JPH0593932A - Production of wavelength conversion element - Google Patents

Production of wavelength conversion element

Info

Publication number
JPH0593932A
JPH0593932A JP3255165A JP25516591A JPH0593932A JP H0593932 A JPH0593932 A JP H0593932A JP 3255165 A JP3255165 A JP 3255165A JP 25516591 A JP25516591 A JP 25516591A JP H0593932 A JPH0593932 A JP H0593932A
Authority
JP
Japan
Prior art keywords
proton exchange
layer
substrate
layers
polarization inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3255165A
Other languages
Japanese (ja)
Other versions
JP2921209B2 (en
Inventor
Kiminori Mizuuchi
公典 水内
Kazuhisa Yamamoto
和久 山本
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3255165A priority Critical patent/JP2921209B2/en
Publication of JPH0593932A publication Critical patent/JPH0593932A/en
Application granted granted Critical
Publication of JP2921209B2 publication Critical patent/JP2921209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the lateral spread of the polarization inversion layer formed within proton exchange layers and to allow the formation of the polarization inversion layers in a short period by forming the periodic proton exchange layers on an LiTaO3 crystal and heat treating these layers to form the polarization inversion layers. CONSTITUTION:After the periodic proton exchange layer are formed on the LiTaO3 crystal 1, striped metallic films 10 are loaded on the proton exchange layers 3 and are subjected to the high-speed heating treatment by an IR heating device, by which the polarization inversion layers 4 are formed. Since the LiTaO3 substrate 1 hardly absorbs IR rays, only the metallic films 10 absorb IR rays to rapidly increase the temp. of the proton exchange layer 3 parts right under the metallic films. The heat treatment is rapidly completed by increasing the heating up speed, by which the diffusion of the proton exchange layers 3 is prevented. Since the proton exchange layers 3 are partially heated, the lateral diffusion of the proton exchange layers 3 is suppressed and the polarization inversion layers 4 of the short period are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒーレント光源を応
用した、光情報処理、光応用計測制御分野に使用される
波長変換素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a wavelength conversion element using a coherent light source and used in the fields of optical information processing and optical measurement control.

【0002】[0002]

【従来の技術】誘電体の分極を強制的に反転させる分極
反転は誘電体に周期的な分極反転層を形成することによ
り表面弾性波を利用した光周波数変調器や非線形分極の
分極反転を利用した波長変換素子などに利用される。特
に非線形光学物質の非線形分極を周期的に反転すること
が可能になれば非常に変換効率の高い第二高調波発生素
子を作製することができる。これによって半導体レーザ
などの光を変換すると小型の短波長光源が実現でき、印
刷、光情報処理、光応用計測制御分野などに応用できる
ため盛んに研究が行われている。
2. Description of the Related Art Polarization reversal for forcibly reversing the polarization of a dielectric material uses an optical frequency modulator utilizing surface acoustic waves or polarization reversal of nonlinear polarization by forming a periodic polarization inversion layer in the dielectric material. It is used as a wavelength conversion element. In particular, if it is possible to periodically invert the nonlinear polarization of the nonlinear optical material, it is possible to fabricate a second harmonic generation element with extremely high conversion efficiency. As a result, a compact short-wavelength light source can be realized by converting light from a semiconductor laser or the like, and the light source can be applied to the fields of printing, optical information processing, optical applied measurement control, and the like, and thus is actively researched.

【0003】図9に従来の波長変換素子の構成図を示
す。以下1.06μmの波長の基本波に対する高調波発生
(波長0.53μm)について図を用いて詳しく述べる。
(E.J.Lim, M.M.Fejer, R.L.Byer , "Second harmonicg
eneration of blue and green light in periodically-
poled planar lithiumniobate waveguides", IGW
O,1988年、参照).図9に示されるようにLiNbO 3基板
21に光導波路22が形成され、さらに光導波路2には
周期的に分極の反転した層23(分極反転層)が形成さ
れている。基本波と発生する高調波の伝搬定数の不整合
を分極反転層23の周期構造で補償することにより高効
率に高調波を出すことができる。光導波路22の入射面
24に基本波P1を入射すると、光導波路22から高調
波P2が効率良く発生され、光波長変換素子として動作
する。 このような従来の波長変換素子は分極反転構造
を基本構成要素としていた。この素子の分極反転層の製
造方法について図8を用いて説明する。
FIG. 9 shows a block diagram of a conventional wavelength conversion element.
You Harmonic generation for the fundamental wave with a wavelength of 1.06 μm or less
(Wavelength 0.53 μm) will be described in detail with reference to the drawings.
(E.J.Lim, M.M.Fejer, R.L.Byer, "Second harmonicg
eneration of blue and green light in periodically-
poled planar lithium niobate waveguides ", IGW
O, 1988, see). As shown in Fig. 9, LiNbO 3substrate
An optical waveguide 22 is formed on the optical waveguide 21, and further on the optical waveguide 2.
A layer 23 (polarization inversion layer) whose polarization is periodically inverted is formed.
Has been. Mismatch of propagation constants of fundamental wave and generated harmonics
Is compensated by the periodic structure of the domain inversion layer 23, the high efficiency
You can put out harmonics in the rate. Incident surface of optical waveguide 22
When the fundamental wave P1 is incident on the optical waveguide 24, the harmonics are emitted from the optical waveguide 22.
Wave P2 is efficiently generated and operates as an optical wavelength conversion element
To do. Such a conventional wavelength conversion element has a polarization inversion structure.
Was the basic component. The polarization inversion layer of this device
The manufacturing method will be described with reference to FIG.

【0004】同図(a)で非線形光学結晶であるLiN
bO3基板100にTi101のパターンをリフトオフ
と蒸着により幅数μmの周期で形成していた。次に同図
(b)で1100℃程度の温度で熱処理を行いLiNbO3
板1と分極が反対向きに反転した分極反転層102を形
成した。次に同図(c)で安息香酸(200℃)中で3
0分熱処理を行った後350℃でアニールを行い光導波
路103を形成する。上記安息香酸処理により作製され
る光波長変換素子は波長1.06μmの基本波P1に対し
て、光導波路の長さを1mm、基本波P1のパワーを1
mWにしたとき高調波P2のパワー0.5nWが得られ
ていた。基本波が40mW入射したとすると800nW
の高調波出力が可能である。この場合1cmの素子での
1W当りの変換効率は5%/W・cmである。
In FIG. 1A, the nonlinear optical crystal LiN is used.
A pattern of Ti101 was formed on the bO 3 substrate 100 by lift-off and vapor deposition with a period of several μm in width. Next, in FIG. 3B, heat treatment was performed at a temperature of about 1100 ° C. to form a polarization inversion layer 102 in which the polarization was inverted in the opposite direction to the LiNbO 3 substrate 1. Next, in Fig. 3 (c), 3 in benzoic acid (200 ° C) was used.
After heat treatment for 0 minutes, annealing is performed at 350 ° C. to form the optical waveguide 103. The optical wavelength conversion element manufactured by the benzoic acid treatment has a length of the optical waveguide of 1 mm and a power of the fundamental wave P1 of 1 with respect to the fundamental wave P1 having a wavelength of 1.06 μm.
When the power was set to mW, the power of the harmonic P2 was 0.5 nW. If the fundamental wave enters 40 mW, 800 nW
It is possible to output higher harmonics. In this case, the conversion efficiency per 1 W in a 1 cm element is 5% / W · cm.

【0005】[0005]

【発明が解決しようとする課題】上記のような分極反転
層の製造方法では分極反転層は深さ方向と同時に横方向
にも広がる。そのためマスクパターンの間隔に対し、分
極反転層の深さを深くし過ぎると、熱処理時に分極反転
層が横方向につながり、周期的な分極反転層が形成でき
ないという問題があった。このため分極反転層と光導波
路とのオーバラップが小さくなり、高い変換効率の波長
変換素子が形成できないという問題がある。具体的に
は、波長1.06μmの波長変換を行うため、周期6μ
mの分極反転層を形成しようとすると、分極反転層は
0.8μm以下となり光導波路の深さ1.5μmに対し
浅い反転層しかできない。このため1cmの素子での1
W当りの変換効率は5%/W・cm2と低かった。
In the method of manufacturing the domain inversion layer as described above, the domain inversion layer spreads not only in the depth direction but also in the lateral direction. Therefore, if the depth of the domain-inverted layer is made too deep with respect to the distance between the mask patterns, the domain-inverted layer is laterally connected during the heat treatment, and there is a problem that a periodic domain-inverted layer cannot be formed. Therefore, the overlap between the domain inversion layer and the optical waveguide becomes small, and there is a problem that a wavelength conversion element with high conversion efficiency cannot be formed. Specifically, since the wavelength conversion of 1.06 μm is performed, the cycle is 6 μm.
If an attempt is made to form a domain-inverted layer of m, the domain-inverted layer becomes 0.8 μm or less, and only a shallow inversion layer can be formed with respect to the optical waveguide depth of 1.5 μm. For this reason, 1 for a 1 cm element
The conversion efficiency per W was as low as 5% / W · cm 2 .

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題点を
解決するため、プロトン交換と熱処理を基本とした分極
反転層形成方法に新たな工夫を加えることにより反転層
の横方法の拡散を制御し深い分極反転層をもつ波長変換
素子を提供するものである。つまり、C板(結晶のC軸
に垂直な面で切り出した基板)のLiNb(1-X)Ta
(X-1)3(0≦X≦1)基板の表面にストライプ状のプ
ロトン交換層を形成する工程と、前記プロトン交換層上
にストライプ状の金属膜を形成する工程と、前記LiN
(1-X)Ta(X-1)3(0≦X≦1)基板を加熱手段に
よって熱処理し分極反転層を形成する工程とを備えたも
のである。
The present invention solves the above problems.
To solve, polarization based on proton exchange and heat treatment
The inversion layer can be created by adding new ideas to the inversion layer formation method.
Conversion with a deep polarization inversion layer controlling the lateral diffusion of light
An element is provided. In other words, C plate (C axis of crystal
Of the substrate cut out on a plane perpendicular to(1-X)Ta
(X-1)O3(0 ≦ X ≦ 1) A stripe-shaped pattern is formed on the surface of the substrate.
A step of forming a roton exchange layer, and
Forming a striped metal film on the
b (1-X)Ta(X-1)O3(0 ≦ X ≦ 1) Substrate as heating means
Therefore, the method includes a step of performing heat treatment to form a domain inversion layer.
Of.

【0007】また本発明は高効率の波長変換素子を作製
するためにC板(結晶のC軸に垂直な面で切り出した基
板)のLiNb(1-X)Ta(X-1)3(0≦X≦1)基板
の表面にストライプ状のプロトン交換層を形成する工程
と、前記プロトン交換層上にストライプ状の金属膜を形
成する工程と、前記LiNb(1-X)Ta(X-1)3(0≦
X≦1)基板を加熱手段によって熱処理し分極反転層を
形成する工程と前記LiNb(1-X)Ta(X-1)3(0≦
X≦1)基板上に光導波路を形成する工程とを備えたも
のである。
Further, in the present invention, in order to manufacture a highly efficient wavelength conversion element, LiNb (1-X) Ta (X-1) O 3 (of a C plate (a substrate cut out in a plane perpendicular to the C axis of the crystal )) 0 ≦ X ≦ 1) a step of forming a stripe-shaped proton exchange layer on the surface of the substrate, a step of forming a stripe-shaped metal film on the proton exchange layer, and the above LiNb (1-X) Ta (X- 1) O 3 (0 ≦
X ≦ 1) a step of heat-treating the substrate by a heating means to form a domain inversion layer and the LiNb (1-X) Ta (X-1) O 3 (0 ≦
X ≦ 1) a step of forming an optical waveguide on the substrate.

【0008】[0008]

【作用】本発明は前述した方法により、LiTaO3結晶に周
期的なプロトン交換を形成した後、プロトン交換層上に
金属膜を装荷し、これを赤外線加熱装置で高速加熱処理
することにより、プロトン交換部分のみ高速で短時間に
熱処理を行い、従来実現していなかった短周期でかつ深
い分極反転層の形成を可能にしすることができる。そし
て、この分極反転層を用いて波長変換素子を作製するこ
とにより短波長変換が可能でかつ高効率な波長変換素子
を製造することができる。
According to the present invention, after the periodic proton exchange is formed in the LiTaO 3 crystal by the above-mentioned method, a metal film is loaded on the proton exchange layer, and this is subjected to high-speed heat treatment by an infrared heating device to obtain a proton. By performing heat treatment only on the exchanged portion at high speed in a short time, it is possible to form a deep domain inversion layer with a short period which has not been realized conventionally. Then, by manufacturing a wavelength conversion element using this polarization inversion layer, it is possible to manufacture a wavelength conversion element capable of converting a short wavelength and having high efficiency.

【0009】以下にその理由を述べる。LiTaO3結晶にお
ける分極反転層の形成はプロトン交換層を形成し、これ
を熱処理することにより作製する。これはプロトン交換
を行うと、プロトン交換LiTaO3が形成され、この部分の
キュリー点が低下する。これをLiTaO3結晶のキュリー点
以下かつプロトン交換LiTaO3のキュリー点以上で熱処理
するとプロトン交換LiTaO3がキュリー点に達する。この
とき焦電効果で発生した電界が基板全体にかかっている
ためプロトン交換部分の分極が反転する。しかしプロト
ン交換層は、熱拡散によって広がっていくため加熱処理
の昇温、加熱時にプロトン交換層の拡散が発生し、周期
の短い分極反転層では反転層どうしが横方向につながっ
てしまい、周期構造が形成されなかった。
The reason will be described below. The polarization inversion layer in the LiTaO 3 crystal is formed by forming a proton exchange layer and heat-treating it. When proton exchange is performed, proton exchange LiTaO 3 is formed, and the Curie point of this portion is lowered. This Heat treatment at LiTaO 3 below the Curie point of the crystals and above the Curie point of the proton exchange LiTaO 3 proton exchange LiTaO 3 reaches the Curie point. At this time, since the electric field generated by the pyroelectric effect is applied to the entire substrate, the polarization of the proton exchange part is reversed. However, since the proton exchange layer spreads due to thermal diffusion, the proton exchange layer is diffused during heating and heating, and in the domain-inverted layer with a short cycle, the inversion layers are connected laterally and the periodic structure Was not formed.

【0010】そこでプロトン交換層上に金属膜を装荷し
これを赤外線加熱装置によって加熱すると、LiTaO3基板
は赤外線をほとんど吸収しないめ、金属膜のみが赤外線
を吸収し金属膜直下のプロトン交換層部分の温度を急激
に上昇させる。昇温速度を上げることにより短時間で熱
処理を完了し、プロトン交換層の拡散を防止できる。ま
たプロトン交換層が部分的に加熱されるため、プロトン
交換層の横方向の拡散が抑制され、短周期の分極反転層
の形成が可能になった。
Therefore, when a metal film is loaded on the proton exchange layer and heated by an infrared heating device, the LiTaO 3 substrate hardly absorbs infrared rays, and only the metal film absorbs infrared rays, and the proton exchange layer portion directly below the metal film is absorbed. The temperature rises rapidly. By increasing the heating rate, the heat treatment can be completed in a short time, and the diffusion of the proton exchange layer can be prevented. Further, since the proton exchange layer is partially heated, lateral diffusion of the proton exchange layer is suppressed, and it becomes possible to form a domain-inverted layer with a short period.

【0011】[0011]

【実施例】図1に波長変換素子の構成図を示す。1はC
板の−C表面のLiTaO3基板、4は分極反転層、5はプロ
トン交換導波路、6は波長800nmの基本波、7は波
長400nmの第二高調波である。図1において4の分
極反転層とは、基板の分極反転に対し、分極の方向が逆
転している部分で1のLiTaO3基板の場合、分極の方向は
+C方向で、分極反転層の分極の方向は−C方向であ
る。この分極反転層の周期は基本波の波長、導波路の屈
折率で異なるが基本波の波長が800nmのとき1次の
周期が約3.5μm、3次で約10.5μmである(分
極反転の周期は1次の周期の奇数次倍になる。分極反転
において位相整合条件が成立し波長変換が行われるの
は、周期がこの奇数次の周期に一致したときのみであ
る。但し、次数が増加するに従い変換効率はその次数の
2乗分の1に低下する)。
EXAMPLE FIG. 1 shows a block diagram of a wavelength conversion element. 1 is C
A LiTaO 3 substrate on the −C surface of the plate, 4 is a polarization inversion layer, 5 is a proton exchange waveguide, 6 is a fundamental wave having a wavelength of 800 nm, and 7 is a second harmonic wave having a wavelength of 400 nm. In FIG. 1, the polarization inversion layer 4 is a portion in which the polarization direction is reversed with respect to the polarization inversion of the substrate. In the case of the LiTaO 3 substrate 1 in which the polarization direction is + C, the polarization inversion layer The direction is the -C direction. The period of the polarization inversion layer differs depending on the wavelength of the fundamental wave and the refractive index of the waveguide, but when the wavelength of the fundamental wave is 800 nm, the first-order period is about 3.5 μm and the third-order period is about 10.5 μm (polarization inversion). The period of is an odd multiple of the first-order period.The phase matching condition is satisfied in polarization reversal and wavelength conversion is performed only when the period matches the odd-order period. As it increases, the conversion efficiency decreases to the square of its order).

【0012】ここで図2では分極反転していない素子
と、1次周期の分極反転素子と3次周期の分極反転素子
の第二高調波の出力を表す。図に示すとおり、1次の周
期とは基本波(波長λ)の実効屈折率をNω、高調波
(波長λ/2)の実効屈折率をN2ωとしたとき、1次
の周期ΛはΛ=λ/(2(N2ω−N2ω))で表され、
3次の周期とは1次の周期Λの3倍の周期で表される。
実効屈折率とは光が実際に感じる屈折率である。周期の
次数が小さいほど出力は高いことが分かる。
FIG. 2 shows the outputs of the second harmonics of the non-polarized element, the first-order poled element and the third-order poled element. As shown in the figure, when the effective refractive index of the fundamental wave (wavelength λ) is Nω and the effective refractive index of the harmonic wave (wavelength λ / 2) is N2ω, the primary period Λ is Λ = λ / (2 (N2ω-N2ω)),
The third-order cycle is represented by a cycle three times as long as the first-order cycle Λ.
The effective refractive index is the refractive index that light actually feels. It can be seen that the smaller the order of the cycle, the higher the output.

【0013】図1に示す波長変換素子において、光導波
路導波路に入射された基本波は分極反転層において第二
高調波に変換され、波長800nmの基本波を入射する
と波長400nmの青色の第二高調波を発生することが
できる。このとき反転周期は変換効率に影響し、3次の
分極反転層の効率は1次の分極反転層の効率の約1/9
になる。
In the wavelength conversion element shown in FIG. 1, the fundamental wave incident on the optical waveguide is converted into the second harmonic in the polarization inversion layer, and when the fundamental wave having the wavelength of 800 nm is incident, the second blue wave having the wavelength of 400 nm is emitted. Harmonics can be generated. At this time, the inversion period affects the conversion efficiency, and the efficiency of the third-order polarization inversion layer is about 1/9 of the efficiency of the first-order polarization inversion layer.
become.

【0014】図3は、第1の実施例における波長変換素
子製造方法の工程図を示すもので分極反転層の形成方法
である。図3において、1はC板のLiTaO3基板、2はT
a膜、3プロトン交換層、4は分極反転層、8はマスク
の幅W、9は周期Λ、10はTa膜である。ただし、分
極反転処理とは、LiTaO3結晶をキュリー温度近くまで温
度を上げて、一定方向にそろっている結晶の分極を部分
的に反転させる処理である。波長変換素子製造方法につ
いて、以下その製造方法を説明する。(a)−C板のLi
TaO3基板1上にスパッタリング法によりTa膜2を300A形
成する。(b)Ta膜上にフォトレジストを塗布した後、
通常のフォトリソグラフィ法により周期Λごとに幅Wの
ストライプを10mmに渡って基板のY伝搬方向に形成
する(周期Λは1〜50μm、WはΛ/2とした)。
(c)CF4雰囲気中でドライエッチングでTaマスク
にレジストのパターンを転写する。(d)260℃のピ
ロ燐酸中で20分間熱処理しプロトン交換層を形成す
る。(e)プロトン交換層上にTa膜10を300A堆
積する。(f)Ta膜上にフォトレジストを塗布した
後、通常のフォトリソグラフィ法とドライエッチングに
よりプロトン交換層以外のTa膜を除去する。(g)赤
外線加熱装置によりLiTaO3基板を加熱した。赤外
線加熱装置とは赤外線ランプによって試料を加熱する装
置で高速の昇温速度を実現できる。また広い範囲で温度
上昇を制御できる加熱装置である。このとき昇温速度を
0.1〜100℃/秒の間で変えて加熱した。サンプルはプロ
トン交換層上にTa膜を装荷したものと装荷しないもの
で比較した。また熱処理の温度は550℃及び570℃
であった。なお用いたLiTaO3基板のキュリー温度は60
4℃であった。
FIG. 3 is a process chart of the method of manufacturing the wavelength conversion element according to the first embodiment, which is a method of forming the polarization inversion layer. In FIG. 3, 1 is a Li-TaO 3 substrate of C plate, 2 is T
a film, 3 proton exchange layer, 4 domain inversion layer, 8 mask width W, 9 period Λ, and 10 Ta film. However, the polarization reversal process is a process in which the temperature of the LiTaO 3 crystal is raised to near the Curie temperature and the polarization of the crystal aligned in a certain direction is partially reversed. The method of manufacturing the wavelength conversion element will be described below. (A) -C plate Li
A Ta film 2 of 300 A is formed on the TaO 3 substrate 1 by the sputtering method. (B) After applying a photoresist on the Ta film,
A stripe having a width W is formed for every 10 mm in the Y propagation direction of the substrate by a normal photolithography method (the period Λ is 1 to 50 μm, and W is Λ / 2).
(C) The resist pattern is transferred to the Ta mask by dry etching in a CF 4 atmosphere. (D) Heat treatment is performed in pyrophosphoric acid at 260 ° C. for 20 minutes to form a proton exchange layer. (E) Deposit 300 A of Ta film 10 on the proton exchange layer. (F) After applying a photoresist on the Ta film, the Ta film other than the proton exchange layer is removed by a normal photolithography method and dry etching. (G) The LiTaO 3 substrate was heated by an infrared heating device. The infrared heating device is a device that heats a sample with an infrared lamp and can realize a high temperature rising rate. The heating device can control the temperature rise in a wide range. At this time,
The temperature was changed between 0.1 and 100 ° C./sec and the heating was performed. The samples were compared with those in which the Ta membrane was loaded on the proton exchange layer and those not loaded. The heat treatment temperature is 550 ° C and 570 ° C.
Met. The Curie temperature of the LiTaO 3 substrate used was 60.
It was 4 ° C.

【0015】先ず第一に、0.1℃/秒の昇温速度で分極
反転層を形成し、分極反転層を形成したところ、分極反
転層は周期は30μm以上のものしか形成されなかっ
た。これは分極反転層が形成される温度はLiTaO3基板の
キュリー温度近傍で約450℃〜600℃であるが昇温
速度が遅いとこの温度に達する前にプロトン交換層が熱
拡散で広がってしまい、周期的に形成したプロトン交換
層が横方向につながったためである。図4にその様子を
示す。1はLiTaO3基板、4は分極反転層である。
図4(a)は周期的分極反転層が形成された場合、図4
(b)は横方向に反転層がつながった場合を示す。図5
には昇温速度と形成可能な最小分極反転周期の関係を求
めた。昇温速度を上げるに従い形成可能な分極反転周期
は減少した、さらにプロトン交換層上に金属膜を装荷す
ることにより、形成可能な分極反転層周期が減少した。
First, when the domain-inverted layer was formed by forming the domain-inverted layer at a temperature rising rate of 0.1 ° C./sec, only the domain-inverted layer having a period of 30 μm or more was formed. This is because the temperature at which the domain-inverted layer is formed is about 450 ° C to 600 ° C near the Curie temperature of the LiTaO 3 substrate, but if the heating rate is slow, the proton exchange layer spreads by thermal diffusion before reaching this temperature. This is because the proton exchange layers formed periodically are connected in the lateral direction. This is shown in FIG. Reference numeral 1 is a LiTaO 3 substrate, and 4 is a domain inversion layer.
FIG. 4A shows a case where a periodic domain inversion layer is formed.
(B) shows the case where the inversion layer is connected in the lateral direction. Figure 5
The relationship between the temperature rising rate and the minimum polarization inversion period that can be formed was obtained. The formable polarization inversion period decreased as the heating rate was increased, and by forming a metal film on the proton exchange layer, the formable polarization inversion period decreased.

【0016】また、図6に分極反転層の幅と深さの関係
を示す。幅2μmにおいて、形成可能な反転層の深さは
0.1℃/秒の昇温速度では0μm、100℃/秒の温
度上昇ではTa膜10が無い場合で1.7μm、Ta膜
10を付けることで2.5μmまで増加した。これはプ
ロトン交換層上に金属膜を装荷し、これを赤外線加熱で
加熱することにより昇温速度を上げ、熱処理時に拡散す
るプロトン交換層の広がりを低減できる。また金属膜は
赤外線吸収係数が基板に比べ桁違いに大きいため赤外線
加熱によって部分的に急速に加熱される。従ってその直
下のプロトン交換層が部分的に加熱されるため、分極反
転層の横方向の広がりがさらに抑圧される。その結果プ
ロトン交換層内に形成される分極反転層の横方法の広が
りを防止し、より深い反転層が形成できる。これによっ
て短周期の分極反転層の形成が可能になった。
FIG. 6 shows the relationship between the width and depth of the domain inversion layer. With a width of 2 μm, the inversion layer that can be formed has a depth of 0 μm at a temperature rising rate of 0.1 ° C./sec, 1.7 μm at a temperature increase of 100 ° C./sec without the Ta film 10, and the Ta film 10 is attached. It increased to 2.5 μm. In this method, a metal film is loaded on the proton exchange layer, and this is heated by infrared heating to increase the temperature rising rate and reduce the spread of the proton exchange layer diffused during the heat treatment. Further, since the infrared absorption coefficient of the metal film is significantly higher than that of the substrate, the metal film is partially and rapidly heated by infrared heating. Therefore, since the proton exchange layer immediately below it is partially heated, the lateral extension of the polarization inversion layer is further suppressed. As a result, it is possible to prevent the lateral inversion of the domain-inverted layer formed in the proton exchange layer from spreading and form a deeper inversion layer. This made it possible to form a domain-inverted layer with a short period.

【0017】一方、短波長光源として、現在コンパクト
ディスクや光メモリなどに要望されているのは波長48
0nm以下の青色の光であり、青色光が発生可能な波長
変換素子を形成することは特に重要である。また波長変
換素子の変換効率を考慮すると、このような青色光の波
長変換の変換効率は5次以上の分極反転周期の素子を作
製しても変換効率は非常に低いものになり、実用には不
十分である。
On the other hand, as a short-wavelength light source, what is currently required for compact discs, optical memories, etc. is a wavelength of 48.
It is particularly important to form a wavelength conversion element that emits blue light having a wavelength of 0 nm or less and that can generate blue light. Considering the conversion efficiency of the wavelength conversion element, the conversion efficiency of the wavelength conversion of blue light is very low even if an element having a polarization inversion period of the fifth order or more is manufactured, and is not practically used. Is insufficient.

【0018】そこで変換効率の高い分極反転層による波
長変換素子が必となる。このような短波長の光源が実現
可能な分極反転周期は3次の分極反転周期で12μm以
下、1次の分極反転周期で4μm以下である。図5の昇
温速度と形成可能な最小分極反転周期の関係より必要な
加熱処理時の昇温速度を求めると、3次の分極反転層で
0.8℃/秒以上、1次の分極反転で15℃/秒以上の
速度が必要である。以上の結果、高出力、高効率の波長
変換素子を作製するには0.8℃/秒以上の昇温速度で
加熱する必要がある。
Therefore, a wavelength conversion element having a polarization inversion layer having high conversion efficiency is necessary. The polarization inversion period that can be realized by such a short-wavelength light source is 12 μm or less in the third-order polarization inversion period and 4 μm or less in the first-order polarization inversion period. From the relationship between the rate of temperature rise in FIG. 5 and the minimum polarization inversion period that can be formed, the required rate of temperature rise during the heat treatment is found to be 0.8 ° C./sec or more in the third order domain inversion layer Therefore, a speed of 15 ° C./sec or more is required. As a result, it is necessary to heat at a temperature rising rate of 0.8 ° C./sec or more in order to manufacture a wavelength converter with high output and high efficiency.

【0019】次に以上の方法で作製した分極反転層上に
プロトン交換導波路を形成し波長変換素子を作製して特
性評価を行った。プロトン交換導波路の作製方法を図7
に示す。図7において1はC板のLiTaO3基板、4は分極
反転、11はTaマスク、12はプロトン交換導波路で
ある。作製方法は層昇温速度50℃/秒で分極反転処理
した周期4μm(1次の分極反転層)を形成した後、
(a)分極反転形成のためのTa膜10を除去すした
後、基板表面にTa膜をスパッタリング法により340
A成膜する。(b)フォト・ドライエッチングによりマ
スクパターンをけいせいする。(c)260℃のピロ燐
酸中で10分間熱処理するとプロトン交換光導波路が形
成される。(d)Taマスクを酸により除去し、導波路
の両端面を光学研磨し波長変換素子を形成した。波長8
00nm、出力40mWの半導体レーザの光6を集光光
学系により集光し作製した波長変換素子に入射した。導
波路より、出射される基本波及び第二高調波をレンズで
コリメートしパワーメータで測定した。その結果、7の
波長400nmの第二高調波の出力は3.2mWであ
り、このときの変換効率は20%/100mW・cm2
という非常に高効率の波長変換が行われた。これは金属
装荷なしに形成した分極反転層による波長変換素子の変
換効率(12.5%)の1.6倍である。さらに基本光
のパワーを増大させて200mWまで導波させたが光損
傷による変動は観測されなかった。以上の結果安定で高
効率な波長変換素子が作製できた。
Next, a proton exchange waveguide was formed on the domain-inverted layer produced by the above method to produce a wavelength conversion element, and its characteristics were evaluated. FIG. 7 shows a method for manufacturing a proton exchange waveguide.
Shown in. In FIG. 7, 1 is a C-plate LiTaO 3 substrate, 4 is a polarization inversion, 11 is a Ta mask, and 12 is a proton exchange waveguide. The manufacturing method is as follows. After forming a domain-inverted period of 4 μm (first-order domain-inverted layer) at a layer heating rate of 50 ° C./second,
(A) After removing the Ta film 10 for forming the polarization inversion, the Ta film is sputtered on the surface of the substrate by 340
A film is formed. (B) The mask pattern is formed by photo dry etching. (C) Proton exchange optical waveguide is formed by heat treatment in pyrophosphoric acid at 260 ° C. for 10 minutes. (D) The Ta mask was removed with an acid, and both end faces of the waveguide were optically polished to form a wavelength conversion element. Wavelength 8
Light 6 of a semiconductor laser having a wavelength of 00 nm and an output of 40 mW was condensed by a condensing optical system and made incident on a wavelength conversion element produced. The fundamental wave and the second harmonic wave emitted from the waveguide were collimated with a lens and measured with a power meter. As a result, the output of the second harmonic of wavelength 400 nm of 7 is 3.2 mW, and the conversion efficiency at this time is 20% / 100 mW · cm 2.
That is a very high efficiency wavelength conversion. This is 1.6 times the conversion efficiency (12.5%) of the wavelength conversion element using the polarization inversion layer formed without metal loading. Further, the power of the fundamental light was increased and guided to 200 mW, but no fluctuation due to optical damage was observed. As a result, a stable and highly efficient wavelength conversion element could be manufactured.

【0020】なお、本実施例では分極反転層の作製方向
をY伝搬方向としたがX伝搬方向でも同様な素子が作製
できる。
In this embodiment, the direction of fabrication of the domain inversion layer is the Y propagation direction, but the same element can be fabricated in the X propagation direction.

【0021】なお、本実施例では基板にLiTaO3基板を用
いたが他にLiNbO3またはMgO、Nb、NdなどをドープしたL
iTaO3またはLiNbO3基板でも同様な素子が作製できる。
In this example, a LiTaO 3 substrate was used as the substrate, but LN doped with LiNbO 3 or MgO, Nb, Nd, etc. was also used.
Similar devices can be fabricated on iTaO 3 or LiNbO 3 substrates.

【0022】なお、本実施例では加熱装置として赤外線
加熱装置を用いたが、他にフラッシュランプ加熱装置、
CO2レーザ加熱装置など昇温速度の高い加熱装置でも
同様な素子が作製できる。
Although an infrared heating device is used as the heating device in this embodiment, a flash lamp heating device,
A similar element can be manufactured by a heating device having a high temperature rising rate such as a CO2 laser heating device.

【0023】なお、本実施例では、イオン交換にピロ燐
酸を用いたが、他にオルト燐酸、安息香酸、硫酸、など
も用いることができる。
In this embodiment, pyrophosphoric acid is used for ion exchange, but orthophosphoric acid, benzoic acid, sulfuric acid, etc. can also be used.

【0024】なお、本実施例では耐イオン化のマスクと
して、Ta膜を用いたが、他にTa2O 5、Pt、Auなど耐酸
性を有する膜なら用いることができる。
In this embodiment, an ionization resistant mask is used.
Then, the Ta film was used, but2O FiveAcid resistance such as Pt, Au, etc.
Any film having a property can be used.

【0025】なお、本実施例では金属層荷膜として、T
a膜を用いたが、他にTi、Pt、Auなど耐熱性を有する膜
なら用いることができる。
In this embodiment, as the metal layer loading film, T
Although the film a is used, any other film having heat resistance such as Ti, Pt, or Au can be used.

【0026】なお、本実施例では光導波路としてプロト
ン交換導波路を用いたが、他にTi拡散導波路、Nb拡
散導波路、イオン注入導波路など他の光導波路も用いる
ことができる。
Although the proton exchange waveguide is used as the optical waveguide in the present embodiment, other optical waveguides such as Ti diffusion waveguide, Nb diffusion waveguide and ion implantation waveguide can also be used.

【0027】[0027]

【発明の効果】以上説明したように、LiTaO3結晶に周期
的なプロトン交換層を形成し、これを熱処理して分極反
転層を形成するときに、プロトン交換層上に金属膜を装
荷することにより温度上昇速度を上げることにができ分
極反転処理温度に達するまでのプロトン交換層の拡散を
防ぎ、プロトン交換層内に形成される分極反転の横広が
りを防止することができた。またプロトン交換層を部分
的に熱処理することにより反転層の横方向の広がりをさ
らに抑圧し、その結果非常に短周期で深い分極反転層の
形成が可能になり、その実用効果は大きい。
As described above, when a periodic proton exchange layer is formed on a LiTaO 3 crystal and heat treated to form a domain inversion layer, a metal film is loaded on the proton exchange layer. As a result, it was possible to increase the temperature rising rate, prevent the diffusion of the proton exchange layer until reaching the polarization inversion treatment temperature, and prevent the lateral spread of the polarization inversion formed in the proton exchange layer. Further, by partially heat-treating the proton exchange layer, the lateral extension of the inversion layer is further suppressed, and as a result, it becomes possible to form a deep domain inversion layer with a very short period, which has a large practical effect.

【0028】また、この反転層を用いて分極反転型の波
長変換素子を形成すると、深い反転層によって高効率の
反転層が形成でき、その実用効果は大きい。
When a polarization inversion type wavelength conversion element is formed by using this inversion layer, a highly efficient inversion layer can be formed by a deep inversion layer, and its practical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の波長変換素子の構成斜視図FIG. 1 is a perspective view showing the configuration of a wavelength conversion element according to an embodiment of the present invention.

【図2】波長変換素子長と第二高調波出力の関係を示す
FIG. 2 is a diagram showing the relationship between the wavelength conversion element length and the second harmonic output.

【図3】分極反転層の製造方法の工程断面図FIG. 3 is a process cross-sectional view of a method of manufacturing a polarization inversion layer.

【図4】分極反転層の横広がりを示す断面図FIG. 4 is a cross-sectional view showing the lateral spread of the polarization inversion layer.

【図5】熱処理時の昇温速度と作製可能な分極反転周期
の関係を示す図
FIG. 5 is a diagram showing the relationship between the rate of temperature rise during heat treatment and the manufacturable polarization inversion period.

【図6】分極反転層の幅と深さの関係を示す図FIG. 6 is a diagram showing the relationship between the width and the depth of the domain inversion layer.

【図7】波長変換素子の導波路の製造方法のを示す工程
斜視図
FIG. 7 is a process perspective view showing a method of manufacturing a waveguide of a wavelength conversion element.

【図8】従来の波長変換素子の製造方法を示す工程断面
FIG. 8 is a process sectional view showing a method of manufacturing a conventional wavelength conversion element.

【図9】従来の波長変換素子の構造斜視図FIG. 9 is a structural perspective view of a conventional wavelength conversion element.

【符号の説明】[Explanation of symbols]

1 LiTaO3基板 2 Ta膜 3 プロトン交換層 4 分極反転層 5 プロトン交換導波路 6 基本波 7 第二高調波 8 マスク幅W 9 周期Λ 10 Ta膜 11 Taマスク 12 プロトン交換導波路 21 LiTaO3基板 22 プロトン交換導波路 23 分極反転層 24 入射部 100 LiNbO3基板 101 Tiパターン 102 分極反転層 103 光導波路1 LiTaO 3 Substrate 2 Ta Film 3 Proton Exchange Layer 4 Polarization Inversion Layer 5 Proton Exchange Waveguide 6 Fundamental Wave 7 Second Harmonic 8 Mask Width W 9 Period Λ 10 Ta Film 11 Ta Mask 12 Proton Exchange Waveguide 21 LiTaO 3 Substrate 22 Proton Exchange Waveguide 23 Polarization Inversion Layer 24 Incident Part 100 LiNbO 3 Substrate 101 Ti Pattern 102 Polarization Inversion Layer 103 Optical Waveguide

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C板(結晶のC軸に垂直な面で切り出した
基板)のLiNb(1-X )Ta(X-1)3(0≦X≦1)基
板の表面に、ストライプ状のプロトン交換層を形成する
工程と、前記プロトン交換層上にストライプ状の金属膜
を形成する工程と、前記LiNb(1-X)Ta(X-1)
3(0≦X≦1)基板を加熱手段によって熱処理し分極
反転層を形成する工程とを備えたことを特徴とする波長
変換素子の製造方法。
1. A stripe-shaped LiNb (1-X ) Ta (X-1) O 3 (0 ≦ X ≦ 1) substrate of a C plate (a substrate cut in a plane perpendicular to the C axis of the crystal). Forming a stripe-shaped metal film on the proton exchange layer; and forming the LiNb (1-X) Ta (X-1) O
3 (0 ≦ X ≦ 1) a step of heat-treating the substrate by a heating means to form a domain-inverted layer, and a method for manufacturing a wavelength conversion element.
【請求項2】C板(結晶のC軸に垂直な面で切り出した
基板)のLiNb(1-X )Ta(X-1)3(0≦X≦1)基
板の表面にストライプ状のプロトン交換層を形成する工
程と、前記プロトン交換層上にストライプ状の金属膜を
形成する工程と、前記LiNb(1-X)Ta(X-1)3(0
≦X≦1)基板を加熱手段によって熱処理し、分極反転
層を形成する工程と、前記LiNb(1-X)Ta(X-1)3
(0≦X≦1)基板上に光導波路を形成する工程とを備
えたことを特徴とする波長変換素子の製造方法。
Wherein C plate (substrate cut in a plane perpendicular to the C axis of the crystal) LiNb (1-X) Ta (X-1) O 3 (0 ≦ X ≦ 1) stripe on the surface of the substrate forming a proton exchange layer to form a stripe-shaped metallic film on the proton exchange layer, wherein the LiNb (1-X) Ta ( X-1) O 3 (0
≦ X ≦ 1) a step of heat-treating the substrate by a heating means to form a domain inversion layer, and the above LiNb (1-X) Ta (X-1) O 3
(0 ≦ X ≦ 1), and a step of forming an optical waveguide on the substrate.
【請求項3】加熱手段として赤外線加熱装置を用いる請
求項1または請求項2記載の波長変換素子の製造方法。
3. The method of manufacturing a wavelength conversion element according to claim 1, wherein an infrared heating device is used as the heating means.
【請求項4】加熱手段によって熱処理し分極反転層を形
成する工程として昇温速度Sで温度Tまで加熱する行程
と、温度Tで熱処理する行程とを有し、かつ前記昇温速
度Sの値が0.8℃/秒<Sの関係を満足し、かつ前記
熱処理温度Tが前記LiTaO3基板のキュリー温度以下であ
る加熱手段として赤外線加熱装置を用いる請求項1また
は請求項2記載の波長変換素子の製造方法。
4. A step of heating to a temperature T at a temperature rising rate S and a step of performing a heat treatment at a temperature T as a step of heat-treating by a heating means to form a domain inversion layer, and the value of the temperature rising rate S. 3. The wavelength conversion according to claim 1 or 2, wherein an infrared heating device is used as a heating means having a temperature of 0.8 ° C./sec<S and a heat treatment temperature T of not higher than the Curie temperature of the LiTaO 3 substrate. Manufacturing method of device.
JP3255165A 1991-10-02 1991-10-02 Manufacturing method of wavelength conversion element Expired - Fee Related JP2921209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255165A JP2921209B2 (en) 1991-10-02 1991-10-02 Manufacturing method of wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255165A JP2921209B2 (en) 1991-10-02 1991-10-02 Manufacturing method of wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH0593932A true JPH0593932A (en) 1993-04-16
JP2921209B2 JP2921209B2 (en) 1999-07-19

Family

ID=17274967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255165A Expired - Fee Related JP2921209B2 (en) 1991-10-02 1991-10-02 Manufacturing method of wavelength conversion element

Country Status (1)

Country Link
JP (1) JP2921209B2 (en)

Also Published As

Publication number Publication date
JP2921209B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP3460840B2 (en) Optical element, laser light source, laser device, and method for manufacturing optical element
US5036220A (en) Nonlinear optical radiation generator and method of controlling regions of ferroelectric polarization domains in solid state bodies
JP3052501B2 (en) Manufacturing method of wavelength conversion element
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
US20060044644A1 (en) High efficiency wavelength converters
US5205904A (en) Method to fabricate frequency doubler devices
JP2921209B2 (en) Manufacturing method of wavelength conversion element
US5339190A (en) Optical waveguide second harmonic generating element and method of making the same
JP2718259B2 (en) Short wavelength laser light source
JPH0566440A (en) Laser light source
JPH06347630A (en) Diffraction element and its production and optical wavelength conversion element and its production
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP2502818B2 (en) Optical wavelength conversion element
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP3616138B2 (en) Waveguide type wavelength conversion element
JPH04340525A (en) Wavelength conversion element
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JP3052654B2 (en) Optical wavelength conversion element
JPH04368921A (en) Wavelength converting element and its manufacture
JPH05216082A (en) Production of optical waveguide and production of optical wavelength conversion element
JPH04264534A (en) Production of wavelength converting element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees