JPH059481B2 - - Google Patents

Info

Publication number
JPH059481B2
JPH059481B2 JP57224154A JP22415482A JPH059481B2 JP H059481 B2 JPH059481 B2 JP H059481B2 JP 57224154 A JP57224154 A JP 57224154A JP 22415482 A JP22415482 A JP 22415482A JP H059481 B2 JPH059481 B2 JP H059481B2
Authority
JP
Japan
Prior art keywords
furnace
sintered body
treatment
sintered
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57224154A
Other languages
Japanese (ja)
Other versions
JPS59113103A (en
Inventor
Shuji Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57224154A priority Critical patent/JPS59113103A/en
Publication of JPS59113103A publication Critical patent/JPS59113103A/en
Publication of JPH059481B2 publication Critical patent/JPH059481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は耐摩耗性および気密性を有する焼結部
品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for manufacturing wear-resistant and air-tight sintered parts.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

圧力流体用機器例えば空調装置に用いられるロ
ータリコンプレツサにおいてケーシング内を仕切
るベーンは、製造コストが安価なことから焼結体
で製作されつつある。第1図はロータリコンプレ
ツサを示す断面図で、図中1はケース、2はロー
タ、3は仕切ベーンである。このベーン3はロー
タ2に接触し且つケース1に摺動自在に設けられ
るために耐摩耗性を必要とし、さらにこのベーン
3はケース1内を気密に仕切るために多孔質であ
る焼結体で製作する場合には封孔性すなわち気密
性が要求される。なお、ベーン3は鉄系の焼結体
で成形される。
2. Description of the Related Art Vanes that partition the inside of a casing in pressurized fluid equipment, such as a rotary compressor used in an air conditioner, are increasingly being manufactured from sintered bodies because of their low manufacturing cost. FIG. 1 is a sectional view showing a rotary compressor, in which 1 is a case, 2 is a rotor, and 3 is a partition vane. This vane 3 needs wear resistance because it is in contact with the rotor 2 and is slidably provided on the case 1, and furthermore, this vane 3 is made of a porous sintered body in order to partition the inside of the case 1 airtight. When manufacturing, pore sealing, that is, airtightness is required. Note that the vane 3 is formed from an iron-based sintered body.

しかして、ロータリコンプレツサ用仕切ベーン
のように耐摩耗性と気密性及び精度を要求される
焼結部品を製作する方法として、現在焼結体をガ
ス軟窒化処理し、次いで水蒸気処理する方法が考
えられている。すなわち、ガス軟窒化処理は処理
炉において焼結体を窒素ガス雰囲気中にて加熱す
ることにより、焼結体内部の端子表面に窒化物が
形成されて耐摩耗性が向上する。また、水蒸気処
理は処理炉において焼結体を水蒸気中にて加熱す
ることにより、焼結体の空孔内に酸化物が形成さ
れ空孔を閉塞するので気密性を得ることができ
る。同時に焼結体の粒子表面に形成された窒化物
が加熱により粒子中に拡散するので、窒化物によ
る脆さがなくなり耐摩耗性がさらに向上する。
Therefore, the current method for manufacturing sintered parts that require wear resistance, airtightness, and precision, such as partition vanes for rotary compressors, is to subject the sintered body to gas nitrocarburizing treatment, followed by steam treatment. It is considered. That is, in the gas nitrocarburizing treatment, a sintered body is heated in a nitrogen gas atmosphere in a processing furnace, thereby forming nitrides on the terminal surface inside the sintered body, thereby improving wear resistance. Furthermore, in the steam treatment, by heating the sintered body in steam in a processing furnace, oxides are formed in the pores of the sintered body to close the pores, thereby achieving airtightness. At the same time, the nitrides formed on the particle surfaces of the sintered body are diffused into the particles by heating, which eliminates the brittleness caused by the nitrides and further improves wear resistance.

しかるに、この焼結部品の製造方法において、
ガス軟窒化処理と水蒸気処理は夫々各処理毎に専
用の処理炉を別個に設置し、各処理を専用の処理
炉で行つていた。このため、2組の処理炉を備え
るので、広い設備スペースを必要とするだけでな
く、処理設備経費が高価となるという問題があ
る。また、ガス軟窒化処理炉で処理された焼結体
を水蒸気処理炉へ運搬する必要があるが、ガス軟
窒化処理された焼結体は窒化物の形成による脆さ
があるために、焼結体を炉に出入れする時あるい
は運搬する時に精度が劣化したりまた破損する割
合が多い。しかも、2組の処理炉にわけて処理を
行うので処理作業の能率が悪いという問題もあ
る。
However, in this method of manufacturing sintered parts,
For gas soft nitriding treatment and steam treatment, dedicated treatment furnaces were installed separately for each treatment, and each treatment was performed in a dedicated treatment furnace. Therefore, since two sets of processing furnaces are provided, there is a problem that not only a large equipment space is required, but also the processing equipment costs are high. In addition, it is necessary to transport the sintered body treated in the gas soft nitriding furnace to the steam treatment furnace, but since the sintered body treated with the gas soft nitriding process is brittle due to the formation of nitrides, it is difficult to sinter. There is a high rate of accuracy deterioration or breakage when bodies are taken in and out of the furnace or transported. Furthermore, since the processing is performed in two sets of processing furnaces, there is a problem that the processing efficiency is low.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたもので、ガ
ス軟窒化処理と水蒸気処理を行う設備経費が低廉
であり、また処理作業が容易で処理作業に伴う焼
結体の破損を防止できる焼結部品の製造方法を提
供するものである。
The present invention has been made in view of the above circumstances, and is a sintered component that requires low equipment costs for gas soft nitriding treatment and steam treatment, is easy to process, and can prevent damage to the sintered body due to treatment. The present invention provides a method for manufacturing.

〔発明の概要〕[Summary of the invention]

本発明の焼結部品の製造方法は、焼結体をガス
軟窒化処理した後に水蒸気処理するに際して、焼
結体を移動させることなくガス軟窒化処理および
水蒸気処理を、両方の処理を兼用する共通の処理
炉にて行うことを特徴とするものである。
The method for manufacturing sintered parts of the present invention is a common method for performing both gas soft nitriding and steam treatment without moving the sintered body when the sintered body is subjected to gas soft nitriding and then steam treated. This process is characterized by being carried out in a processing furnace.

なお、焼結体は鉄を主成分とし、モリブデン、
クロムおよび炭素を必須成分としておればよく、
特にニツケル、銅、タングステン、バンジウムな
どを含んだものが好ましい。
The main component of the sintered body is iron, molybdenum,
It is sufficient to have chromium and carbon as essential components,
Particularly preferred are those containing nickel, copper, tungsten, vandium, etc.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

本発明の焼結部品の製造方法を、ロータリコン
プレツサ用仕切ベーンを製造する一実施例につい
て説明する。
An embodiment of the method for manufacturing a sintered component of the present invention will be described for manufacturing a partition vane for a rotary compressor.

まず、材料粉末として例えば重量比で鉄−ニツ
ケル−銅−モリブデン58.5%、鉄−クロム40%、
炭素1.5%を混合してなる粉末を用意し、この材
料粉末をプレス装置により加圧して第1図で示す
仕切ベーン形状をなす粉末成形体を成形する。
First, as material powder, for example, iron-nickel-copper-molybdenum 58.5%, iron-chromium 40%,
A powder made by mixing 1.5% carbon is prepared, and this material powder is pressed by a press to form a powder compact in the shape of a partition vane as shown in FIG. 1.

この粉末成形体を焼結炉にて焼結して焼結体を
成形する。
This powder compact is sintered in a sintering furnace to form a sintered body.

次いで、得られた焼結体に対し第2図で示す共
通の処理炉を用いてガス軟窒化処理と水蒸気処理
を行う。この共通処理炉はバツチ式炉であり、第
2図において11は炉本体、12は炉本体11に
設けられた加熱用の電気ヒータ、13は炉本体1
1の下部に設けられたガス軟窒化処理用のガスを
炉本体11内部に供給する複数本の給気管で、こ
れら給気管13はバルブ14を介してガス供給源
(図示せず)に接続されている。図中15は炉本
体11の下部に設けられ水蒸気処理用の水蒸気を
炉本体11内部に供給する給気管で、この給気管
15はバルブ16を介して水蒸気供給源(図示せ
ず)に接続されている。図中17は炉本体11の
上部に設けられ炉本体11内部のガスを排出する
排気管で、この排気管17はバルブ18を介して
排気装置(図示せず)に接続している。図中19
は炉本体11内部のガスを撹拌するフアンであ
る。この撹拌手段により、炉内部の雰囲気が均一
になる。しかして、この処理炉を用いて焼結体に
各処理を行う場合には、焼結体21を炉本体11
内部に入れ炉本体11内部に設けた棚20に焼結
体21を載せる。そして、初めにガス軟窒化処理
を行う。この場合、バルブ14を開いて各給気管
13から炉本体11内部に、ガス軟窒化処理用の
各ガスを供給して雰囲気を形成するとともに、電
気ヒータ12により炉本体11内部のガスおよび
焼結体21を加熱する。ガス軟窒化処理は、一例
として雰囲気ガスにアンモニアガス(NH3)、窒
素ガス(N2)、RXガスを使用し、温度570℃、時
間30分の条件で行う。このため、焼結体21は内
部の粒子表面に窒化物が形成され耐摩耗性が向上
する。ガス軟窒化処理を終了した後はバルブ18
を開き炉本体11内部のガスを排気管17を通し
て排出する。次いで、焼結体21を炉本体11内
部に入れた状態のままにして水蒸気処理を行う。
この場合、バルブ16を開いて給気管15から炉
本体11内部に水蒸気(H2O)を供給して雰囲
気を形成するとともに、電気ヒータ12により焼
結体21を加熱する。水蒸気処理は、水蒸気雰囲
気中において例えば温度570℃、時間3時間の条
件で行う。このため、焼結体21は空孔に酸化物
が形成されて封孔されるので気密性が向上し、ま
たガス軟窒化処理で粒子表面に形成された窒化物
が粒子内部に拡散するので窒化物による脆さが解
消され一層耐摩耗性が向上する。水蒸気処理が終
了した後はバルブ18を開いて炉本体11内部の
水蒸気を排気管17から排出する。このように共
通の処理炉を用いて焼結体のガス軟窒化処理と水
蒸気処理の両方の処理を行うことにより、従来の
ようにガス軟窒化処理の後にその専用の処理炉か
ら焼結体を取り出して水蒸気処理用の処理炉まで
運搬しこの処理炉に入れるという作業がなくなる
ので、ガス軟窒化処理された焼結体が窒化物によ
り脆さを有していることに伴う処理炉への出入れ
時および運搬時における焼結体の精度劣化及び破
損を回避することができる。また、処理作業も簡
便となる。
Next, the obtained sintered body is subjected to gas soft nitriding treatment and steam treatment using a common treatment furnace shown in FIG. This common processing furnace is a batch type furnace, and in FIG.
A plurality of air supply pipes are provided at the lower part of the furnace body 11 to supply gas for gas soft-nitriding treatment into the inside of the furnace body 11, and these air supply pipes 13 are connected to a gas supply source (not shown) via a valve 14. ing. In the figure, reference numeral 15 denotes an air supply pipe that is provided at the lower part of the furnace body 11 and supplies steam for steam treatment into the inside of the furnace body 11. This air supply pipe 15 is connected to a steam supply source (not shown) via a valve 16. ing. In the figure, reference numeral 17 denotes an exhaust pipe provided at the upper part of the furnace body 11 to exhaust gas inside the furnace body 11, and this exhaust pipe 17 is connected to an exhaust device (not shown) via a valve 18. 19 in the diagram
is a fan that stirs the gas inside the furnace body 11. This stirring means makes the atmosphere inside the furnace uniform. Therefore, when performing various treatments on a sintered body using this processing furnace, the sintered body 21 is placed in the furnace body 11.
The sintered body 21 is placed inside the furnace body 11 and placed on a shelf 20 provided inside the furnace body 11. Then, gas nitrocarburizing treatment is first performed. In this case, the valve 14 is opened to supply each gas for gas soft-nitriding treatment from each air supply pipe 13 to the inside of the furnace body 11 to form an atmosphere, and the electric heater 12 is used to remove the gas inside the furnace body 11 and sinter. The body 21 is heated. For example, the gas soft nitriding treatment is performed using ammonia gas (NH 3 ), nitrogen gas (N 2 ), and RX gas as atmospheric gases at a temperature of 570° C. for 30 minutes. Therefore, nitrides are formed on the internal particle surfaces of the sintered body 21, and wear resistance is improved. After finishing the gas nitrocarburizing process, the valve 18
The gas inside the furnace body 11 is discharged through the exhaust pipe 17. Next, steam treatment is performed while the sintered body 21 remains inside the furnace body 11.
In this case, the valve 16 is opened to supply water vapor (H 2 O) into the furnace body 11 from the air supply pipe 15 to form an atmosphere, and the electric heater 12 heats the sintered body 21 . The steam treatment is performed in a steam atmosphere at a temperature of 570° C. for 3 hours, for example. For this reason, in the sintered body 21, oxides are formed in the pores and the pores are sealed, improving airtightness, and nitrides formed on the particle surface by gas soft nitriding are diffused into the inside of the particle, so nitriding is possible. The brittleness caused by objects is eliminated and wear resistance is further improved. After the steam treatment is completed, the valve 18 is opened to discharge the steam inside the furnace body 11 from the exhaust pipe 17. In this way, by using a common processing furnace to perform both gas soft nitriding and steam treatment on the sintered body, it is possible to process the sintered body from the dedicated processing furnace after the gas soft nitriding treatment as in the conventional method. This eliminates the work of taking out the material, transporting it to the processing furnace for steam treatment, and putting it into the processing furnace. Deterioration in accuracy and damage to the sintered body during loading and transportation can be avoided. Moreover, processing work is also simplified.

従つて、耐摩耗性と気密性を有する焼結部品例
えばロータリコンプレツサ用仕切ベーンを、能率
的に且つ歩留り良く製作することができる。
Therefore, sintered parts having wear resistance and airtightness, such as partition vanes for rotary compressors, can be manufactured efficiently and with a high yield.

さらに、本発明の製造方法においてはガス軟窒
化処理と水蒸気処理の両方の処理炉を兼用した共
通の処理炉を用いるので、各処理毎に専用の処理
炉を個別に設ける場合に比して、処理設備の経費
が安価であるとともに処理炉の設置スペースを大
幅に縮少できる。
Furthermore, in the manufacturing method of the present invention, a common treatment furnace is used for both gas soft nitriding treatment and steam treatment, so compared to the case where dedicated treatment furnaces are individually provided for each treatment, The cost of processing equipment is low, and the installation space for the processing furnace can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の焼結部品の製造方
法によれば、兼用する共通の処理炉により焼結体
のガス軟窒化処理および水蒸気処理を行うので、
耐摩耗性および気密性を有する焼結部品を容易且
つ歩溜り良く製作でき、しかも処理炉の設備経費
を大幅に低減できる。
As explained above, according to the method for manufacturing sintered parts of the present invention, the gas nitrocarburizing treatment and the steam treatment of the sintered body are performed using a common processing furnace, so that
Sintered parts having wear resistance and airtightness can be manufactured easily and with a high yield, and the equipment cost of a processing furnace can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法により製作された焼
結部品の一例である仕切ベーンを備えたロータリ
コンプレツサを示す概略的構成図、第2図は本発
明の製造方法に用いる処理炉の一例を示す概略的
構成図である。 1…ケース、2…ロータ、3…仕切ベーン、1
1…炉本体、12…電気ヒータ、13,15…給
気管、17…排気管、21…焼結体。
FIG. 1 is a schematic configuration diagram showing a rotary compressor equipped with partition vanes, which is an example of a sintered part manufactured by the manufacturing method of the present invention, and FIG. 2 is an example of a processing furnace used in the manufacturing method of the present invention. FIG. 1...Case, 2...Rotor, 3...Partition vane, 1
DESCRIPTION OF SYMBOLS 1... Furnace body, 12... Electric heater, 13, 15... Air supply pipe, 17... Exhaust pipe, 21... Sintered compact.

Claims (1)

【特許請求の範囲】 1 焼結体をガス軟窒化処理した後に水蒸気処理
するに際して、焼結体を移動させることなくガス
軟窒化処理と水蒸気処理とを両方の処理を兼用す
る共通の処理炉にて行うことを特徴とする焼結部
品の製造方法。 2 焼結体は圧力流体用機器に用いる気密用部品
である特許請求の範囲第1項に記載の焼結部品の
製造方法。
[Scope of Claims] 1. When subjecting a sintered body to gas soft nitriding and then steam treatment, the gas soft nitriding and steam treatment are performed in a common processing furnace that serves both processes without moving the sintered body. A method for manufacturing sintered parts, characterized in that the manufacturing method is performed by: 2. The method for manufacturing a sintered component according to claim 1, wherein the sintered body is an airtight component used in a pressurized fluid device.
JP57224154A 1982-12-21 1982-12-21 Production of sintered parts Granted JPS59113103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57224154A JPS59113103A (en) 1982-12-21 1982-12-21 Production of sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57224154A JPS59113103A (en) 1982-12-21 1982-12-21 Production of sintered parts

Publications (2)

Publication Number Publication Date
JPS59113103A JPS59113103A (en) 1984-06-29
JPH059481B2 true JPH059481B2 (en) 1993-02-05

Family

ID=16809375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57224154A Granted JPS59113103A (en) 1982-12-21 1982-12-21 Production of sintered parts

Country Status (1)

Country Link
JP (1) JPS59113103A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908244B2 (en) * 2017-01-18 2021-07-21 住友電工焼結合金株式会社 Work mounting jig

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875433A (en) * 1972-01-13 1973-10-11
JPS5541299A (en) * 1978-09-15 1980-03-24 Sundpacma Ab Assembling device of corrugated cardboard box
JPS5589406A (en) * 1978-12-28 1980-07-07 Nissan Motor Co Ltd Manufacture of clutch hub by sintered iron alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541299B2 (en) * 1975-01-21 1980-10-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4875433A (en) * 1972-01-13 1973-10-11
JPS5541299A (en) * 1978-09-15 1980-03-24 Sundpacma Ab Assembling device of corrugated cardboard box
JPS5589406A (en) * 1978-12-28 1980-07-07 Nissan Motor Co Ltd Manufacture of clutch hub by sintered iron alloy

Also Published As

Publication number Publication date
JPS59113103A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
USRE29881E (en) Method of vacuum carburizing
JPS5578524A (en) Manufacture of semiconductor device
JPS63148088A (en) Continuous type vacuum heat treating furnace
JPH059481B2 (en)
JPS63183103A (en) Sintering method for injection molding
JPH01131063A (en) Production of silicon nitride molded product
CN204298449U (en) Increase the soft nitriding furnace system of gas area coverage
US2235947A (en) Process for the gaseous cementation of steel pieces
CN110919007A (en) Manufacturing process of 17-4PH stainless steel MIM part
US2565360A (en) Method for nitriding
JP3226912U (en) Industrial furnace
JP2753647B2 (en) Gas nitrocarburizing method
JP2008247621A (en) Continuous atmospheric high temperature furnace equipment, continuous manufacturing method of nano-carbon and burning and graphitizing method of nano-material
Swartz Jr et al. The reactions of nitric oxide with nickel films as studied by X-ray photoelectron spectroscopy
JPS6244505A (en) Manufacture of iron sintered parts
JP3225553U (en) Heat treatment equipment
KR20140005009A (en) Pressure nitriding heat treatment process
JP2002340482A (en) Method of removing and utilizing organic exhaust gas in sintering furnace
CN114107883B (en) Local ion nitriding method for inner cavity of precipitation hardening stainless steel annular part
JPS63255355A (en) Modifying method by mixed gas penetration
CN113846284B (en) Ion nitriding process for 25Cr2Ni3Mo material
CN115821209A (en) Device for efficiently preparing refractory metal coating on inner surface and outer surface of thrust chamber body of engine
JP2003166016A (en) Vacuum carburization apparatus
JP2002256411A (en) Carburizing method
JP2008069410A (en) Sintered stainless steel and its producing method