JPH0594864A - Manufacture of porous silicon carbide heating element - Google Patents

Manufacture of porous silicon carbide heating element

Info

Publication number
JPH0594864A
JPH0594864A JP28045191A JP28045191A JPH0594864A JP H0594864 A JPH0594864 A JP H0594864A JP 28045191 A JP28045191 A JP 28045191A JP 28045191 A JP28045191 A JP 28045191A JP H0594864 A JPH0594864 A JP H0594864A
Authority
JP
Japan
Prior art keywords
silicon carbide
porous silicon
heating element
slurry
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28045191A
Other languages
Japanese (ja)
Inventor
Chomei Yamada
朝明 山田
Takaomi Sugihara
孝臣 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP28045191A priority Critical patent/JPH0594864A/en
Publication of JPH0594864A publication Critical patent/JPH0594864A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for efficiently manufacturing a porous silicon carbide heating element furished with ventilating holes which are homogeneous while being uniformly distributed without clogging, and with excellent physical strength. CONSTITUTION:Polyurethane foam is impregnated with silicon carbide slurry in the first process, and it is dried and sintered so as to be processed after excess slurry has been removed. In the second place, porous silicon carbide sintered material obtained through the first process is set in a hermetic reaction system, so that silicon carbide is separated while being heated so as to be disposed in tissue holes by means of pulse CVI with trichloromethylsilane supplied intermittently while being accompanied by hydrogen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、材質組織を改質して均
質な通気孔と優れた材質強度を備える多孔質炭化珪素発
熱体を効率よく製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing a porous silicon carbide heating element having a uniform material structure and uniform ventilation holes and excellent material strength.

【0002】[0002]

【従来の技術】炭化珪素発熱体の製造技術としては、炭
化珪素粉末に有機バインダーを混合して所定形状に成形
し、これを焼成処理して組織を再結晶SiCに転化させ
る方法が古くから知られているが、このほかに流体の加
熱および濾過、パーティキュレートの捕集加熱などを対
象とした多孔質組織の炭化珪素発熱体を製造する手段と
して、三次元網目構造を備える有機質多孔発泡体の骨格
面に炭化珪素スラリーを付着したのち、乾燥、焼成する
方法がある。この方法で製造される炭化珪素発熱体は気
孔率が75〜95%にも及ぶ高度の多孔質構造を呈するが、
組織に目詰まりを生じたり、材質強度が極端に不足する
等の欠点がある。
2. Description of the Related Art As a technique for manufacturing a silicon carbide heating element, a method of mixing silicon carbide powder with an organic binder to form it into a predetermined shape and firing it to convert its structure into recrystallized SiC has long been known. In addition to the above, as a means for producing a silicon carbide heating element having a porous structure for heating and filtering a fluid, collecting and heating particulates, etc., an organic porous foam having a three-dimensional network structure is used. After the silicon carbide slurry is attached to the skeleton surface, there is a method of drying and firing. The silicon carbide heating element produced by this method has a highly porous structure with a porosity of 75 to 95%.
There are drawbacks such as clogging of the tissue and extremely insufficient material strength.

【0003】この種のセラミックス多孔体を製造する場
合の目詰まりを抑制する手段には、1回の操作により付
着させるセラミックススラリー量を少なくして、付着か
ら乾燥までの工程を反復する方法(特開昭59−3059号公
報) や、特定された比率で圧縮された有機質発泡体にセ
ラミックススラリーを充填したのち圧縮体を当初の体積
に復元させて乾燥、焼成する方法(特開昭63−156084号
公報) がある。ところが、これらの方法では焼成後の組
織内に骨格を形成している有機質成分が熱分解消失した
後の空孔がそのまま残留するため、組織強度の不足は解
消されない。
As means for suppressing clogging in the production of this type of ceramics porous body, a method of repeating the steps from deposition to drying by reducing the amount of ceramics slurry deposited by one operation (special feature: (Kaisho 59-3059) or a method in which an organic foam compressed at a specified ratio is filled with a ceramics slurry and then the compressed body is restored to its original volume and dried and fired (Japanese Patent Laid-Open No. 63-156084). Issue gazette). However, in these methods, the voids remain after the organic component forming the skeleton is thermally decomposed and disappeared in the fired tissue, so that the lack of the tissue strength cannot be solved.

【0004】このような問題点の解消を図り、目詰まり
のない均質通気孔と優れた骨格強度を備える多孔質セラ
ミックス構造体を得る方法として、有機質多孔発泡体に
セラミックススラリーを含浸し、余剰スラリーを除去し
たのち、乾燥、仮焼成する第1工程と、仮焼成体にセラ
ミックススラリーを再含浸し、余剰スラリーを除去した
のち、乾燥、焼成する第2工程からなるプロセスが本出
願人によって提案されている(特開平3−83875 号公
報) 。
As a method for solving the above problems and obtaining a porous ceramic structure having a uniform vent hole without clogging and an excellent skeletal strength, an organic porous foam is impregnated with a ceramic slurry to obtain a surplus slurry. The present applicant has proposed a process consisting of a first step of removing and drying and then calcining, and a second step of re-impregnating the calcined body with ceramics slurry to remove excess slurry, and then drying and calcining. (JP-A-3-83875).

【0005】[0005]

【発明が解決しようとする課題】前記の先行技術によれ
ば、有機成分の消失空孔に再含浸による炭化珪素が充填
されるため材質強度を効果的に向上させることができる
が、この含浸操作では組織内部の全空孔にセラミックス
スラリーを円滑かつ均一に浸透させることに困難性があ
り、往々にして局部的な目詰まりや強度の偏りが生じる
難点があった。
According to the above-mentioned prior art, since the voids of the organic component are filled with silicon carbide by re-impregnation, the material strength can be effectively improved. However, there is a difficulty in smoothly and uniformly permeating the ceramics slurry into all the pores inside the structure, and there is a problem that local clogging and uneven strength often occur.

【0006】本発明は、先行技術における第2工程の組
織改善をパルスCVIを用いた炭化珪素の析出沈着に変
えることによって開発されたもので、その目的は目詰ま
りや偏りのない均質な通気孔と優れた材質組織強度を兼
備する多孔質炭化珪素発熱体の効率的な製造方法を提供
することにある。
The present invention was developed by changing the structure improvement of the second step in the prior art to the precipitation and deposition of silicon carbide using pulsed CVI, the purpose of which is to obtain a uniform vent hole without clogging or bias. And to provide an efficient manufacturing method of a porous silicon carbide heating element having excellent material structure strength.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による多孔質炭化珪素発熱体の製造方法は、
有機質多孔発泡体に炭化珪素スラリーを含浸し、余剰ス
ラリーを除去したのち、乾燥、焼成処理する第1工程、
該工程で得られる多孔質炭化珪素焼結体を密閉反応系内
において加熱しながらハロゲン化有機珪素化合物を間欠
的に供給してパルスCVIにより組織空孔に炭化珪素を
析出沈着する第2工程からなることを構成上の特徴とす
る。
The method for producing a porous silicon carbide heating element according to the present invention for achieving the above object comprises:
A first step of impregnating an organic porous foam with a silicon carbide slurry, removing excess slurry, and then drying and firing the same.
From the second step of heating the porous silicon carbide sintered body obtained in the step in a closed reaction system and intermittently supplying a halogenated organosilicon compound to deposit and deposit silicon carbide in the tissue vacancy by pulse CVI. It is a feature of the configuration.

【0008】本発明の第1工程は多孔質の炭化珪素焼結
体からなる骨格組織を形成する段階で、その詳細は次の
とおりである。有機質多孔発泡体としては、例えばポリ
ウレタンフォームのような 400〜500℃の温度域で熱分
解揮散する均質微細な三次元網目構造の樹脂発泡体が適
用される。炭化珪素スラリーは、炭化珪素の微粉末を水
あるいは適宜な有機溶媒に分散懸濁させたもので、好ま
しくはスラリー粘度として20〜1000ポイズの範囲に調製
する。このスラリー粘度が20ポイズ未満であると第1工
程で作製される多孔質炭化珪素焼結体の骨格強度が極端
に脆弱となり、また1000ポイズを越えると目詰まりを起
こす原因となる。
The first step of the present invention is a step of forming a skeletal structure made of a porous silicon carbide sintered body, and the details thereof are as follows. As the organic porous foam, for example, a polyurethane foam such as a resin foam having a homogeneous fine three-dimensional network structure which is thermally decomposed and volatilized in a temperature range of 400 to 500 ° C is applied. The silicon carbide slurry is a fine powder of silicon carbide dispersed and suspended in water or an appropriate organic solvent, and is preferably prepared to have a slurry viscosity in the range of 20 to 1000 poise. If the slurry viscosity is less than 20 poise, the skeleton strength of the porous silicon carbide sintered body produced in the first step becomes extremely weak, and if it exceeds 1000 poise, it causes clogging.

【0009】有機質多孔発泡体に炭化珪素スラリーを含
浸する操作は、セラミックススラリー中に有機質多孔発
泡体を浸漬する方法でおこなわれる。このようにして処
理された含浸物は、遠心分離、エアガン等の手段を用い
て余剰スラリーを除去したのち、乾燥する。ついで、非
酸化性雰囲気下で1900〜2200℃の温度で焼成して有機質
多孔発泡体を構成する有機成分を熱分解消失させるとと
もに含浸した炭化珪素成分を焼結させる。この処理工程
により、有機質多孔発泡体のセル構造に沿った通気孔、
有機成分の消失跡が空洞化した焼失孔および粒子間に介
在する空隙孔が混在する組織空孔の多孔質炭化珪素焼結
体が形成される。
The operation of impregnating the organic porous foam with the silicon carbide slurry is carried out by immersing the organic porous foam in the ceramics slurry. The impregnated material treated in this manner is dried after removing excess slurry using a means such as centrifugation or an air gun. Then, it is fired at a temperature of 1900 to 2200 ° C. in a non-oxidizing atmosphere to thermally decompose and eliminate the organic component constituting the organic porous foam and sinter the impregnated silicon carbide component. By this treatment step, vent holes along the cell structure of the organic porous foam,
A porous silicon carbide sintered body having a structure void in which burned holes in which traces of disappearance of organic components are hollowed out and voids intervening between particles are mixed is formed.

【0010】第2工程は第1工程で得られた骨格組織に
発生する有機成分の消失空孔を主体にして、目詰まりの
ない状態で炭化珪素により充填する改質処理段階で、そ
の詳細は以下のとおりである。なお、この工程は通気孔
が閉塞されない限り反復することができる。
The second step is a reforming treatment step in which the voids of the organic components generated in the skeletal structure obtained in the first step are mainly filled with silicon carbide without clogging. It is as follows. Note that this step can be repeated as long as the vent holes are not blocked.

【0011】パルスCVIの原料物質となるハロゲン化
有機珪素化合物としては、トリクロロメチルシラン(CH3
SiCl3)、トリクロロフェニルシラン(C6H5SiCl3) 、ジク
ロロメチルシラン(CH3SiHCl2) 、ジクロロジメチルシラ
ン((CH3)2SiCl2) 、クロロトリメチルシラン((CH3)3SiC
l)、シラン(SiH4)とメタン(CH4)の混合ガス、四塩化ケ
イ素(SiCl4) とメタン(CH4) の混合ガス等を挙げること
ができる。パルスCVIの方法は、前記のハロゲン化有
機珪素化合物を水素ガスに同伴させながら密閉反応系内
で加熱されている多孔質炭化珪素焼結体にガス状態で供
給接触させ、還元熱分解反応により組織空孔に炭化珪素
を析出沈着させる操作を短周期で間欠的に反復する工程
によっておこなわれる。最も適切な反応条件は、ハロゲ
ン化有機珪素化合物としてトリクロロメチルシラン(CH3
SiCl3)を用い、該トリクロロメチルシランの濃度を 0.5
〜5%、圧力0.133 〜93kPa 、温度1000〜1400℃、パル
ス保持時間1〜2秒、パルス回数を3000〜20000 回に設
定することである。特にトリクロロメチルシラン濃度の
調整は重要で、0.5 %未満であると微細孔を目詰めする
だけで消失孔を目詰めできず、5%を越えると有機成分
が消失した後の消失孔を目詰めはできるが、濃度が高す
ぎるために表面に多く析出し、剥離が生じ易くなるう
え、通気孔を目詰めする結果を招く。
As a halogenated organosilicon compound which is a raw material for pulse CVI, trichloromethylsilane (CH 3
SiCl 3 ), trichlorophenylsilane (C 6 H 5 SiCl 3 ), dichloromethylsilane (CH 3 SiHCl 2 ), dichlorodimethylsilane ((CH 3 ) 2 SiCl 2 ), chlorotrimethylsilane ((CH 3 ) 3 SiC
l), mixed gas of silane (SiH 4 ) and methane (CH 4 ), mixed gas of silicon tetrachloride (SiCl 4 ) and methane (CH 4 ), and the like. The method of pulse CVI is such that the halogenated organosilicon compound is entrained in hydrogen gas and is supplied and contacted in a gas state to a porous silicon carbide sintered body heated in a closed reaction system, and a tissue is formed by a reduction thermal decomposition reaction. The operation of depositing and depositing silicon carbide in the pores is carried out by a process of intermittently repeating a short cycle. The most suitable reaction condition is trichloromethylsilane (CH 3 as a halogenated organosilicon compound).
SiCl 3 ) and the concentration of the trichloromethylsilane is 0.5
.About.5%, pressure 0.133 to 93 kPa, temperature 1000 to 1400.degree. C., pulse holding time 1 to 2 seconds, and pulse number 3000 to 20000. It is especially important to adjust the concentration of trichloromethylsilane. If it is less than 0.5%, it is not possible to fill the disappearing holes by only filling the fine pores, and if it exceeds 5%, the disappearing pores after the organic component disappears are filled. However, since the concentration is too high, a large amount is deposited on the surface, peeling easily occurs, and the vent holes are clogged.

【0012】[0012]

【作用】本発明のプロセスによれば、第1工程の段階で
有機質多孔発泡体のセル構造に沿った通気孔、有機成分
の熱分解消失で生成した消失孔および粒子間に介在する
空隙孔が混在した多孔質炭化珪素焼結体が形成される。
この焼結体は組織全体に前記の空孔部分が介在する脆弱
な組織であり、かつ発泡体セル構造の空隙を形成してい
る三角形の頂点部分が尖っている関係で破壊点になり易
い組織構造を呈している。
According to the process of the present invention, in the stage of the first step, the vent holes along the cell structure of the organic porous foam, the disappearance holes generated by the disappearance of the thermal decomposition of the organic component and the intervening pores between the particles are formed. A mixed porous silicon carbide sintered body is formed.
This sintered body is a fragile structure in which the above-mentioned pores are present throughout the structure, and is a structure that is likely to be a fracture point because the triangular vertexes forming the voids of the foam cell structure are sharp. It has a structure.

【0013】この組織構造は、パルスCVIを用いる第
2工程で効果的に改質される。すなわち、第2工程で適
用するパルスCVIによれば各パルス毎に新らたな反応
ガスが多孔質炭化珪素焼結体の組織に瞬間的に供給され
る工程が反復されるから、供給ガスによる熱分解反応は
組織の空孔内部で円滑に進行し、炭化珪素として空孔内
に析出沈着する。この際に析出沈着する炭化珪素は微細
孔や焼失孔は目詰めするが通気孔を目詰めすることなし
に均質に骨格を補強し、またSiC粒子間の微細孔に食
い込むような形態で形成されるため熱応力を受けてもク
ラック等が発生し難い等方的な構造となる。
This tissue structure is effectively modified in the second step using pulsed CVI. That is, according to the pulse CVI applied in the second step, the step of instantaneously supplying a new reaction gas to the structure of the porous silicon carbide sintered body is repeated for each pulse, so that it depends on the supply gas. The thermal decomposition reaction proceeds smoothly inside the pores of the structure, and is deposited and deposited as silicon carbide in the pores. The silicon carbide deposited and deposited at this time is formed in such a form that it closes up fine pores and burnt-out pores, but uniformly reinforces the skeleton without filling up the ventilation holes, and also penetrates into the fine pores between the SiC particles. Therefore, it has an isotropic structure in which cracks and the like are unlikely to occur even when subjected to thermal stress.

【0014】このような第1工程および第2工程の機構
を介して、目詰まりや偏りのない均質な通気孔と優れた
材質組織強度を備える多孔質炭化珪素発熱体を効率よく
製造することが可能となる。
Through the mechanism of the first step and the second step, it is possible to efficiently manufacture a porous silicon carbide heating element having a uniform vent hole without clogging or unevenness and excellent material structure strength. It will be possible.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.

【0016】実施例1 (1) 第1工程:平均粒子径20μm の炭化珪素粉末を水に
分散懸濁させて、粘度 300ポイズのスラリーを作製し
た。このスラリーに軟質ポリウレタンフォーム〔ブリジ
ストン(株)製“エバーライトスコット#20 ”〕を浸漬
して引上げ、余剰のスラリーを遠心分離により除去した
のち、80℃の温度で乾燥した。ついで、焼成炉に移し、
炉内を窒素ガス雰囲気に保持して2000℃の温度で焼成処
理を施し、直径20mm、長さ50mmの発熱体形状に加工した
多孔質炭化珪素焼結体を形成した。
Example 1 (1) First Step: A silicon carbide powder having an average particle diameter of 20 μm was dispersed and suspended in water to prepare a slurry having a viscosity of 300 poises. A soft polyurethane foam [“Everlite Scott # 20” manufactured by Bridgestone Co., Ltd.] was dipped in the slurry and pulled up. The excess slurry was removed by centrifugation and then dried at a temperature of 80 ° C. Then transfer to a firing furnace,
The inside of the furnace was maintained in a nitrogen gas atmosphere and subjected to a firing treatment at a temperature of 2000 ° C. to form a porous silicon carbide sintered body processed into a heating element shape having a diameter of 20 mm and a length of 50 mm.

【0017】(2) 第2工程:第1工程で得た多孔質炭化
珪素焼結体をパルスCVI装置の石英反応管内に設置
し、管内をArガスで十分に置換したのち高周波誘導加
熱により焼結体の温度を1000℃に上昇した。ついで、真
空ポンプにより反応管内を0.133kPaに減圧し、直ちにト
リクロロメチルシラン(CH3SiCl3)を濃度が5%になるよ
うに水素ガスと同伴させながら系内圧力が93kPa になる
ように導入し2秒間保持した。この反応ガス供給および
管内減圧のパルス操作を5000回繰り返して、炭化珪素の
析出沈着処理をおこなった。
(2) Second step: The porous silicon carbide sintered body obtained in the first step is placed in a quartz reaction tube of a pulse CVI apparatus, the inside of the tube is sufficiently replaced with Ar gas, and then baked by high frequency induction heating. The temperature of the association was raised to 1000 ° C. Then, the pressure inside the reaction tube was reduced to 0.133 kPa by a vacuum pump, and trichloromethylsilane (CH 3 SiCl 3 ) was immediately introduced so that the internal pressure became 93 kPa while being accompanied by hydrogen gas so that the concentration became 5%. Hold for 2 seconds. The pulse operation of supplying the reaction gas and reducing the pressure inside the tube was repeated 5000 times to deposit and deposit silicon carbide.

【0018】(3) 特性評価:このようにして製造した多
孔質炭化珪素発熱体につき各種特性を測定し、その結果
を表1に示した。この発熱体の端部に電極を取りつけて
通電発熱させ20時間保持した後に常温まで自然冷却する
加熱サイクルを30回反復し、処理後の電気抵抗値を測定
したところほとんど変化は認められなかった。なお、比
較にために第1工程のみで得た多孔質炭化珪素焼結体
(比較例1)の特性についても表1に併載した。
(3) Characteristic evaluation: Various characteristics were measured for the porous silicon carbide heating element thus manufactured, and the results are shown in Table 1. An electrode was attached to the end of this heating element, and the electrode was heated by heating for 20 hours. After that, a heating cycle of natural cooling to room temperature was repeated 30 times, and the electric resistance value after the treatment was measured. For the purpose of comparison, Table 1 also shows the characteristics of the porous silicon carbide sintered body (Comparative Example 1) obtained only in the first step.

【0019】実施例2 実施例1の第2工程においてトリクロロメチルシランの
濃度を0.5 %に変えて多孔質炭化珪素発熱体を作製し、
更にトリクロロメチルシランの濃度を5%にした第2工
程を反復して施した。その他の条件は、全て実施例1と
同一とした。この処理条件で製造された多孔質炭化珪素
発熱体の各種特性を表1に併載した。
Example 2 In the second step of Example 1, the concentration of trichloromethylsilane was changed to 0.5% to prepare a porous silicon carbide heating element,
Further, the second step in which the concentration of trichloromethylsilane was 5% was repeatedly performed. All other conditions were the same as in Example 1. Table 1 also lists various characteristics of the porous silicon carbide heating element produced under these treatment conditions.

【0020】比較例2 実施例1の第1工程で形成した多孔質炭化珪素焼結体
を、粘度20ポイズの炭化珪素スラリーに再び浸漬し、オ
ートクレーブ中で含浸処理を施した。ついで、余剰スラ
リーを遠心分離により除去し、80℃の温度で乾燥したの
ち、窒素雰囲気に保持された炉内で2100℃で焼成した。
このようにして得られた多孔質炭化珪素発熱体の各種特
性を測定し、その結果を表1に併載した。
Comparative Example 2 The porous silicon carbide sintered body formed in the first step of Example 1 was immersed again in a silicon carbide slurry having a viscosity of 20 poise and impregnated in an autoclave. Then, the excess slurry was removed by centrifugation, dried at a temperature of 80 ° C., and then fired at 2100 ° C. in a furnace maintained in a nitrogen atmosphere.
Various characteristics of the porous silicon carbide heating element thus obtained were measured, and the results are also shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果から、実施例による多孔質炭化
珪素発熱体は発熱体として好適な導電性を有し、かつ目
詰まりのない優れた気孔率と高い材質強度を備えている
ことが認められた。
From the results shown in Table 1, it was confirmed that the porous silicon carbide heating element according to the example has suitable conductivity as a heating element, and has excellent porosity without clogging and high material strength. Was given.

【0023】[0023]

【発明の効果】以上のとおり、本発明によれば常に目詰
まりや偏りのない均質な通気孔と優れた材質組織強度を
兼備する高性能の多孔質炭化珪素発熱体を効率よく製造
することができる。したがって、特に苛酷な条件下で使
用される流体の加熱・濾過やパーティキュレート捕集加
熱などの目的に対して有用である。
As described above, according to the present invention, it is possible to efficiently manufacture a high-performance porous silicon carbide heating element having a uniform vent hole without clogging and unevenness and excellent material structure strength. it can. Therefore, it is useful for purposes such as heating / filtration of a fluid used under particularly severe conditions and heating for collecting particulates.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機質多孔発泡体に炭化珪素スラリーを
含浸し、余剰スラリーを除去したのち、乾燥および焼成
処理する第1工程、該工程で得られた多孔質炭化珪素焼
結体を密閉反応系内において加熱しながらハロゲン化有
機珪素化合物を間欠的に供給してパルスCVIにより組
織空孔に炭化珪素を析出沈着する第2工程からなること
を特徴とする多孔質炭化珪素発熱体の製造方法。
1. A first step in which an organic porous foam is impregnated with a silicon carbide slurry, excess slurry is removed, and then drying and firing are performed, and the porous silicon carbide sintered body obtained in the step is a closed reaction system. A method for producing a porous silicon carbide heating element, which comprises a second step of intermittently supplying a halogenated organosilicon compound while heating in a chamber to deposit and deposit silicon carbide in tissue pores by pulse CVI.
【請求項2】 パルスCVIを、トリクロロメチルシラ
ン(CH3SiCl3)ガスを原料としておこない、条件としてト
リクロロメチルシラン濃度 0.5〜5%、圧力0.133 〜93
kPa 、温度1000〜1400℃、パルス保持時間1〜2秒、パ
ルス回数3000〜20000 回に設定する請求項1記載の多孔
質炭化珪素発熱体の製造方法。
2. Pulse CVI is carried out using trichloromethylsilane (CH 3 SiCl 3 ) gas as a raw material, and the conditions are trichloromethylsilane concentration 0.5 to 5%, pressure 0.133 to 93.
The method for producing a porous silicon carbide heating element according to claim 1, wherein kPa, temperature 1000 to 1400 ° C., pulse holding time 1 to 2 seconds, and pulse number 3000 to 20000 are set.
JP28045191A 1991-09-30 1991-09-30 Manufacture of porous silicon carbide heating element Pending JPH0594864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28045191A JPH0594864A (en) 1991-09-30 1991-09-30 Manufacture of porous silicon carbide heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28045191A JPH0594864A (en) 1991-09-30 1991-09-30 Manufacture of porous silicon carbide heating element

Publications (1)

Publication Number Publication Date
JPH0594864A true JPH0594864A (en) 1993-04-16

Family

ID=17625248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28045191A Pending JPH0594864A (en) 1991-09-30 1991-09-30 Manufacture of porous silicon carbide heating element

Country Status (1)

Country Link
JP (1) JPH0594864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175869A (en) * 2000-09-26 2002-06-21 Inoac Corp Ceramic heater
JP2011040343A (en) * 2009-08-18 2011-02-24 National Institute Of Advanced Industrial Science & Technology Porous heating device, and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175869A (en) * 2000-09-26 2002-06-21 Inoac Corp Ceramic heater
JP4592924B2 (en) * 2000-09-26 2010-12-08 株式会社イノアックコーポレーション Ceramic heater
JP2011040343A (en) * 2009-08-18 2011-02-24 National Institute Of Advanced Industrial Science & Technology Porous heating device, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5053085B2 (en) Method for manufacturing high-density silicon carbide
EP1035089B1 (en) Porous body infiltrating method
CN102010222B (en) Silicon carbide porous ceramic and preparation method thereof
US5733352A (en) Honeycomb structure, process for its production, its use and heating apparatus
JPS5844630B2 (en) silicone carbide material
CN111807843B (en) Light high-strength silicon carbide foam ceramic and preparation method thereof
EP1019338B1 (en) A method for producing abrasive grains and the abrasive grains produced by this method
US4019913A (en) Process for fabricating silicon carbide articles
JPH06510734A (en) Method for manufacturing a porous penetrating molded body made of silicon carbide and filter member for diesel exhaust particulates
DK169993B1 (en) Ceramic foam and method for making ceramic articles
JPH0594864A (en) Manufacture of porous silicon carbide heating element
CN115594514B (en) Three-dimensional SiC framework reinforced SiC high-density ceramic and preparation method thereof
JP3998910B2 (en) Method for firing silicon carbide molded body, method for producing porous silicon carbide member, and method for producing ceramic filter
JP2603139B2 (en) Method for manufacturing porous ceramic structure
JP4104096B2 (en) Porous SiC molded body and method for producing the same
JP4111676B2 (en) Method for producing porous silicon carbide sintered body
US5091222A (en) Method for forming a ceramic film
JP3496251B2 (en) Manufacturing method of porous ceramics
JPH01133988A (en) Production of reticular silica whisker-porous ceramic composite
JPH0826848A (en) Production of porous sic molding
JP4376479B2 (en) Method for producing Si-SiC composite material
JP2001072479A (en) Silicon carbide porous body and production thereof
JP2000185979A (en) Production of porous molded article of silicon carbide
KR20170046846A (en) Manufacturing method for a porous SiC structure
JP3468426B2 (en) Method for producing porous silicon carbide body