JPH0593930A - Optical wavelength conversion element and production thereof - Google Patents

Optical wavelength conversion element and production thereof

Info

Publication number
JPH0593930A
JPH0593930A JP3255162A JP25516291A JPH0593930A JP H0593930 A JPH0593930 A JP H0593930A JP 3255162 A JP3255162 A JP 3255162A JP 25516291 A JP25516291 A JP 25516291A JP H0593930 A JPH0593930 A JP H0593930A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion element
optical waveguide
optical
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3255162A
Other languages
Japanese (ja)
Other versions
JP2921207B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Kiminori Mizuuchi
公典 水内
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3255162A priority Critical patent/JP2921207B2/en
Publication of JPH0593930A publication Critical patent/JPH0593930A/en
Application granted granted Critical
Publication of JP2921207B2 publication Critical patent/JP2921207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To approximate the aspect ratio of the beams emitted from optical waveguides to 1 relating to the wavelength conversion element formed by using a nonlinear optical effect and the process for production thereof. CONSTITUTION:Polarity inversion layers 3 are formed on an LiTaO3 substrate 1. The optical waveguides 2 formed by a proton exchange method are formed thereon. The thickness of the exit part 5 of the optical waveguides 2 is larger than the thickness of the optical waveguides and the aspect ratio of the beam of the higher harmonic waves P2 emitted therefrom is nearly 1. The aspect ratio of the beam emitted therefrom is approximate to 1 and the efficiency of utilizing the beam is greatly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒ−レント光を利用
する光情報処理分野、あるいは光応用計測制御分野に使
用する光波長変換素子およびその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion element used in the field of optical information processing utilizing coherent light or in the field of optical measurement and control, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図4に従来の光導波路を基本とした光波
長変換素子の構成図を示す。以下0.84μmの波長の基本
波に対する高調波発生(波長0.42μm)について図を用
いて詳しく述べる。(K.Mizuuchi, K.Yamamoto and T.T
aniuchi, Applied Physics Letters, Vol 58, 2732ペー
ジ, 1991年6月号、参照).図4に示されるようにLiTa
O3基板1に光導波路2が形成され、さらに光導波路2に
は周期的に分極の反転した層3(分極反転層)が形成さ
れている。基本波P1と発生する高調波P2の伝搬定数
の不整合を分極反転層3と非分極反転層4との周期構造
で補償することにより高効率に高調波P2を出すことが
できる。光導波路2の入射面10に基本波P1を入射す
ると、光導波路2から高調波P2が効率良く発生され、
光波長変換素子として動作する。
2. Description of the Related Art FIG. 4 shows a block diagram of a conventional optical wavelength conversion element based on an optical waveguide. The harmonic generation (wavelength 0.42 μm) with respect to the fundamental wave having a wavelength of 0.84 μm will be described in detail below with reference to the drawings. (K.Mizuuchi, K.Yamamoto and TT
aniuchi, Applied Physics Letters, Vol 58, page 2732, June 1991 issue). As shown in Figure 4, LiTa
An optical waveguide 2 is formed on an O 3 substrate 1, and a layer 3 (polarization inversion layer) whose polarization is periodically inverted is further formed on the optical waveguide 2. By compensating for the mismatch between the propagation constants of the fundamental wave P1 and the generated harmonic wave P2 by the periodic structure of the polarization inversion layer 3 and the non-polarization inversion layer 4, the harmonic wave P2 can be generated with high efficiency. When the fundamental wave P1 is incident on the incident surface 10 of the optical waveguide 2, the harmonic P2 is efficiently generated from the optical waveguide 2,
It operates as a light wavelength conversion element.

【0003】このような従来の光波長変換素子はプロト
ン交換法により作製された光導波路を基本構成要素とし
ていた。この素子の製造方法について説明する。まずLi
TaO3基板1に通常のフォトプロセスとドライエッチング
を用いてTaを周期状にパターニングする。次にTaパ
ターンが形成されたLiTaO3基板1にピロ燐酸中で260
℃、30分間プロトン交換を行いTaで覆われていない
スリット直下に厚み0.8μmのプロトン交換層を形成
する。次に590℃の温度で10分間熱処理する。これ
により分極反転層が形成される。プロトン交換層直下は
Liが減少しておりキュリー温度が低下するため部分的
に分極反転を行うことができる。次にHF:HNF3
1:1混合液にて2分間エッチングしTaを除去する。
さらに上記分極反転層中にプロトン交換を用いて光導波
路2を形成する。光導波路2用マスクとしてTaをスト
ライプ状にパターニングを行うことでTaマスクに幅5
μm、長さ12mmのスリットを形成する。このTaマ
スクで覆われた基板に260℃、16分間プロトン交換
を行い0.5μmの高屈折率層を形成する。Taマスク
を除去した後、380℃で10分間熱処理を行う。プロ
トン交換された保護マスクのスリット直下の領域は屈折
率が0.03程度上昇した光導波路2となる。この従来
の方法により作製される光波長変換素子は波長0.84μm
の基本波P1に対して、光導波路2の長さを9mm、基
本波P1のパワーを27mWにしたとき高調波P2のパ
ワーは0.13mW、変換効率0.5%が得られてい
た。1W当りの変換効率は18%/Wである。
Such a conventional optical wavelength conversion element has an optical waveguide manufactured by the proton exchange method as a basic constituent element. A method of manufacturing this element will be described. First Li
Ta is periodically patterned on the TaO 3 substrate 1 by using a normal photo process and dry etching. Next, the LiTaO 3 substrate 1 on which the Ta pattern was formed was subjected to 260 in pyrophosphoric acid.
Proton exchange is performed at 30 ° C. for 30 minutes to form a 0.8 μm-thick proton exchange layer directly below the slit not covered with Ta. Then, heat treatment is performed at a temperature of 590 ° C. for 10 minutes. As a result, the domain inversion layer is formed. Just below the proton exchange layer, Li is reduced and the Curie temperature is lowered, so that polarization reversal can be partially performed. Then, Ta is removed by etching with a 1: 1 mixed solution of HF: HNF 3 for 2 minutes.
Further, the optical waveguide 2 is formed in the polarization inversion layer by using proton exchange. By patterning Ta as a mask for the optical waveguide 2 in a stripe shape, the Ta mask has a width of 5
A slit having a size of μm and a length of 12 mm is formed. The substrate covered with this Ta mask is subjected to proton exchange at 260 ° C. for 16 minutes to form a 0.5 μm high refractive index layer. After removing the Ta mask, heat treatment is performed at 380 ° C. for 10 minutes. The region directly under the slit of the proton-exchanged protective mask becomes the optical waveguide 2 having a refractive index increased by about 0.03. The optical wavelength conversion element manufactured by this conventional method has a wavelength of 0.84 μm.
When the length of the optical waveguide 2 was 9 mm and the power of the fundamental wave P1 was 27 mW, the power of the higher harmonic wave P2 was 0.13 mW and the conversion efficiency was 0.5%. The conversion efficiency per 1W is 18% / W.

【0004】また、発生したSHGによるビームをNA
0.3のコリメーターレンズで平行にした後、NA0.
6のフォーカスレンズで集光し回折限界までの集光ビー
ムが得られていた。
In addition, the generated SHG beam is NA
After collimating with a collimator lens of 0.3, NA0.
A focused beam up to the diffraction limit was obtained by focusing with the focus lens of No. 6.

【0005】[0005]

【発明が解決しようとする課題】上記のような光導波路
を基本とした光波長変換素子では光導波路より出射され
る高調波のビームが縦横対称ではなく角度にして縦(光
導波路の厚み方向)が30度、横(光導波路の幅方向)
が7度の広がり角を有しておりアスペクト比4の非対称
なビームであった。そのため縦横ともに回折限界までの
集光を得るためにはコリメーターレンズにてビームを蹴
ることとなり集光に利用される高調波出力は40%程度
損失するといった問題があった。
In the optical wavelength conversion element based on the above-mentioned optical waveguide, the harmonic beam emitted from the optical waveguide is not vertically and horizontally symmetrical but vertically (in the thickness direction of the optical waveguide). Is 30 degrees, horizontal (width direction of optical waveguide)
Was an asymmetric beam having a divergence angle of 7 degrees and an aspect ratio of 4. Therefore, there is a problem that the beam is kicked by the collimator lens in order to obtain the focused light up to the diffraction limit in both the vertical and horizontal directions, and the harmonic output used for the focused light is lost by about 40%.

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題点を
解決するため光波長変換素子の構成に新たな工夫を加え
ることによりアスペクト比が1に近いビームの発生が可
能な光波長変換素子を提供するものである。つまり、本
発明は非線形光学結晶中に分極反転層および厚みd1を
持つ光導波路を有し前記光導波路の出射部の厚みd2が
d2>d1の関係となるという手段を有するものであ
る。
According to the present invention, an optical wavelength conversion element capable of generating a beam having an aspect ratio close to 1 is added to the structure of the optical wavelength conversion element in order to solve the above problems. Is provided. That is, the present invention has means for providing a polarization inversion layer and an optical waveguide having a thickness d1 in a nonlinear optical crystal, and having a relation that the thickness d2 of the emitting portion of the optical waveguide is d2> d1.

【0007】[0007]

【作用】本発明の光波長変換素子は光波長変換素子の光
導波路の出射部の厚みを広げることで出射ビームの縦横
比つまりアスペクト比を1に近付けることができる。こ
のようにな構成の光波長変換素子はビームの利用効率が
大幅に向上する。
In the light wavelength conversion element of the present invention, the aspect ratio of the output beam, that is, the aspect ratio, can be brought close to 1 by increasing the thickness of the output portion of the optical waveguide of the light wavelength conversion element. The light wavelength conversion element having the above-described structure significantly improves the beam utilization efficiency.

【0008】[0008]

【実施例】第1の実施例として本発明の光波長変換素子
の製造方法について図を使って説明する。図1は本発明
の光波長変換素子の構成図である。LiTaO3基板1に周期
状に分極反転層3が形成されている。この分極反転層3
を横切って光導波路2が形成されている。基本波P1は
光波長変換素子の入射面10より入射し光導波路2で高
調波P2に変換され光波長変換素子の出射面12より出
射される。出射面12近傍には出射部5として光導波路
2より厚みが厚い層が形成されている。光導波路2の厚
みをd1、出射部5の厚みをd2とするとd2>d1の
関係となっている。d2の厚みを最適化することにより
縦横対称(アスペクト比1)な高調波P2のビームが出
射されることとなる。
EXAMPLE As a first example, a method for manufacturing an optical wavelength conversion device of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an optical wavelength conversion element of the present invention. The domain-inverted layers 3 are periodically formed on the LiTaO 3 substrate 1. This polarization inversion layer 3
The optical waveguide 2 is formed so as to traverse. The fundamental wave P1 enters from the incident surface 10 of the optical wavelength conversion element, is converted into a harmonic wave P2 by the optical waveguide 2, and is emitted from the exit surface 12 of the optical wavelength conversion element. A layer thicker than the optical waveguide 2 is formed near the emitting surface 12 as the emitting portion 5. Assuming that the thickness of the optical waveguide 2 is d1 and the thickness of the emitting portion 5 is d2, there is a relationship of d2> d1. By optimizing the thickness of d2, a beam of harmonic P2 that is vertically and horizontally symmetrical (aspect ratio 1) is emitted.

【0009】次に本発明の光波長変換素子の製造方法に
ついて説明を行う。図2はその製造工程図である。同図
(a)でまずLiTaO3基板1に通常のフォトプロセスとド
ライエッチングを用いてTa6aを周期状にパターニン
グする。次にTa6aによるパターンが形成されたLiTa
O3基板1に260℃、30分間プロトン交換を行いスリ
ット直下に厚み0.8μmのプロトン交換層を形成した
後、590℃の温度で10分間熱処理する。これにより
分極反転層3が形成される。プロトン交換層はLiが減
少しておりキュリー温度が低下するため部分的に分極反
転ができる。次にHF:HNF3の1:1混合液にて2
分間エッチングしTa6aを除去する。次に上記分極反
転層3中にプロトン交換を用いて光導波路2を形成す
る。同図(b)で光導波路用マスクとしてTaをストラ
イプ状にパターニングを行った後、Taマスクに幅4μ
m、長さ12mmのスリットが形成されたものに260
℃、16分間ピロ燐酸中でプロトン交換を行った。これ
により厚み0.5μmの高屈折率層7が形成される。次
に同図(c)でTaマスクを除去した後、出射部上のみ
に厚み1000AのTa8をパターン化したものを赤外
線加熱装置で30秒間熱処理を行った。Ta8は赤外線
を直接吸収し光導波路2に対してより高温となる。光導
波路は420℃となり、また出射部は500℃となって
いた。熱処理により均一化されロスが減少した上に高屈
折率層7に非線形性が戻る。熱処理により高屈折率層7
は広がり屈折率が0.03程度上昇した厚み1.8μm
の光導波路2および厚み4μmの出射部5となる。この
ように出射部の厚みd2が光導波路の厚みd1より大き
くなるのはそれぞれの熱処理温度T2とT1の関係がT
2>T1であり、これが拡散速度の違いとなり厚みの差
が生じたためである。最後に蒸着によりSiO2を3000
A付加した。
Next, a method of manufacturing the optical wavelength conversion device of the present invention will be described. FIG. 2 is a manufacturing process diagram thereof. In FIG. 3A, first, Ta6a is patterned on the LiTaO 3 substrate 1 in a periodic pattern by using a normal photoprocess and dry etching. Next, LiTa having a pattern formed of Ta6a
Proton exchange is performed on the O 3 substrate 1 at 260 ° C. for 30 minutes to form a 0.8 μm-thick proton exchange layer immediately below the slit, and then heat treatment is performed at a temperature of 590 ° C. for 10 minutes. Thereby, the domain inversion layer 3 is formed. Since the Li content of the proton exchange layer is reduced and the Curie temperature is lowered, polarization inversion can be partially performed. Next, 2 with a 1: 1 mixture of HF: HNF 3.
Etching for 6 minutes to remove Ta6a. Next, the optical waveguide 2 is formed in the polarization inversion layer 3 by using proton exchange. In the same figure (b), after Ta is patterned into a stripe shape as an optical waveguide mask, a Ta mask is formed with a width of 4 μm.
260 with a slit having a length of m and a length of 12 mm
Proton exchange was performed in pyrophosphoric acid at 16 ° C. for 16 minutes. Thereby, the high refractive index layer 7 having a thickness of 0.5 μm is formed. Next, after removing the Ta mask in the same figure (c), a pattern in which Ta8 having a thickness of 1000 A is patterned only on the emitting portion was subjected to a heat treatment for 30 seconds by an infrared heating device. Ta8 directly absorbs infrared rays and becomes higher in temperature than the optical waveguide 2. The optical waveguide had a temperature of 420 ° C., and the emitting portion had a temperature of 500 ° C. The heat treatment uniformizes the loss and reduces the non-linearity of the high refractive index layer 7. High refractive index layer 7 by heat treatment
Is 1.8 μm with a spread and refractive index increased by about 0.03
The optical waveguide 2 and the emitting portion 5 having a thickness of 4 μm. In this way, the thickness d2 of the emitting portion is larger than the thickness d1 of the optical waveguide because the relationship between the heat treatment temperatures T2 and T1 is T.
This is because 2> T1, which is a difference in diffusion rate and a difference in thickness. Finally, vapor-deposit SiO 2 to 3000.
A was added.

【0010】上記のような工程により光導波路2および
出射部5が製造された。この光導波路2の厚みdは1.
8μmであり分極反転層3の厚み2.0μmに比べ小さ
く有効に波長変換される。分極反転層3の周期は10.
8μmであり波長0.84nmに対して動作する。ま
た、この光導波路2の非分極反転層4と分極反転層3の
屈折率変化はなく、光が導波する場合の伝搬損失は小さ
い。光導波路2に垂直な面を光学研磨し入射面10およ
び出射面12を形成した。このようにして光波長変換素
子が製造できる。また、この素子の長さは10mmであ
る。基本波P1として半導体レーザ光(波長0.84μ
m)を入射部より導波させたところシングルモード伝搬
し、波長0.42μmの高調波P2が出射部より基板外
部に取り出された。光導波路2の伝搬損失は1dB/cmと小
さく高調波P2が有効に取り出された。基本波40mW
の入力で1mWの高調波(波長0.42μm)を得た。
出射された高調波のビームの広がり角は厚み方向10
度、幅方向7度のアスペクト比1.4のほぼ対称なビー
ムであった。このビームをNA0.5のコリメーターレ
ンズで平行光にしNA0.6のフォーカスレンズで集光
しスポットサイズ0.6μmの回折限界までのビームが
得られた。また、利用効率は95%であった。図3に光
導波路の厚みとアスペクト比の関係を示す。このように
出射部の光導波路厚みを大きくすることでアスペクト比
を1に近付けることが可能となる。
The optical waveguide 2 and the emitting portion 5 are manufactured by the steps as described above. The thickness d of this optical waveguide 2 is 1.
The thickness is 8 μm, which is smaller than the thickness of the domain inversion layer 3 of 2.0 μm, and the wavelength is effectively converted. The period of the domain inversion layer 3 is 10.
It is 8 μm and operates for a wavelength of 0.84 nm. Further, there is no change in the refractive index of the non-polarization inversion layer 4 and the polarization inversion layer 3 of the optical waveguide 2, and the propagation loss when light is guided is small. A surface perpendicular to the optical waveguide 2 was optically polished to form an entrance surface 10 and an exit surface 12. In this way, the light wavelength conversion element can be manufactured. The length of this element is 10 mm. Semiconductor laser light (wavelength 0.84 μ as fundamental wave P1
When m) was guided from the incident part, it propagated in a single mode, and the harmonic P2 having a wavelength of 0.42 μm was taken out of the substrate from the emitting part. The propagation loss of the optical waveguide 2 was as small as 1 dB / cm, and the harmonic P2 was effectively extracted. Basic wave 40mW
A harmonic of 1 mW (wavelength 0.42 μm) was obtained at the input of.
The divergence angle of the emitted harmonic beam is 10 in the thickness direction.
The beam was a substantially symmetrical beam with an aspect ratio of 1.4 in the width direction and 7 degrees in the width direction. This beam was collimated by a collimator lens of NA 0.5 and condensed by a focus lens of NA 0.6, and a beam with a spot size of 0.6 μm up to the diffraction limit was obtained. The utilization efficiency was 95%. FIG. 3 shows the relationship between the thickness of the optical waveguide and the aspect ratio. By thus increasing the thickness of the optical waveguide of the emitting portion, the aspect ratio can be brought close to 1.

【0011】なお、このような処理を行うには急速加熱
が可能で金属の赤外線吸収を利用できる赤外線加熱装置
が適している。
An infrared heating device capable of rapid heating and capable of utilizing the infrared absorption of metal is suitable for carrying out such a treatment.

【0012】次に本発明の光波長変換素子の製造方法を
用いた第2の実施例について説明する。光波長変換素子
の構成は実施例1と同様である。光導波路2は燐酸中で
のプロトン交換により作製した後、温度分布を持ったヒ
ーターを用いて10分間熱処理を行った。光導波路上の
温度は380℃、出射部上の温度は450℃である。作
製された光導波路の厚みは2.2μm、幅4μm、長さ
は9mm,出射部の厚みは3.5μm、幅5μm、長さ
は1mmである。分極反転の周期は3.6μm、分極反
転層の厚みは1.5μmである。波長840nmに対し
てこの実施例での変換効率は1次の分極反転周期を用い
ているため高く40mW入力で10%である。出射され
たビームのアスペクト比は1.7、集光時の利用効率は
90%であった。また、光損傷はなく高調波出力は非常
に安定していた。
Next, a second embodiment using the method of manufacturing an optical wavelength conversion device of the present invention will be described. The configuration of the light wavelength conversion element is similar to that of the first embodiment. The optical waveguide 2 was manufactured by proton exchange in phosphoric acid and then heat-treated for 10 minutes using a heater having a temperature distribution. The temperature on the optical waveguide is 380 ° C., and the temperature on the emitting portion is 450 ° C. The produced optical waveguide has a thickness of 2.2 μm, a width of 4 μm and a length of 9 mm, and an emission portion has a thickness of 3.5 μm, a width of 5 μm and a length of 1 mm. The period of polarization inversion is 3.6 μm, and the thickness of the polarization inversion layer is 1.5 μm. The conversion efficiency in this example is high for a wavelength of 840 nm, and is 10% at a 40 mW input because the first-order polarization inversion period is used. The aspect ratio of the emitted beam was 1.7, and the utilization efficiency at the time of condensing was 90%. There was no optical damage and the harmonic output was very stable.

【0013】なお実施例では非線形光学結晶としてLiTa
O3を用いたがLiNbO3、KNbO3、KTP等の強誘電体にも
適用可能である。
In the embodiment, LiTa is used as the nonlinear optical crystal.
Although O 3 is used, it is also applicable to ferroelectrics such as LiNbO 3 , KNbO 3 and KTP.

【0014】[0014]

【発明の効果】以上説明したように本発明の光波長変換
素子によれば、光波長変換素子の光導波路の出射部の厚
みを大きくすることにより出射されるビームのアスペク
ト比を1に近付けることができる。これにより光波長変
換素子から出射されるビームの利用効率を大幅に向上さ
せることができその実用的価値は極めて大きい。
As described above, according to the optical wavelength conversion element of the present invention, the aspect ratio of the beam emitted can be made closer to 1 by increasing the thickness of the emission part of the optical waveguide of the optical wavelength conversion element. You can As a result, the utilization efficiency of the beam emitted from the light wavelength conversion element can be greatly improved, and its practical value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光波長変換素子の構成
FIG. 1 is a configuration diagram of an optical wavelength conversion device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の光波長変換素子の製造
方法の工程図
FIG. 2 is a process drawing of the method for manufacturing the optical wavelength conversion device according to the first embodiment of the present invention.

【図3】光導波路厚みとアスペクト比の関係を示す図FIG. 3 is a diagram showing the relationship between optical waveguide thickness and aspect ratio.

【図4】従来の光波長変換素子の構成図FIG. 4 is a configuration diagram of a conventional optical wavelength conversion element.

【符号の説明】[Explanation of symbols]

1 LiTaO3基板 2 光導波路 3 分極反転層 5 出射部 P1 基本波 P2 高調波1 LiTaO 3 substrate 2 optical waveguide 3 polarization inversion layer 5 emission part P1 fundamental wave P2 harmonic

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非線形光学結晶中に分極反転層、および厚
みd1を持つ光導波路を有し、前記光導波路の出射部の
厚みd2がd2>d1の関係となることを特徴とする光波
長変換素子。
1. A nonlinear optical crystal having a domain-inverted layer and an optical waveguide having a thickness d 1 , wherein the thickness d 2 of the emitting portion of the optical waveguide has a relationship of d 2 > d 1. Optical wavelength conversion element.
【請求項2】分極反転層を有する非線形光学結晶中にプ
ロトン交換法により高屈折率層を形成した後、熱処理温
度T1で光導波路を熱処理温度T2で出射部を形成し、
なおかつT2>T1なる関係となるように熱処理温度を
設定することを特徴とする光波長変換素子の製造方法。
2. A high refractive index layer is formed by a proton exchange method in a nonlinear optical crystal having a polarization inversion layer, and then an optical waveguide is formed at a heat treatment temperature T1 and an emission portion is formed at a heat treatment temperature T2.
A method of manufacturing an optical wavelength conversion element, characterized in that the heat treatment temperature is set so that the relationship of T2> T1 is satisfied.
【請求項3】非線形光学結晶がLiNbxTa1-x
3(0≦X≦1)基板である請求項1記載の光波長変換
素子または同2記載の光波長変換素子の製造方法。
3. The nonlinear optical crystal is LiNb x Ta 1-x O.
3. The method for producing an optical wavelength conversion element according to claim 1 or an optical wavelength conversion element according to claim 2, which is a (0 ≦ X ≦ 1) substrate.
【請求項4】赤外線加熱装置を用いて熱処理することを
特徴とする請求項2記載の光波長変換素子の製造方法。
4. The method for manufacturing a light wavelength conversion element according to claim 2, wherein the heat treatment is performed using an infrared heating device.
JP3255162A 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same Expired - Fee Related JP2921207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255162A JP2921207B2 (en) 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255162A JP2921207B2 (en) 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0593930A true JPH0593930A (en) 1993-04-16
JP2921207B2 JP2921207B2 (en) 1999-07-19

Family

ID=17274926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255162A Expired - Fee Related JP2921207B2 (en) 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2921207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209535A (en) * 1994-01-24 1995-08-11 Ngk Insulators Ltd Production of optical waveguide substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209535A (en) * 1994-01-24 1995-08-11 Ngk Insulators Ltd Production of optical waveguide substrate

Also Published As

Publication number Publication date
JP2921207B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP3460840B2 (en) Optical element, laser light source, laser device, and method for manufacturing optical element
JP3036255B2 (en) Optical wavelength conversion element, short wavelength laser light source using the same, optical information processing apparatus using the short wavelength laser light source, and method of manufacturing optical wavelength conversion element
JP3129028B2 (en) Short wavelength laser light source
US7170671B2 (en) High efficiency wavelength converters
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
US5205904A (en) Method to fabricate frequency doubler devices
JPH04335328A (en) Second harmonic generating element and production thereof and light source device formed by using second harmonic generating element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2718259B2 (en) Short wavelength laser light source
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JPH0566440A (en) Laser light source
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP3616138B2 (en) Waveguide type wavelength conversion element
JP2502818B2 (en) Optical wavelength conversion element
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JP3555414B2 (en) Short wavelength light source, optical wavelength conversion element, and inspection method for optical wavelength conversion element
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JPH04356031A (en) Incidence tapered optical waveguide and wavelength converting element using the same
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JP3052654B2 (en) Optical wavelength conversion element
JPH04368921A (en) Wavelength converting element and its manufacture
JPH0331828A (en) Wavelength converting element
JPH03132628A (en) Wavelength converting element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees