JP4104096B2 - Porous SiC molded body and method for producing the same - Google Patents
Porous SiC molded body and method for producing the same Download PDFInfo
- Publication number
- JP4104096B2 JP4104096B2 JP36214998A JP36214998A JP4104096B2 JP 4104096 B2 JP4104096 B2 JP 4104096B2 JP 36214998 A JP36214998 A JP 36214998A JP 36214998 A JP36214998 A JP 36214998A JP 4104096 B2 JP4104096 B2 JP 4104096B2
- Authority
- JP
- Japan
- Prior art keywords
- sic
- molded body
- polycarbosilane
- porous
- whisker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0022—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5059—Silicon carbide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、気孔率が高く、強度特性に優れた多孔質SiC成形体の表面部が平滑、高純度のSiC被膜で被覆され、例えばエピタキシャル成長、プラズマエッチング処理、CVD処理などに用いられる半導体製造用の各種部材などとして有用な多孔質SiC成形体及びその製造方法に関する。
【0002】
【従来の技術】
SiCは耐熱性、高温強度、耐熱衝撃性、耐蝕性などの材質特性に優れ、半導体製造用の各種部材をはじめ高温下で使用される各種工業用の部材として有用されている。SiC成形体の製造方法としては古くからSiC粉末を焼結する方法があるが、緻密で表面平滑性に優れ、また不純物が少なく高純度のものを製造することが困難である。
【0003】
そこで、化学的気相蒸着法(以下、CVD法という)を利用してSiC成形体を製造する方法が開発されている。この方法は、原料ガスを気相反応させて基体面上にSiCを析出させて被膜を生成したのち基体を除去するもので、緻密、平滑で高純度のSiC成形体を製造することができる。
【0004】
CVD法によるSiC成形体の製造方法としては、例えば特開平7−188927号公報、同8−188408号公報、同8−188468号公報などが提案されている。これらの方法によれば緻密で表面平滑性に優れ、高純度のSiC成形体を得ることができるが組織が緻密であるために嵩密度が高く、重くなる欠点がある。
【0005】
一方、軽量化を図るために組織構造中に空隙を多く存在させ、多孔質性にすると材質強度が低下する問題があり、また表面平滑性に劣る難点もある。このように、半導体製造用の各種部材などとして用いられる表面平滑性に優れ、高純度で強度の高いSiC成形体の軽量化を図ることは困難である。
【0006】
高度の気孔率ならびに材質強度を備える多孔質SiCを製造する方法として、本出願人は、直径0.3〜1.5μm 、長さ10〜100μm の性状を有するβ結晶型主体のSiCウイスカーを、ポリカルボシランを溶解したバインダー溶液と混練し、次いで混練物を成形、乾燥したのち不活性雰囲気下で前記ポリカルボシランが炭化珪素化する温度で焼成処理し、更に不活性雰囲気中で1700〜2000℃の温度域で加熱処理することを特徴とする多孔質炭化珪素体の製造方法を開発、提案した(特開平7−82052 号公報)。
【0007】
【発明が解決しようとする課題】
上記特開平7−82052号公報の技術によれば骨格部に高強度のSiCウイスカーを用いることにより気孔率及び強度の向上を図ることが可能となる。本発明者らは、多孔質SiC成形体の骨格部に高強度のSiCウイスカーを用いる方法について更に研究を進め、気孔率ならびに材質強度が高く、かつその表面に緻密、高純度で平滑なSiC被膜を形成した多孔質SiC成形体は、半導体製造用の各種部材などとして好適に用いることができ、また軽量化を図ることもできることを見出した。
【0008】
本発明は、上記の知見に基づいて開発されたものであって、その目的は気孔率が高く、強度特性に優れた多孔質炭化珪素成形体の表面に緻密、高純度で平滑なSiC被膜を被着し、例えば半導体製造用の各種部材として用いることのできる軽量化された多孔質SiC成形体及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するための本発明による多孔質SiC成形体は、SiCウイスカープリフォームの表面にポリビニルアルコール水溶液を被着、加熱乾燥して強化したSiCウイスカープリフォームの骨格と、ポリカルボシランから転化したSiCとが一体化した組織構造からなり、ポリカルボシランから転化したSiC〔 SiC(p) 〕とSiCウイスカー〔 SiC(w) 〕との重量比が3.0〜12.2(%)の範囲にある多孔質炭化珪素成形体の表面に、化学的気相蒸着法(CVD法)によるSiC被膜が形成されてなることを構成上の特徴とする。
【0010】
また、その製造方法はSiCウイスカープリフォームの表面にポリビニルアルコール水溶液を被着、加熱乾燥して強化したSiCウイスカープリフォームに、ポリカルボシランを溶解したバインダー溶液を含浸し、乾燥した後、非酸化性雰囲気中700〜1700℃の温度で熱処理して、ポリカルボシランから転化したSiC〔 SiC(p) 〕とSiCウイスカー〔 SiC(w) 〕との重量比が3.0〜12.2(%)の範囲に一体的に形成した炭化珪素成形体を得、次いで化学的気相蒸着法(CVD法)によりその表面にSiC被膜を形成することを構成上の特徴とする。
【0011】
【発明の実施の形態】
本発明の多孔質SiC成形体は、ポリビニルアルコール水溶液を被着、加熱乾燥して強化したSiCウイスカーの骨格とポリカルボシランを熱処理して生成したSiCとが特定の重量比で一体化した組織構造からなる多孔質炭化珪素成形体の表面に、CVD法によるSiC被膜が形成され、強固に被着した構造から構成されている。
【0012】
SiCウイスカーは、直径0.1〜1.5μm、長さ30〜100μm程度の微細短繊維状の単結晶からなる高強度特性を備えた物質であり、本発明の多孔質SjC成形体の骨格部分を構成するものである。このSiCウイスカーのプリフォームの表面にポリビニルアルコール水溶液を被着、加熱乾燥して強化したSiCウイスカープリフォームのSiCウイスカーの骨格にポリカルボシランを熱処理して生成したSiCとが特定の重量比、すなわち、ポリカルボシランから転化したSiC〔 SiC(p) 〕とSiCウイスカー〔 SiC(w) 〕との重量比が3.0〜12.2(%)の割合で一体化した組織構造からなり、この組織構造により高い気孔率を有するにもかかわらず大きな強度特性を備えることが可能となる。
【0013】
本発明の多孔質SiC成形体は、このような組織構造を備えた多孔質炭化珪素成形体の表面に、CVD法によるSiC被膜が形成被着されてなるものである。CVD法により形成されたSiC被膜は、表面が平滑で、緻密、高純度であるので半導体製造用の各種部材として好適に用いることができる。すなわち、本発明の多孔質SiC成形体によれば表面部が平滑、緻密、高純度のSiC被膜で被覆されているので、例えばエピタキシャル成長、プラズマエッチング処理、CVD処理などに用いられる半導体製造用の各種部材として好適に用いることが可能となる。更に、本体部分は高強度の多孔質体から構成されているので嵩密度が小さく、取扱いに便利な軽量化を図ることも可能となる。
【0014】
この多孔質SiC成形体は、SiCウイスカーのプリフォームにポリカルボシランを含浸して、熱処理し、次いでCVD法によりSiC被膜を形成、被着することにより製造される。
【0015】
SiCウイスカープリフォームは、常法によりSiCウイスカーを水または有機溶媒などの分散媒中に均一に分散させた分散液を濾過、乾燥することにより作製される。分散媒中に均一に分散させるためには界面活性剤などの分散剤を用いることも好ましく、またSiCウイスカーの分散濃度は2〜3重量%程度に設定される。この分散液は濾過容器を用いて減圧または加圧下に濾過して所望形状の成形体に成形し、乾燥してプリフォームが作製される。
【0016】
このようにして作製されたSiCウイスカープリフォームは均質な性状を有しており、またその気孔率などの気孔性状はプリフォーム中のウイスカーの体積含有率(Vf)を制御することによって調節することができる。しかしながら、プリフォームの強度は充分なものではないためにポリカルボシランを溶解したバインダー溶液を含浸する際に変形したり、割れ易い難点がある。そこで、本発明はSiCウイスカープリフォームの表面にポリビニルアルコールの水溶液を均一に噴霧や塗布などにより被着して100〜150℃の温度で加熱乾燥し、固化することによってプリフォーム表面を強化するものである。なお、ポリビニルアルコール水溶液の濃度は0.5〜1重量%程度に設定することが好ましく、また、SiCウイスカープリフォームに対するポリビニルアルコール水溶液の含有量は0.1〜5重量%に調整することが好ましい。
【0017】
ポリビニルアルコールで表面部が強化されたSiCウイスカープリフォームにポリカルボシランを溶解したバインダー溶液を含浸する。バインダー溶液はポリカルボシランを溶解することのできる揮発性の有機溶媒、例えばベンゼン、トルエン、キシレン、ヘキサン、エーテルなどの有機溶媒にポリカルボシランを適宜濃度に溶解して用いられ、バインダー溶液の含浸はSiCウイスカープリフォームの表面にバインダー溶液を均一に噴霧や滴下や塗布する、あるいはバインダー溶液中にSiCウイスカープリフォームを浸漬するなどの方法で行うことができる。バインダー溶液はプリフォームの内部に均等に含浸させることが必要で、バインダー溶液の粘度が高くならないようにポリカルボシランの濃度設定を行う。
【0018】
このようにしてバインダー溶液を含浸したSiCウイスカープリフォームは、風乾した後100℃程度の温度で乾燥することにより有機溶媒を揮散除去し、プリフォームのSiCウイスカーの骨格にポリカルボシランを均一に被着させることができる。この場合、ポリカルボシランの含浸量は、ポリカルボシランが転化して生成したSiC〔 SiC(p) 〕とプリフォーム中のSiCウイスカー〔 SiC(w) 〕との重量比が3.0〜12.2(%)の範囲になるように設定する。
【0019】
次いで、真空、水素ガス、またはアルゴン、ネオンなどの不活性ガス雰囲気中で700〜1700℃の温度、好ましくは1000〜1600℃の温度範囲で熱処理してポリカルボシランをSiCに転化することによって、SiCウイスカーの骨格部分にポリカルボシランが転化して生成したSiCが一体的に形成された多孔質炭化珪素成形体が製造される。なお、熱処理温度が700℃未満ではポリカルボシランの熱分解が不充分となり、一方1700℃を越えると材質強度の低下を招くこととなるためである。
【0020】
このようにして得られた多孔質炭化珪素成形体の表面にCVD法によりSiC被膜を形成、被着して、本発明の多孔質SiC成形体が製造される。CVD法によるSiC被膜の形成は、例えば1分子中にSi原子とC原子とを含むCH3 SiCl3 、(CH3 )3 SiCl、CH3 SiHCl2 などの有機珪素化合物を水素ガスにより還元熱分解させる方法、あるいはSiCl4 などの珪素化合物とCH4 などの炭素化合物とを加熱反応させてSiCを析出させる方法、などの常法により行うことができる。なお、SiC被膜の膜厚は有機珪素化合物と水素ガス、あるいは珪素化合物と炭素化合物とのモル比、CVD反応温度、反応時間などを設定することにより制御することができるが、20〜300μm の範囲が好ましい。
【0021】
このようにして強度特性の優れたSiCウイスカーを骨格として、SiCウイスカーの骨格にポリカルボシランが転化したSiCが均一に一体化した組織構造の多孔質炭化珪素成形体の表面に、CVD法によるSiC被膜が形成、被着した多孔質SiC成形体を製造することができる。また、本発明の多孔質SiC成形体は多孔質炭化珪素成形体にCVD法によるSiC被膜が形成されたものであるから熱膨張率が同一であり、加熱、冷却による熱サイクルを受けてもSiC被膜の亀裂や剥離が生じ難い。
【0022】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。
【0023】
実施例1〜8、比較例1〜5
直径0.5〜1.0μm 、長さ50〜100μm のβ型SiCウイスカーをモールドプレスによる加圧手段で凝集塊性状の異なるSiCウイスカーを調製し、0.1重量%の界面活性剤を溶解した純水中に入れてヘンシェル型攪拌機により充分に攪拌、混合してSiCウイスカーの分散液濃度が2重量%の分散液を調製した。分散液を直径100mmの円筒型濾過装置に流入し、上部から4kg/cm2の高圧空気を圧入して加圧濾過成形した。得られた濾過ケーキを100℃の温度で乾燥して、SiCウイスカーの体積含有率(Vf)の異なる直径100mm、高さ40mmの円柱状のSiCウイスカープリフォームを作製した。
【0024】
これらのプリフォームの表面に濃度1Wt%のポリビニルアルコール水溶液を均一に噴霧し、150℃の温度で乾燥してSiCウイスカープリフォームを強化した。これらのプリフォームに、ポリカルボシランの粉末をトルエンに異なる濃度で溶解した溶液を含浸して風乾後、100℃の温度で乾燥してトルエンを揮散除去した。次いで、アルゴンガス中100℃/hrの昇温速度で加熱し、異なる温度で熱処理して多孔質炭化珪素成形体を製造した。
【0025】
このようにして得られた多孔質炭化珪素成形体について水銀圧入法により気孔率を測定した。つぎに、多孔質炭化珪素成形体を3×4×40mmに切断加工したのち、CVD反応装置の反応管内に設置し、所定の温度に加熱してCVD反応によりSiC被膜を形成被着した。CVD反応は、有機珪素化合物にトリクロロメチルシランを用い、水素ガスをキャリアガスとして10リットル/分の流量(CH3SiCl3:H2のモル比= 1:10)で反応管内に送入し、反応温度1400℃でSiC被膜を100μm 形成、被着した。
【0026】
このようにして製造した多孔質SiC成形体について、嵩密度、3点曲げ強度(JIS R1601) を測定し、また触針式表面粗さ計により表面粗さRaを測定して表面平滑性を評価した。得られた結果を製造条件と対比して表1に示した。
【0027】
【表1】
【0028】
表1の結果から実施例と比較例を対比すると、気孔率及び嵩密度が同等レベルにある実施例の多孔質SiC成形体は、比較例の多孔質SiC成形体に比べて曲げ強度が著しく高いことが判る。したがって、強度特性を同等レベルに維持すると、嵩密度を低く、すなわち軽量化を図ることが可能となる。なお、熱処理温度が高い比較例2では、多孔質炭化珪素成形体に表面荒れが生じてCVD法によりSiC被膜を形成しても表面平滑性に劣るものであった。また、ポリビニルアルコール水溶液を被着せずSiCウイスカープリフォームの強化を行わなかった比較例5では、ポリカルボシラン溶液含浸時にプリフォームに割れが発生した。
【0029】
【発明の効果】
以上のとおり、本発明の多孔質SiC成形体は、SiCウイスカーの骨格にポリカルボシランが熱分解して生成したSiCが一体化した組織構造からなる高気孔率、高強度の多孔質炭化珪素成形体の表面部に、CVD法により緻密、高純度で平滑なSiC被膜を形成、被着したものであるから、不純物汚染を嫌う半導体製造用の各種部材、例えばエピタキシャル成長、プラズマエッチング処理、CVD処理などに用いられる部材として有用である。また、嵩密度が小さく軽量であるから高温下に使用される各種の部材としても有用される。この多孔質SiC成形体は、本発明の製造方法により容易に製造することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a porous SiC molded body having a high porosity and excellent strength characteristics, which is covered with a smooth, high-purity SiC film, for example, for semiconductor manufacturing used for epitaxial growth, plasma etching processing, CVD processing, etc. The present invention relates to a porous SiC molded body useful as various members and a method for producing the same.
[0002]
[Prior art]
SiC is excellent in material properties such as heat resistance, high temperature strength, thermal shock resistance, and corrosion resistance, and is useful as various industrial members used at high temperatures including various members for semiconductor manufacturing. As a method for producing a SiC molded body, there is a method of sintering SiC powder for a long time, but it is difficult to produce a high-purity product that is dense and excellent in surface smoothness and has few impurities.
[0003]
Therefore, a method of manufacturing a SiC molded body using a chemical vapor deposition method (hereinafter referred to as a CVD method) has been developed. In this method, a raw material gas is vapor-phase reacted to deposit SiC on the surface of the substrate to form a coating, and then the substrate is removed. A dense, smooth and high-purity SiC molded body can be produced.
[0004]
For example, JP-A-7-188927, 8-188408, and 8-188468 have been proposed as a method for producing an SiC molded body by the CVD method. According to these methods, a dense and excellent surface smoothness and high-purity SiC molded body can be obtained. However, since the structure is dense, there is a drawback in that the bulk density is high and heavy.
[0005]
On the other hand, if a large number of voids are present in the tissue structure in order to reduce the weight and the structure is made porous, there is a problem that the material strength is lowered, and there is also a problem that the surface smoothness is inferior. As described above, it is difficult to reduce the weight of a SiC molded body that is excellent in surface smoothness and used as various members for manufacturing semiconductors and has high purity and high strength.
[0006]
As a method for producing porous SiC having a high degree of porosity and material strength, the present applicant has developed a β crystal type-based SiC whisker having a diameter of 0.3 to 1.5 μm and a length of 10 to 100 μm. The mixture is kneaded with a binder solution in which polycarbosilane is dissolved, then the kneaded product is molded, dried, and then fired at a temperature at which the polycarbosilane is siliconized in an inert atmosphere, and further, 1700 to 2000 in an inert atmosphere. A method for producing a porous silicon carbide body, characterized by heat treatment in a temperature range of ° C., has been developed and proposed (Japanese Patent Laid-Open No. 7-82052).
[0007]
[Problems to be solved by the invention]
According to the technique disclosed in JP-A-7-82052, the porosity and strength can be improved by using high-strength SiC whiskers for the skeleton. The present inventors have further researched on a method of using high-strength SiC whiskers for the skeleton part of a porous SiC molded body, and have a high porosity and material strength, and a dense, high-purity and smooth SiC coating on the surface thereof. It has been found that the porous SiC molded body formed with can be suitably used as various members for manufacturing semiconductors and can be reduced in weight.
[0008]
The present invention has been developed on the basis of the above knowledge, and its purpose is to form a dense, high-purity and smooth SiC coating on the surface of a porous silicon carbide molded body having high porosity and excellent strength characteristics. An object of the present invention is to provide a weight-reduced porous SiC molded body that can be used as various members for manufacturing semiconductors and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
The porous SiC shaped body according to the present invention for achieving the above object, SiC U chair Carp wearing an aqueous polyvinyl alcohol solution on the surface of the preform to be, and SiC c chair Carp remodeling of skeletal reinforced dried by heating, from the polycarbosilane Ri Do from conversion tissue structure and are integrated SiC, the weight ratio of SiC was converted from polycarbosilane [SiC (p)] and the SiC whiskers [SiC (w)] is from 3.0 to 12.2 (% It is a structural feature that a SiC film is formed on the surface of the porous silicon carbide molded body in the range of) by a chemical vapor deposition method (CVD method).
[0010]
In addition, the manufacturing method is that a SiC whisker preform is coated on a surface of a SiC whisker preform, impregnated with heat-dried SiC whisker preform, impregnated with a binder solution in which polycarbosilane is dissolved, dried, and then non-oxidized. The weight ratio of SiC [ SiC (p) ] converted from polycarbosilane to SiC whisker [ SiC (w) ] is 3.0 to 12.2 (%). The silicon carbide molded body integrally formed in the range of (1) is obtained, and then a SiC film is formed on the surface by chemical vapor deposition (CVD).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The porous SiC molded body of the present invention has a structure in which a SiC whisker skeleton reinforced by applying a polyvinyl alcohol aqueous solution and heat drying is integrated with SiC produced by heat-treating polycarbosilane at a specific weight ratio. The porous silicon carbide molded body is made of a structure in which a SiC film is formed by a CVD method and is firmly attached.
[0012]
The SiC whisker is a substance having high strength characteristics composed of a fine short fiber-like single crystal having a diameter of 0.1 to 1.5 μm and a length of about 30 to 100 μm, and is a skeleton part of the porous SjC molded body of the present invention. It constitutes. This of SiC whiskers polyvinyl alcohol aqueous solution to the surface of the preform wears the heating dried reinforced SiC c and chairs Carp renovation SiC produced by heat-treating skeleton of polycarbosilane SiC whiskers are certain weight ratios, i.e. , Composed of a structural structure in which the weight ratio of SiC [ SiC (p) ] converted from polycarbosilane and SiC whisker [ SiC (w) ] is integrated at a ratio of 3.0 to 12.2 (%). Despite having a high porosity due to the tissue structure, it is possible to provide large strength characteristics.
[0013]
The porous SiC molded body of the present invention is formed by depositing a SiC film formed by CVD on the surface of a porous silicon carbide molded body having such a structure. Since the SiC film formed by the CVD method has a smooth surface, is dense, and has high purity, it can be suitably used as various members for semiconductor production. That is, according to the porous SiC molded body of the present invention, the surface portion is coated with a smooth, dense, high-purity SiC film, so that various types for manufacturing semiconductors used for, for example, epitaxial growth, plasma etching processing, CVD processing, etc. It can be suitably used as a member. Furthermore, since the main body portion is composed of a high-strength porous body, the bulk density is small, and it is possible to reduce the weight that is convenient for handling.
[0014]
This porous SiC molded body is manufactured by impregnating a SiC whisker preform with polycarbosilane, heat-treating, and then forming and depositing a SiC film by a CVD method.
[0015]
The SiC whisker preform is produced by filtering and drying a dispersion obtained by uniformly dispersing SiC whisker in a dispersion medium such as water or an organic solvent by a conventional method. In order to uniformly disperse in the dispersion medium, it is also preferable to use a dispersant such as a surfactant, and the dispersion concentration of the SiC whisker is set to about 2 to 3% by weight. This dispersion is filtered using a filtration container under reduced pressure or pressure to form a molded article having a desired shape, and dried to produce a preform.
[0016]
The SiC whisker preform produced in this way has a homogeneous property, and the porosity properties such as porosity should be adjusted by controlling the volume content (Vf) of the whisker in the preform. Can do. However, since the strength of the preform is not sufficient, there is a problem that it is easily deformed or cracked when impregnated with a binder solution in which polycarbosilane is dissolved. Therefore, the present invention reinforces the surface of the preform by uniformly applying an aqueous solution of polyvinyl alcohol to the surface of the SiC whisker preform by spraying or coating, heating and drying at a temperature of 100 to 150 ° C., and solidifying. It is. The concentration of the polyvinyl alcohol aqueous solution is preferably set to about 0.5 to 1% by weight, and the content of the polyvinyl alcohol aqueous solution with respect to the SiC whisker preform is preferably adjusted to 0.1 to 5% by weight. .
[0017]
A SiC whisker preform whose surface is reinforced with polyvinyl alcohol is impregnated with a binder solution in which polycarbosilane is dissolved. The binder solution is used by dissolving polycarbosilane in an appropriate concentration in a volatile organic solvent capable of dissolving polycarbosilane, for example, an organic solvent such as benzene, toluene, xylene, hexane, ether, etc. Can be carried out by spraying, dripping or coating the binder solution uniformly on the surface of the SiC whisker preform, or by immersing the SiC whisker preform in the binder solution. The binder solution needs to be uniformly impregnated into the preform, and the concentration of polycarbosilane is set so that the viscosity of the binder solution does not increase.
[0018]
The SiC whisker preform impregnated with the binder solution in this manner is air dried and then dried at a temperature of about 100 ° C. to volatilize and remove the organic solvent, so that the SiC whisker skeleton of the preform is uniformly coated with polycarbosilane. Can be worn. In this case, the impregnation amount of polycarbosilane is such that the weight ratio of SiC [ SiC (p) ] produced by conversion of polycarbosilane and SiC whisker [ SiC (w) ] in the preform is 3.0 to 12. It is set to be in the range of .2%.
[0019]
Then, by converting the polycarbosilane to SiC by heat treatment in a vacuum, hydrogen gas, or an inert gas atmosphere such as argon or neon at a temperature of 700 to 1700 ° C., preferably 1000 to 1600 ° C., A porous silicon carbide molded body is produced in which SiC formed by converting polycarbosilane into the skeleton of SiC whiskers is integrally formed. If the heat treatment temperature is less than 700 ° C., the thermal decomposition of polycarbosilane is insufficient, while if it exceeds 1700 ° C., the strength of the material is lowered.
[0020]
A SiC film is formed and deposited on the surface of the porous silicon carbide molded body thus obtained by the CVD method, and the porous SiC molded body of the present invention is manufactured. For example, the SiC film is formed by CVD by reducing and thermally decomposing organosilicon compounds such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, and CH 3 SiHCl 2 containing Si and C atoms in one molecule with hydrogen gas. Or a conventional method such as a method of precipitating SiC by heating and reacting a silicon compound such as SiCl 4 and a carbon compound such as CH 4 . The film thickness of the SiC coating can be controlled by setting the molar ratio of the organosilicon compound and hydrogen gas, or the silicon compound and carbon compound, the CVD reaction temperature, the reaction time, etc., but in the range of 20 to 300 μm. Is preferred.
[0021]
In this way, the SiC whisker having excellent strength characteristics is used as the skeleton, and the surface of the porous silicon carbide molded body having a structure in which SiC in which the polycarbosilane is converted to the SiC whisker skeleton is uniformly integrated is formed on the surface of the SiC by CVD. A porous SiC molded body having a coating formed and deposited thereon can be produced. In addition, since the porous SiC molded body of the present invention is obtained by forming a SiC film by a CVD method on the porous silicon carbide molded body, the coefficient of thermal expansion is the same. It is difficult for cracks and peeling of the coating to occur.
[0022]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0023]
Examples 1-8, Comparative Examples 1-5
SiC whiskers with different aggregate properties were prepared from β-type SiC whiskers having a diameter of 0.5 to 1.0 μm and a length of 50 to 100 μm by pressing means using a mold press, and 0.1% by weight of a surfactant was dissolved. It was put in pure water and sufficiently stirred and mixed with a Henschel stirrer to prepare a dispersion having a SiC whisker dispersion concentration of 2% by weight. The dispersion was introduced into a cylindrical filter having a diameter of 100 mm, and high pressure air of 4 kg / cm 2 was injected from above to form a pressure filter. The obtained filter cake was dried at a temperature of 100 ° C. to produce a cylindrical SiC whisker preform having a diameter of 100 mm and a height of 40 mm, each having a different volume content (Vf) of SiC whiskers.
[0024]
A polyvinyl alcohol aqueous solution having a concentration of 1 Wt% was uniformly sprayed on the surface of these preforms and dried at a temperature of 150 ° C. to strengthen the SiC whisker preform. These preforms were impregnated with solutions of polycarbosilane powder dissolved in toluene at different concentrations, air-dried, and then dried at a temperature of 100 ° C. to volatilize and remove toluene. Subsequently, it heated at the temperature increase rate of 100 degrees C / hr in argon gas, and it heat-processed at different temperature, and manufactured the porous silicon carbide molded object.
[0025]
The porosity of the porous silicon carbide molded body thus obtained was measured by mercury porosimetry. Next, after the porous silicon carbide molded body was cut into 3 × 4 × 40 mm, it was placed in a reaction tube of a CVD reactor, heated to a predetermined temperature, and an SiC coating was formed by CVD reaction. In the CVD reaction, trichloromethylsilane is used as the organosilicon compound, hydrogen gas is used as a carrier gas, and the flow rate is 10 liters / minute (CH 3 SiCl 3 : H 2 molar ratio = 1: 10). A SiC film of 100 μm was formed and deposited at a reaction temperature of 1400 ° C.
[0026]
For the porous SiC molded body thus manufactured, the bulk density, three-point bending strength (JIS R1601) is measured, and the surface roughness Ra is measured by a stylus type surface roughness meter to evaluate the surface smoothness. did. The obtained results are shown in Table 1 in comparison with the production conditions.
[0027]
[Table 1]
[0028]
From the results of Table 1, when comparing the example and the comparative example, the porous SiC molded body of the example having the same porosity and bulk density has a significantly higher bending strength than the porous SiC molded body of the comparative example. I understand that. Therefore, if the strength characteristics are maintained at the same level, the bulk density can be lowered, that is, the weight can be reduced. In Comparative Example 2 where the heat treatment temperature was high, surface roughness was generated in the porous silicon carbide molded body, and even when an SiC film was formed by the CVD method, the surface smoothness was inferior. Further, in Comparative Example 5 in which the SiC whisker preform was not reinforced without applying the polyvinyl alcohol aqueous solution, the preform was cracked when impregnated with the polycarbosilane solution.
[0029]
【The invention's effect】
As described above, the porous SiC molded body of the present invention is a porous silicon carbide molded article having a high porosity and high strength composed of a structure in which SiC produced by thermal decomposition of polycarbosilane is integrated with a SiC whisker skeleton. Since a dense, high-purity, smooth SiC film is formed and deposited on the surface of the body by CVD, various members for semiconductor manufacturing that do not like impurity contamination, such as epitaxial growth, plasma etching, CVD, etc. It is useful as a member used in Further, since the bulk density is small and light, it is useful as various members used at high temperatures. This porous SiC molded body can be easily manufactured by the manufacturing method of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36214998A JP4104096B2 (en) | 1998-12-21 | 1998-12-21 | Porous SiC molded body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36214998A JP4104096B2 (en) | 1998-12-21 | 1998-12-21 | Porous SiC molded body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000185981A JP2000185981A (en) | 2000-07-04 |
JP4104096B2 true JP4104096B2 (en) | 2008-06-18 |
Family
ID=18476073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36214998A Expired - Fee Related JP4104096B2 (en) | 1998-12-21 | 1998-12-21 | Porous SiC molded body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4104096B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001270780A (en) * | 2000-03-27 | 2001-10-02 | Ibiden Co Ltd | Jig for producing semiconductor |
JP4592924B2 (en) * | 2000-09-26 | 2010-12-08 | 株式会社イノアックコーポレーション | Ceramic heater |
JP2002231713A (en) * | 2001-01-30 | 2002-08-16 | Ibiden Co Ltd | Jig for semiconductor manufacturing apparatus |
FR2857660B1 (en) * | 2003-07-18 | 2006-03-03 | Snecma Propulsion Solide | THERMOSTRUCTURAL COMPOSITE STRUCTURE HAVING A COMPOSITION GRADIENT AND METHOD OF MANUFACTURING THE SAME |
JP5415853B2 (en) * | 2009-07-10 | 2014-02-12 | 東京エレクトロン株式会社 | Surface treatment method |
JP5466087B2 (en) * | 2010-06-07 | 2014-04-09 | 株式会社ブリヂストン | Method for producing sintered silicon carbide |
CN116606166B (en) * | 2023-04-26 | 2024-05-24 | 贵州省紫安新材料科技有限公司 | Method for rapidly preparing silicon carbide amorphous coating |
-
1998
- 1998-12-21 JP JP36214998A patent/JP4104096B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000185981A (en) | 2000-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050084717A1 (en) | Silicon carbide based porous structure and method for manufacturing thereof | |
JP2007332020A (en) | Manufacturing method of article, composition and article | |
CN115058885A (en) | Carbon fiber cloth surface oriented SiC nanowire array and preparation method thereof | |
CN111788165B (en) | Process for manufacturing a silicon carbide coated body | |
JP4104096B2 (en) | Porous SiC molded body and method for producing the same | |
CA2130335A1 (en) | Molybdenum enhanced low-temperature deposition of crystalline silicon nitride | |
CN116200723A (en) | Process for manufacturing a body of coated silicon carbide | |
CN101402455B (en) | Method for producing silicon carbide nano-stick with sublimation | |
JP2721678B2 (en) | β-silicon carbide molded body and method for producing the same | |
US5194409A (en) | Process for producing bn-coated SiC whisker and process for producing ceramic comprising said bn-coated SiC whisker as reinforcement | |
JP2636034B2 (en) | Method for producing silicon carbide whisker and composite material thereof | |
JP2002338366A (en) | High purity silicon carbide heating element and method of producing the same | |
JP2000185979A (en) | Production of porous molded article of silicon carbide | |
JPH10209061A (en) | Constitution member for semiconductor diffusion furnace | |
KR102238819B1 (en) | Method for producing silicon carbide fiber and the silicon carbide fiber manufactured by using the same | |
JP4218853B2 (en) | Carbonaceous crucible for pulling single crystal and method for producing the same | |
JPH0692761A (en) | Sic-cvd coated and si impregnated sic product and its manufacture | |
JP3468426B2 (en) | Method for producing porous silicon carbide body | |
JP2002249387A (en) | Method for manufacturing silicon carbide-based member | |
JPH0229628B2 (en) | ||
JPH0718013B2 (en) | Method for producing glassy carbon coating | |
JPH10287472A (en) | Highly pure silicon carbide heat generator and its production | |
KR20200089345A (en) | Method for producing silicon carbide fiber and the silicon carbide fiber manufactured by using the same | |
JPH062568B2 (en) | Method for producing high-purity silicon carbide powder | |
JP3461415B2 (en) | Oxidation resistant treatment of carbon fiber reinforced carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080321 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080324 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |