0kgm/cm2以上を備
えた高強度・高靱性Ti合金を実現することであった。
Therefore, the object of the present invention is to obtain room temperature (25
Strength) at 0.2% yield strength of 105.0 kgf / mm 2 or more, and Charpy impact value at room temperature: 3.0 kgm / cm 2 or more, to realize a high strength / high toughness Ti alloy. .

【0006】[0006]

【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく数多くの試験を繰り返しながら鋭意
研究を重ねた結果、以下に示す如き新しい知見を得るに
至ったのである。即ち、前述したように、各種Ti合金の
うちでも種々性能面からみてα+β型のTi合金が構造材
として最も適していると考えられるが、従来、この種の
Ti合金を強化するための効果的な熱処理として適用され
てきた溶体化時効処理は、さきにも述べたように高温か
らの焼入れで急冷することにより過飽和固溶体(マルテ
ンサイト)を生成させ、時効処理によりこの過飽和固溶
体から微細なα相とβ相を時効析出させることで強化す
るものである。しかしながら、高温状態のTi合金を冷却
する際に急冷して過飽和固溶体を生成させる手法を取り
入れた熱処理では、他の条件に工夫を凝らしたとしても
実際上その靱性値が大きく低下するのを免れ得ない。
The inventors of the present invention have made extensive studies in order to achieve the above-mentioned objects, and as a result, have made new studies as follows. That is, as described above, among the various Ti alloys, the α + β type Ti alloy is considered to be the most suitable as the structural material from the viewpoint of various performances.
The solution aging treatment, which has been applied as an effective heat treatment for strengthening Ti alloys, is the aging treatment that produces a supersaturated solid solution (martensite) by quenching from quenching from high temperature, as mentioned earlier. By this, fine α phase and β phase are aged and precipitated from this supersaturated solid solution to strengthen. However, heat treatment that incorporates a method of rapidly cooling a high-temperature Ti alloy to form a supersaturated solid solution can inevitably reduce the toughness value even if other conditions are devised. Absent.

【0007】これは次の理由による。即ち、α+β型Ti
合金の溶体化時効処理材における破壊過程を詳細に観察
して明らかになったことであるが、該合金材が破壊に至
る際には、まず伝播する主亀裂の前方に“微細な割れ”
が発生し、この割れが連結して完全な亀裂に発展する現
象が見られる。しかも、前記“微細な割れ”の発生場所
はα相とβ相の界面となる。そして、従来の溶体化時効
処理条件に従い、過飽和固溶体を形成させると共に続く
時効処理により微細なα相を析出させた場合には、α相
とβ相の界面が多くなるが故に割れの発生箇所が多数存
在することとなり、亀裂の伝播が容易になって、溶体化
時効処理材の靱性値が低下してしまう訳である。
This is due to the following reason. That is, α + β type Ti
It was clarified by observing the fracture process in the solution-age-aged material of the alloy in detail, but when the alloy material fractures, "fine cracks" appear in front of the main crack that propagates first.
Occurs, and there is a phenomenon in which the cracks are connected and develop into a complete crack. Moreover, the place where the "fine cracks" occur is the interface between the α phase and the β phase. Then, according to the conventional solution aging treatment conditions, when the supersaturated solid solution is formed and the fine α phase is precipitated by the subsequent aging treatment, the number of interfaces between the α phase and the β phase increases, so that the crack occurrence point is Since there are a large number of cracks, the propagation of cracks is facilitated, and the toughness value of the solution-age-aged material is reduced.

【0008】従って、α+β型Ti合金の靱性値を向上さ
せるためにはα相とβ相との界面の強化が必要である
が、合金成分としてのFeの添加はこれに応え得る有効な
手段となり得る。つまり、α+β型のTi合金にβ安定化
元素として知られているFeを添加しかつ熱処理を適切に
行うと、α相とβ相との界面の強化効果が現れ、亀裂の
伝播抵抗、即ち靱性値の目立った向上が認められる。
Therefore, in order to improve the toughness value of the α + β type Ti alloy, it is necessary to strengthen the interface between the α phase and the β phase, but addition of Fe as an alloy component is an effective means to meet this requirement. obtain. In other words, when Fe, which is known as a β-stabilizing element, is added to an α + β-type Ti alloy and the heat treatment is appropriately performed, the effect of strengthening the interface between the α phase and the β phase appears, and crack propagation resistance, that is, toughness. A noticeable improvement in the value is recognized.

【0009】但し、FeはTi合金の強度改善元素としても
知られているものではあるが、α+β型Ti合金の靱性値
改善目標を達成するのに必要な程度のFe量を添加しただ
けでは目標とする強度の達成が困難である。しかるに、
所望の強度目標を達成すべくFeの添加量を更に増加する
と、今度はTiFe金属間化合物が析出して合金の脆化を招
き、逆に靱性の目標を満足しなくなる。
However, although Fe is also known as an element for improving the strength of Ti alloys, the goal is to add only the amount of Fe required to achieve the toughness improvement target of α + β type Ti alloys. It is difficult to achieve such strength. However,
If the amount of addition of Fe is further increased to achieve the desired strength target, TiFe intermetallic compound precipitates to cause embrittlement of the alloy, and on the contrary, the target of toughness cannot be satisfied.

【0010】ところが、適量のFeと共にMnの適量を複合
添加した場合には、Feによるα+β型Ti合金の靱性改善
作用に格別な悪影響を及ぼすことなくその強度を十分に
向上させることが可能となり、所望の強度目標,靱性値
目標を達成できることが判明した。
However, when an appropriate amount of Mn is added together with an appropriate amount of Fe, the strength of the α + β type Ti alloy can be sufficiently improved without adversely affecting the toughness improving action of the α + β type Ti alloy. It was found that the desired strength and toughness targets could be achieved.

【0011】更に、合金の熱処理に際しては、前述した
通りマルテンサイト相を時効により分解させると靱性値
の低下傾向が現れるため、従来の「高温域に加熱後急冷
してマルテンサイト相を形成させ、 これを時効処理す
る」と言う条件を踏襲することなく、高温加熱後にマル
テンサイト相を生成させないことが重要となるが、この
ようにマルテンサイト相を生成させなくても、室温まで
冷却した後の時効処理温度を的確に選択すれば目標強度
と目標靱性値の両立が十分に可能であることも見出し
た。
Further, in the heat treatment of the alloy, when the martensite phase is decomposed by aging as described above, the toughness value tends to decrease, so that the conventional "heating in a high temperature region followed by rapid cooling to form a martensite phase, It is important not to generate the martensite phase after heating at high temperature without following the condition of `` aging this '', but even if the martensite phase is not generated in this way, after cooling to room temperature It was also found that the target strength and target toughness values can be compatible with each other if the aging temperature is properly selected.

【0012】本発明は、上記知見事項等に基づいて完成
されたものであり、「チタン合金を、 Al: 4.0〜 7.0%(以降、 成分割合を表す%は重量%と
する), V: 3.0〜 5.0%, Fe: 0.5〜 5.0%, Mn:
0.1〜 5.0% を含み、残部がTi及び不可避的不純物から成る成分組成
に構成することにより、十分な強度は勿論、 高い靱性値
をも兼備せしめた点」に特徴を有し、更には 「Al: 4.0〜 7.0%, V: 3.0〜 5.0%, Fe:
0.5〜 5.0%,Mn: 0.1〜 5.0% を含むと共に残部がTi及び不可避的不純物から成る合金
に、 750〜950℃に加熱後10℃/秒以下の冷却速
度にて室温まで冷却する“溶体化処理”を施し、次いで
400〜700℃に15分〜8時間加熱保持する“時効
処理”を施すことによって、 高強度,高靱性を兼備する
チタン合金を安定して製造し得るようにした点」にも大
きな特徴を有するものである。
The present invention has been completed on the basis of the above findings and the like. "Titanium alloy is Al: 4.0 to 7.0% (hereinafter,% representing a component ratio is a weight%), V: 3.0%. ~ 5.0%, Fe: 0.5 ~ 5.0%, Mn:
It is characterized in that it has a high toughness value as well as sufficient strength by being composed of a component composition containing 0.1 to 5.0% with the balance being Ti and inevitable impurities. : 4.0-7.0%, V: 3.0-5.0%, Fe:
An alloy containing 0.5 to 5.0% and Mn: 0.1 to 5.0%, with the balance consisting of Ti and unavoidable impurities, heated to 750 to 950 ° C, and then cooled to room temperature at a cooling rate of 10 ° C / sec or less. "Temperature treatment" followed by "aging treatment" of heating and holding at 400 to 700 ° C for 15 minutes to 8 hours enables stable production of a titanium alloy having high strength and high toughness. It also has a great feature.

【0013】上述のように、本発明では、Ti合金の成分
組成に工夫を凝らし、更にはこれと所定の熱処理条件を
組み合わせることにより優れた強度及び靱性を兼備した
Ti合金を実現しているが、本発明において合金の化学成
分組成並びに処理条件を前記の如くに限定した理由をそ
の作用と共に以下に説明する。
As described above, in the present invention, the composition of the Ti alloy is carefully devised, and by combining this with the predetermined heat treatment conditions, excellent strength and toughness are provided.
Although a Ti alloy has been realized, the reason why the chemical composition of the alloy and the processing conditions are limited as described above in the present invention will be explained below together with its action.

【0014】[0014]

【作用】(A) 合金の化学成分組成Al,及びV Ti合金において、Alはα相安定化元素であって最も一般
的に用いられる添加元素である。一方、Vはβ安定化元
素である。これらの元素は固溶強化の目的で添加されて
いる。しかし、Al含有量が 4.0%以上、またV含有量が
3.0%以上確保されていないと所望の強度を確保するこ
とができない。ところが、Al含有量が 7.0%を超えると
α相中にα2 と呼ばれる金属間化合物が析出し、著しい
脆化を引き起こすようになる。また、V含有量が 5.0%
以上を超えると、合金の強度は著しく高くなるが靱性値
は大きく低下してしまう。従って、Al含有量は 4.0〜
7.0%,V含有量は 3.0〜 5.0%とそれぞれ限定した。
(Function) (A) Chemical composition of alloy Al and V Ti alloy, Al is an α-phase stabilizing element and the most commonly used additive element. On the other hand, V is a β-stabilizing element. These elements are added for the purpose of solid solution strengthening. However, the Al content is 4.0% or more, and the V content is
If 3.0% or more is not secured, the desired strength cannot be secured. However, when the Al content exceeds 7.0%, an intermetallic compound called α 2 is precipitated in the α phase, which causes remarkable embrittlement. Also, the V content is 5.0%
If it exceeds the above, the strength of the alloy is remarkably increased, but the toughness value is greatly reduced. Therefore, the Al content is 4.0-
The V content was limited to 7.0% and 3.0 to 5.0%, respectively.

【0015】Fe Feには合金の強度を上昇させる作用のほか、α相とβ相
の界面を強化して靱性を向上させる作用を有している
が、その含有量が 0.5%未満では所望の靱性値向上効果
を確保することができない。一方、 5.0%を超えてFeを
含有させた場合には、TiFeの金属間化合物を析出して合
金が脆化するようになるのでやはり靱性値の向上は期待
できなくなる。従って、Fe含有量は 0.5〜 5.0%の範囲
と定めた。
Fe Fe has an effect of increasing the strength of the alloy and an effect of strengthening the interface between the α phase and the β phase to improve the toughness, but if the content is less than 0.5%, it is desirable. The effect of improving the toughness value cannot be secured. On the other hand, when Fe is contained in excess of 5.0%, TiFe intermetallic compounds are precipitated and the alloy becomes brittle, so that improvement in toughness value cannot be expected. Therefore, the Fe content is determined to be in the range of 0.5 to 5.0%.

【0016】Mn MnはFeと共に合金の強度を上昇させる作用を発揮する
が、その含有量が 0.1%未満であると前記作用による所
望の効果を得ることができず、一方、 5.0%を超えてMn
を含有させると合金強度を著しく上昇させ靱性値の低下
を招くことから、Mn含有量は 0.1〜 5.0%と定めた。
Mn Mn exhibits an action of increasing the strength of the alloy together with Fe, but if the content thereof is less than 0.1%, the desired effect due to the above action cannot be obtained, while if it exceeds 5.0% Mn
If the content of Mn is increased, the alloy strength is remarkably increased and the toughness value is decreased, so the Mn content was set to 0.1 to 5.0%.

【0017】なお、本発明に係わるTi合金の不可避的不
純物としてはC,H,O,N,Y等を挙げることがで
き、通常、これらは下記範囲内での含有が許容される。 C:0.10%以下, H:0.0125%以下, O:0.20%以下, N:0.05%以下, Y:0.005 %以下。
In addition, as the inevitable impurities of the Ti alloy according to the present invention, C, H, O, N, Y and the like can be mentioned. Usually, the inclusion of these within the following ranges is allowed. C: 0.10% or less, H: 0.0125% or less, O: 0.20% or less, N: 0.05% or less, Y: 0.005% or less.

【0018】(B) 熱処理条件溶体化処理条件 溶体化処理温度が750℃に満たないと溶体化時効処理
後のTi合金に所望の強度を確保することができない。一
方、950℃を超える温度にて溶体化処理を行うと、冷
却時にβ相がマルテンサイト相への変態を起こして所望
の良好な靱性値が得られなくなる。また、溶体化処理に
おける高温保持後の室温までの冷却速度が10℃/秒を
超えて速くなると、冷却過程で焼きが入ってマルテンサ
イト相への変態を起こしてしまうため、やはり合金の靱
性値向上が望めない。従って、溶体化処理温度は750
〜950℃に、そして高温保持後の冷却速度は10℃/
秒以下とそれぞれ限定した。
(B) Heat treatment conditions Solution treatment conditions If the solution treatment temperature is less than 750 ° C., the desired strength cannot be secured in the Ti alloy after the solution aging treatment. On the other hand, if the solution treatment is performed at a temperature higher than 950 ° C., the β phase is transformed into the martensite phase during cooling, and the desired good toughness value cannot be obtained. Further, when the cooling rate to room temperature after the high temperature holding in the solution treatment becomes faster than 10 ° C./sec, quenching occurs in the cooling process and transformation to the martensite phase occurs, so that the toughness value of the alloy is also high. I can't hope for improvement. Therefore, the solution treatment temperature is 750
~ 950 ° C, and the cooling rate after holding at high temperature is 10 ° C /
Limited to less than a second.

【0019】時効処理条件 時効処理温度が400℃未満であると、時効効果が認め
られないので合金に所望の強度を付与することができな
い。一方、700℃を超える温度で時効処理を行うと過
時効状態となり、逆に合金強度の低下を招く。従って、
時効処理温度は400〜700℃と限定した。また、時
効処理での加熱保持時間が15分未満であると所望の時
効効果が得られない。なお、製品性能面からは時効時間
に上限を設ける必要がないが、生産性及び経済性の観点
から長時間時効は不利であり、8時間を超える時効処理
は不必要である。このため、時効時間は15分〜8時間
と定めた。
Aging treatment conditions If the aging treatment temperature is less than 400 ° C., the aging effect is not recognized, so that desired strength cannot be imparted to the alloy. On the other hand, if the aging treatment is carried out at a temperature higher than 700 ° C., it will be in an over-aged state and, conversely, the alloy strength will be lowered. Therefore,
The aging treatment temperature was limited to 400 to 700 ° C. If the heating and holding time in the aging treatment is less than 15 minutes, the desired aging effect cannot be obtained. Although it is not necessary to set an upper limit on the aging time from the viewpoint of product performance, long-term aging is disadvantageous from the viewpoint of productivity and economic efficiency, and aging treatment for more than 8 hours is unnecessary. Therefore, the aging time was set to 15 minutes to 8 hours.

【0020】続いて、本発明を実施例により更に具体的
に説明する。
Next, the present invention will be described more specifically by way of examples.

【実施例】実施例 1 まず、アルゴン雰囲気下でのスカル溶解にて、表1に示
される化学成分組成のTi合金インゴット(外径50mm×
高さ110mm:各1kg)を作成した。次いで、得られた
各インゴットを1100℃に加熱してから「幅50mm×
厚さ30mm」にまで鍛造した後、再び900℃に再加熱
して「幅50mm×厚さ7mm」までα+β域で熱間圧延し
た。
EXAMPLES Example 1 First, a Ti alloy ingot having a chemical composition shown in Table 1 (outer diameter 50 mm ×
A height of 110 mm: 1 kg each was prepared. Next, each of the obtained ingots is heated to 1100 ° C. and then “width 50 mm ×
After forging to a thickness of 30 mm, it was reheated to 900 ° C. again and hot-rolled to a width of 50 mm and a thickness of 7 mm in the α + β range.

【0021】[0021]

【表1】 [Table 1]

【0022】圧延後の試験材は、850℃に加熱して1
時間保持した後、空冷によって室温まで冷却した。この
際、熱電対にて試験材肉厚中心部の冷却速度を測定した
ところ「5℃/秒」であることが確認された。このよう
に溶体化処理されたTi合金試験材には、その後更に60
0℃に6時間加熱保持する時効処理が施され、空冷され
た。
The test material after rolling was heated to 850 ° C. for 1
After holding for a period of time, it was cooled to room temperature by air cooling. At this time, the cooling rate of the central portion of the thickness of the test material was measured with a thermocouple, and it was confirmed to be "5 ° C / sec". After the solution treatment of the Ti alloy test material, 60
The sample was subjected to an aging treatment in which it was heated and held at 0 ° C. for 6 hours, and was air-cooled.

【0023】次に、上記熱処理後の各試験材から圧延長
手方向に平行部の肉厚が3mm,幅が6.25mm,標点間距離
が25mmの板状試験片を採取し、室温で引張試験に付し
た。また、靱性の評価を行うため、熱処理後の前記各試
験材から圧延長手方向に幅5mmのJIS4号ハ−フサイ
ズシャルピ−衝撃試験片(Vノッチ)をも採取し、室温
(25℃)にて衝撃試験を行った。
Next, a plate-shaped test piece having a wall thickness of 3 mm, a width of 6.25 mm, and a gauge length of 25 mm parallel to the rolling longitudinal direction was taken from each of the test materials after the heat treatment and stretched at room temperature. It was submitted to the test. In order to evaluate the toughness, a JIS No. 4 half size Charpy impact test piece (V notch) having a width of 5 mm was also taken from each of the test materials after heat treatment at room temperature (25 ° C.). An impact test was conducted at.

【0024】これらの試験結果を表1に併せて示す。な
お、試験結果の総合評価は“0.2%耐力”と“シャルピ−
衝撃値”に注目して行い、0.2%耐力が105.0kgf/mm2以上
で、かつシャルピ−衝撃値が 3.0kgm/cm2以上を達成し
たものは「○」と表示し、耐力及びシャルピ−衝撃値が
前記値に達しなかったものは「×」と表示した。表1に
示される結果からも、化学成分組成が本発明で規定する
条件を満たしているTi合金は、何れも強度,靱性値の目
標が達成されていることを確認することができる。
The results of these tests are also shown in Table 1. The overall evaluation of the test results was "0.2% proof stress" and "Charpy
When the 0.2% proof stress is 105.0 kgf / mm 2 or more and the Charpy impact value is 3.0 kgm / cm 2 or more, the product is marked as “○” and the proof stress and the Charpy impact When the value did not reach the above value, it was indicated by "x". From the results shown in Table 1, it can be confirmed that the Ti alloys whose chemical composition satisfies the conditions specified in the present invention have achieved the targets of strength and toughness.

【0025】実施例 2 真空ア−ク溶解にて製造されたのTi−6.2%Al−4.1%V−
0.6%Fe−2.0%Mn合金インゴット(外径300mm:150
kg)を1150℃に加熱し、鍛造によって「幅50mm×
厚さ30mm」の熱延素材とした。次に、この熱延素材を
900℃に加熱後、熱間圧延にて「幅50mm×厚さ12
mm」にまで仕上げた。この圧延後のTi合金材から長さ1
00mmの熱処理試験材を複数切り出し、表2に示す条件
で熱処理を行った。
Example 2 Ti-6.2% Al-4.1% V- manufactured by vacuum arc melting
0.6% Fe-2.0% Mn alloy ingot (outer diameter 300mm: 150
(kg) is heated to 1150 ° C and forged to a width of 50 mm x
It was a hot rolled material with a thickness of 30 mm. Next, after heating this hot-rolled material to 900 ° C., it is hot-rolled to have a width of 50 mm and a thickness of 12
mm ". Length 1 from this rolled Ti alloy material
A plurality of heat treatment test materials of 00 mm were cut out and heat treated under the conditions shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】そして、熱処理後の各試験材から実施例1
の場合と同様に板状引張試験片とJIS4号ハ−フサイ
ズシャルピ−衝撃試験片(Vノッチ)を採取し、室温
(25℃)にて引張試験及び衝撃試験を実施した。これ
らの試験結果を表2に併せて示す。なお、試験結果の総
合評価は実施例1の場合と同様に行った。表2に示され
る結果からも、本発明に規定する条件に従って処理され
たTi合金は、何れも強度,靱性値の目標を満足している
ことが確認される。
Then, from each test material after the heat treatment,
In the same manner as in (1), a plate-shaped tensile test piece and a JIS No. 4 half size Charpy impact test piece (V notch) were sampled and subjected to a tensile test and an impact test at room temperature (25 ° C). The results of these tests are also shown in Table 2. The comprehensive evaluation of the test results was performed in the same manner as in Example 1. From the results shown in Table 2, it is confirmed that the Ti alloys treated according to the conditions specified in the present invention both satisfy the targets of strength and toughness.

【0028】[0028]

【効果の総括】以上に説明した如く、この発明によれ
ば、室温での0.2%耐力が105.0kgf/mm2以上,シャルピ−
衝撃値が 3.0kgm/cm2以上の高強度でかつ優れた靱性を
備えたTi合金を安定して提供することができ、化学産
業,エネルギ−産業並びにその他の産業分野での構造材
等として使用した場合にも十分満足できる性能が期待で
きるなど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, the 0.2% proof stress at room temperature is 105.0 kgf / mm 2 or more, and the Charpy
It is possible to stably provide a Ti alloy with a high impact strength of 3.0 kgm / cm 2 or more and excellent toughness, and use it as a structural material in the chemical industry, energy industry and other industrial fields. Even in such a case, it is possible to expect a sufficiently satisfactory performance, which brings industrially useful effects.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて Al: 4.0〜 7.0%, V: 3.0〜 5.0%, Fe:
0.5〜 5.0%,Mn: 0.1〜 5.0% を含み、残部がTi及び不可避的不純物から成る高い靱性
値を有するチタン合金。
1. A weight ratio of Al: 4.0 to 7.0%, V: 3.0 to 5.0%, Fe:
A titanium alloy containing 0.5 to 5.0% and Mn: 0.1 to 5.0%, with the balance being Ti and unavoidable impurities and having a high toughness value.
【請求項2】 重量割合にて Al: 4.0〜 7.0%, V: 3.0〜 5.0%, Fe:
0.5〜 5.0%,Mn: 0.1〜 5.0% を含むと共に残部がTi及び不可避的不純物から成る合金
に、750〜950℃に加熱後10℃/秒以下の冷却速
度にて室温まで冷却する“溶体化処理”を施し、次いで
400〜700℃に15分〜8時間加熱保持する“時効
処理”を施すことを特徴とする、高い靱性値を有するチ
タン合金の製造方法。
2. A weight ratio of Al: 4.0 to 7.0%, V: 3.0 to 5.0%, Fe:
An alloy containing 0.5 to 5.0%, Mn: 0.1 to 5.0% and the balance of Ti and unavoidable impurities is heated to 750 to 950 ° C. and then cooled to room temperature at a cooling rate of 10 ° C./sec or less. A method for producing a titanium alloy having a high toughness value, which comprises performing "treatment" and then performing "aging treatment" of heating and holding at 400 to 700 ° C for 15 minutes to 8 hours.
JP19087091A 1991-07-05 1991-07-05 High touchness titanium alloy and production thereof Pending JPH059629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19087091A JPH059629A (en) 1991-07-05 1991-07-05 High touchness titanium alloy and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19087091A JPH059629A (en) 1991-07-05 1991-07-05 High touchness titanium alloy and production thereof

Publications (1)

Publication Number Publication Date
JPH059629A true JPH059629A (en) 1993-01-19

Family

ID=16265131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19087091A Pending JPH059629A (en) 1991-07-05 1991-07-05 High touchness titanium alloy and production thereof

Country Status (1)

Country Link
JP (1) JPH059629A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632581A1 (en) * 2004-09-02 2006-03-08 Gainsmart Group Limited, a Corporation of the British Virgin Islands with offices at: High strength low cost titanium and method for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632581A1 (en) * 2004-09-02 2006-03-08 Gainsmart Group Limited, a Corporation of the British Virgin Islands with offices at: High strength low cost titanium and method for making same

Similar Documents

Publication Publication Date Title
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
US4067734A (en) Titanium alloys
EP0683242B1 (en) Method for making titanium alloy products
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
JP3873313B2 (en) Method for producing high-strength titanium alloy
US4200459A (en) Heat resistant low expansion alloy
JPH04103737A (en) High strength and high toughness titanium alloy and its manufacture
JPH01252747A (en) High strength titanium material having excellent ductility and its manufacture
JPH03166350A (en) Method for heat treating titanium alloy material for cold working
JPH0561344B2 (en)
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH0641623B2 (en) Controlled expansion alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JP3749589B2 (en) Hot-rolled strip, hot-rolled sheet or hot-rolled strip made of Ti-Fe-O-N-based titanium alloy and method for producing them
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JPH059629A (en) High touchness titanium alloy and production thereof
JP6536317B2 (en) α + β-type titanium alloy sheet and method of manufacturing the same
JP3481428B2 (en) Method for producing Ti-Fe-ON-based high-strength titanium alloy sheet with small in-plane anisotropy
JP2936968B2 (en) High strength titanium alloy with excellent cold workability and weldability
JPH04301044A (en) High toughness titanium alloy capable of cold working
JPH03134144A (en) Nickel-base alloy member and its manufacture
US2319538A (en) Heat treatment of copper-chromium alloy steels
JPH04107234A (en) High strength and high toughness titanium alloy
JPH08134615A (en) Production of high strength titanium alloy excellent in characteristic of balance of mechanical property
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture