JPH0593617A - Apparatus for continuously measuring thickness of foil - Google Patents

Apparatus for continuously measuring thickness of foil

Info

Publication number
JPH0593617A
JPH0593617A JP25550991A JP25550991A JPH0593617A JP H0593617 A JPH0593617 A JP H0593617A JP 25550991 A JP25550991 A JP 25550991A JP 25550991 A JP25550991 A JP 25550991A JP H0593617 A JPH0593617 A JP H0593617A
Authority
JP
Japan
Prior art keywords
foil
thickness
detector
radiation source
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25550991A
Other languages
Japanese (ja)
Other versions
JP3103399B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Yasuo Nakajima
保夫 中島
Tamotsu Hayashi
保 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP03255509A priority Critical patent/JP3103399B2/en
Publication of JPH0593617A publication Critical patent/JPH0593617A/en
Application granted granted Critical
Publication of JP3103399B2 publication Critical patent/JP3103399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the thickness of foil, especially, in the width direction of continuously. CONSTITUTION:A sealed radioisotope source 3 comprising <55>Fe of 10muCi or less is used. A detector 4, which is provided at the opposite side of a foil 5 with respect to the radiation source, is fixed to a supporting body which forms a unitary body together. The supporting body is moved. The radiation source and the detector are made to scan in the direction of the width of the foil in synchronization over another supporting body. The signals obtained by a plurality of scannings are switched with the signals indicating the distance from the foil end part at the detecting position of the foil. The signals are integrated in an integrating channel 14 of an individual counting device 13. The thickness of the foil within a specified range is operated based on the counted value, which is integrated for every channel, and the result is outputted. The radioactive isotope, whose handling is not restricted and strength is stable, is used, and the thickness within a specified range can be measured with a large amount of detected signals. Therefore, the measuring accuracy can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続箔製造装置の取り付
けて、箔の厚みを精密に計測するための、箔厚みの連続
測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous foil thickness measuring device for mounting a continuous foil manufacturing device and accurately measuring the thickness of the foil.

【0002】[0002]

【従来の技術】箔の製造方法には、その材質あるいは用
途に応じて種々のものがあるが、その代表的なものは、
圧延によって製造する方法である。圧延による方法は、
圧延ローラーによって加圧しながらローラーの間を通し
て、圧延していくものである。この方法では、圧延が進
行して金属の厚みが薄くなるにしたがって、圧延速度は
早くなるので、多量生産に適した製造方法であるといえ
る。しかしながら、箔の厚みを薄くするに従って技術的
には、非常に複雑になり、張り(テンション)のかけ
方、ローラー間の距離のコントロール等の問題が生じて
くる。また、箔の幅方向についての厚みの均一性は、ロ
ーラーの形状から生じる制約から、必ずしも一定になら
ないと言われている。
2. Description of the Related Art There are various methods of manufacturing foils depending on their materials or uses. Typical ones are:
It is a method of manufacturing by rolling. The method by rolling is
Rolling is performed by passing between the rollers while applying pressure by the rolling rollers. In this method, the rolling speed increases as the rolling progresses and the metal thickness decreases, so it can be said that this method is suitable for mass production. However, as the thickness of the foil is reduced, it becomes technically very complicated, and problems such as how to apply tension (tension) and control of the distance between rollers arise. Further, it is said that the uniformity of the thickness of the foil in the width direction is not always constant due to the restriction caused by the shape of the roller.

【0003】一方、最近では銅箔、特にプリント配線基
板に使用される銅張積層板用として電解箔が注目されて
いる。これは、図6に電解による銅箔製造装置の1例を
断面図で示すように電解槽61内の電解液62中に下部
を浸漬した大型の陰極ローラー63を陰極とし、不溶性
の陽極64を対極として電流を通電し、ローラーの表面
に連続的に金属をメッキしながら析出した金属銅65を
金属をローラー表面から連続的にはぎ取っていく方法で
あり、得られる銅箔66の平均的な厚さは、供給する電
流値により容易に制御することが可能であり、また圧延
によって製造するのではないので、薄い箔を容易に作れ
るという特徴を有している。
On the other hand, recently, attention has been focused on a copper foil, particularly an electrolytic foil for a copper clad laminate used for a printed wiring board. As shown in a cross-sectional view of an example of a copper foil manufacturing apparatus by electrolysis in FIG. 6, a large cathode roller 63 whose lower part is immersed in an electrolytic solution 62 in an electrolytic cell 61 is used as a cathode, and an insoluble anode 64 is This is a method in which an electric current is applied as a counter electrode and the metal copper 65 deposited while continuously plating metal on the roller surface is continuously stripped of the metal from the roller surface, and the average thickness of the obtained copper foil 66. The thickness can be easily controlled by the value of the supplied current, and since it is not manufactured by rolling, it has a feature that a thin foil can be easily manufactured.

【0004】[0004]

【発明が解決しようとする課題】電解による箔の製造に
おいては、電解に使用する電極の消耗、あるいは電極の
電気化学的な特性の変化により電流分布が均一でなくな
ると得られる銅箔の幅方向の厚さが不均一になる場合が
あるという欠点を有している。もちろん圧延ローラーに
よる機械的な製箔とは異なり、電極面のマスキング等に
より容易に補正することが可能である。
In the production of foil by electrolysis, the width direction of a copper foil obtained when the current distribution becomes nonuniform due to consumption of electrodes used for electrolysis or changes in electrochemical characteristics of the electrodes. Has the disadvantage that the thickness of the can becomes uneven. Of course, unlike mechanical foil making with a rolling roller, it is possible to easily correct it by masking the electrode surface.

【0005】箔を製造する際に箔の厚さの測定と測定値
に基づく箔の厚みの補正方法は従来から種々行われてお
り、箔厚の自動制御を行っている例もある。
Various methods of measuring the thickness of the foil and correcting the thickness of the foil based on the measured values have been conventionally used in manufacturing the foil, and in some cases, the foil thickness is automatically controlled.

【0006】すなわち機械的な圧延箔の製造プロセスで
は代表的なものとして、連続的にマイクロメータで計測
する方法がある。これは、圧延中に接触式のマイクロメ
ータをによって厚さを計測する方法であるが、接触式の
測定装置を利用しているために箔に傷がつくという欠点
があるので、箔の端部付近を連続的に計測し、得られた
結果に基づいてローラーの間隔や張りの制御に利用され
ているが、このような方法では、箔の幅方向の測定は行
えないという欠点がある。しかしながら、機械的な圧延
では、幅方向の厚み分布は、箔製造途中ではほとんど変
化することがないので事実上は問題にはならない。
That is, as a typical mechanical rolling foil manufacturing process, there is a method of continuously measuring with a micrometer. This is a method of measuring the thickness with a contact-type micrometer during rolling, but since there is a drawback that the foil is damaged because the contact-type measuring device is used, the edge of the foil is It is used to control the distance between the rollers and the tension based on the results obtained by continuously measuring the vicinity, but such a method has a drawback that the width direction of the foil cannot be measured. However, in mechanical rolling, the thickness distribution in the width direction hardly changes during the foil production, so that practically no problem occurs.

【0007】また、X線やγ線を利用した厚み計も使用
されている。これらは、X線源又はγ線源を、箔の一方
の側に置き、その反対側に検出器を置く方法であるが、
接触式のマイクロメーターを用いる方法と同様に、圧延
箔用に作られているため、箔の圧延方向の厚み分布を計
測するものであり、幅方向の測定には利用されておら
ず、圧延方向の厚みの変化を感知して、圧延装置をコン
トロールするのに使用されていた。とくに圧延箔の場合
は、圧延ローラーが一般には中央部の径が大であるため
に、両端部に向かうにしたがって厚みが大きくなるとい
う傾向はあるが、幅方向にはほぼ一定の厚み分布を有し
ているので、厚みの計測によって得られたデータによっ
て、平均厚さを制御するにとどまっていた。
Thickness meters using X-rays and γ-rays are also used. These are methods in which an X-ray source or a γ-ray source is placed on one side of the foil and a detector is placed on the other side.
Similar to the method using a contact-type micrometer, it is made for rolled foil, so it measures the thickness distribution in the rolling direction of the foil, and is not used for measuring in the width direction. Was used to control the rolling mill by sensing changes in the thickness of the rolling mill. In particular, in the case of rolled foil, the rolling roller generally has a large diameter in the central portion, so that the thickness tends to increase toward both ends, but there is an almost constant thickness distribution in the width direction. Therefore, the average thickness was limited to being controlled by the data obtained by measuring the thickness.

【0008】このように、箔厚みの測定はいずれも圧延
箔の製造に使用されていたものであり平均的な厚みの制
御に使用されていた。ところが、電解箔の製造では、平
均厚みは電解の電流値に比例するので、その制御は容易
に行えるが、電極すなわち電解用の対極および電着用の
陰極となるローラーの表面の電気化学的特性に依存し、
電極の特性にむらが生じると幅方向の厚が不均一となる
が、従来の装置では幅方向の厚み分布の測定を精密に行
うことはできなかった。
As described above, the measurement of the foil thickness was used for manufacturing the rolled foil, and was used for controlling the average thickness. However, in the production of electrolytic foil, since the average thickness is proportional to the electric current value of electrolysis, its control can be easily performed, but it depends on the electrochemical characteristics of the surface of the electrode, that is, the counter electrode for electrolysis and the roller serving as the cathode for electrodeposition. Depends on
When the characteristics of the electrode become uneven, the thickness in the width direction becomes non-uniform, but the conventional device cannot accurately measure the thickness distribution in the width direction.

【0009】一方、箔厚の測定装置ではないが、似た機
能を有する装置として、連続メッキ厚さの計測制御装置
がある。これは亜鉛メッキやすずめっき鋼板用のメッキ
厚み計測を自動的に行い、めっき量を制御するものであ
る。めっき厚がうすい場合には、螢光X線方式が通常使
用され、精度良く計測することができる。そして、幅方
向の厚みむらも測定ヘッドを、幅方向に変移させながら
測定することで得られるという特徴を有しているが、大
容量のX線源と高価なX線分光器を必要とする。
On the other hand, there is a continuous plating thickness measurement control device as a device having a similar function although it is not a foil thickness measurement device. This is to automatically measure the plating thickness for galvanized or tin-plated steel sheet and control the plating amount. When the plating thickness is thin, the fluorescent X-ray method is usually used and accurate measurement can be performed. The thickness unevenness in the width direction is obtained by measuring the measurement head while shifting the width in the width direction, but a large-capacity X-ray source and an expensive X-ray spectroscope are required. ..

【0010】また、めっき厚さにおいても、その分布よ
りも平均めっき厚を計測することを主眼としており、そ
の点では分布の計測には不充分であること、又厚さの計
測範囲がめっき物によるが、10μm以下という比較的
薄いものに制限されるという欠点を有する。
Also, with respect to the plating thickness, the main aim is to measure the average plating thickness rather than its distribution, and in that respect it is not sufficient for measuring the distribution, and the thickness measurement range is However, it has a drawback that it is limited to a relatively thin film of 10 μm or less.

【0011】放射線同位元素を使用したものでは、β−
スコープというβ線の背面反射を利用したものがある
が、比較的厚い被測定材料の計測に使用することができ
るが、この装置ではプリント基板などに使用する電解銅
箔に要求される測定精度を得ることはできない。
In the case of using a radioisotope, β-
Although there is a scope that uses the back reflection of β-rays, it can be used to measure relatively thick materials to be measured, but this device provides the measurement accuracy required for electrolytic copper foil used for printed circuit boards, etc. Can't get

【0012】本発明は、特に幅方向の厚み分布が重要で
あり、しかも高精度に制御しなければならない電解銅箔
に代表される電解箔の厚みの連続計測を非破壊的に行う
ことが可能な厚み測定装置を提供することを目的とす
る。
In the present invention, the thickness distribution in the width direction is particularly important, and moreover, it is possible to perform nondestructive continuous measurement of the thickness of an electrolytic foil represented by an electrolytic copper foil which must be controlled with high accuracy. An object of the present invention is to provide a thickness measuring device.

【0013】[0013]

【課題を解決するための手段】本発明は、10μCi以
下の55Feからなる密封型放射線同位体の電離放射線の
線源、該線源とは箔の反対側に設けた電離放射線の検出
器、該線源および該検出器を同期して箔の幅方向に走査
させる移動装置、箔の検出位置の箔端部からの距離を示
す信号または端部からの経過時間を示す信号を発生する
信号発生装置、信号発生装置が発生する信号によって、
該検出器から得られる検出信号を積算する計数装置の積
算チャンネルを切り換える信号切換装置、各チャンネル
毎に積算した計数値から箔の厚みを演算する演算装置、
箔の厚みの分布を出力する出力装置を有する箔製造装置
に設ける箔厚み測定装置である。
The present invention relates to a source of ionizing radiation of a sealed radioisotope consisting of 55 Fe of 10 μCi or less, a detector for ionizing radiation provided on the opposite side of the foil from the source, A moving device that synchronously scans the radiation source and the detector in the width direction of the foil, and a signal generation that generates a signal indicating the distance from the edge of the foil at the detection position of the foil or a signal indicating the elapsed time from the edge. The device, the signal generated by the signal generator,
A signal switching device that switches the integration channel of a counting device that integrates the detection signals obtained from the detector, a computing device that computes the foil thickness from the count value that is integrated for each channel,
It is a foil thickness measuring device provided in a foil manufacturing device having an output device for outputting the distribution of foil thickness.

【0014】X線やγ線等の電離放射線による厚みの測
定方法は、X線、γ線を被測定物に照射し、被測定物を
透過し吸収された後の強度を測定しその吸収量から厚み
を測定するものでありX線の波長やγ線源の種類を変え
ることにより、数μmのものから数十cmの厚さのもの
まで、また樹脂や、紙類といった、X線の吸収が比較的
小さいものから重金属まで種々の物質について計測が可
能であり、応用範囲が広い。そして、測定対象となる物
質の特性、厚さに合わせた、吸収量の大きなX線あるい
はγ線源を使用すると、精密に迅速な測定が可能とな
る。また、使用するX線やγ線源は、蛍光X線による測
定方法に比較して1/10〜1/100程度の小型の装
置ですむという長所がある。これは蛍光X線の場合、入
射したX線あるいはγ線に対して、発生する蛍光X線自
体の強度が、入射した波長にもよるが、一般には数分の
1となり、さらに、波長分光のための結晶分光の際に1
0分の1以下に減少してしまうためである。
The thickness can be measured by ionizing radiation such as X-rays and γ-rays by irradiating the object to be measured with X-rays and γ-rays, measuring the intensity after passing through the object and being absorbed, and measuring the amount of absorption. The thickness is measured by measuring the thickness of X-rays, and by changing the wavelength of X-rays and the type of γ-ray source, absorption of X-rays from several μm to several tens of cm in thickness, resin, paper It is possible to measure various substances from relatively small to heavy metals, and has a wide range of applications. Then, if an X-ray or γ-ray source having a large absorption amount is used according to the characteristics and thickness of the substance to be measured, accurate and quick measurement can be performed. Further, the X-ray or γ-ray source used has an advantage that a small device of about 1/10 to 1/100 can be used as compared with the measurement method using fluorescent X-rays. In the case of fluorescent X-rays, the intensity of the fluorescent X-rays themselves generated with respect to the incident X-rays or γ-rays is generally a fraction, though it depends on the incident wavelength. For crystal spectroscopy for
This is because it is reduced to less than or equal to 1/0.

【0015】透過法は、測定の機構も簡単であり、装置
自体が小型となる長所を有しているが、一方、一般に被
測定物厚みの変化に対する吸収X線の強度変化が小さく
なりがちであり、正確な厚みの測定には問題があった。
The transmission method has a merit that the measuring mechanism is simple and the apparatus itself is small, but on the other hand, generally, the change in the intensity of the absorbed X-ray with respect to the change in the thickness of the object to be measured tends to be small. There was a problem in accurate thickness measurement.

【0016】このため、測定対象の箔の種類によって、
必要とするX線やγ線の波長が決まってしまうので、最
適な線源を選定する必要がある。
Therefore, depending on the type of foil to be measured,
Since the required X-ray and γ-ray wavelengths are determined, it is necessary to select an optimum radiation source.

【0017】本発明では、電離放射線の線源として10
μCi以下の55Feからなる密封型放射性同位体を使用
したので、放射線同位体としての届出、許可の必要がな
く、取扱いにはなんら制限を受けないものである。ま
た、発生する電離放射線は電子捕獲型の壊変によって発
生する弱いγ線であり、強度が小さく測定可能な箔の厚
みは、銅あるいはニッケルでは50μmが限界である
が、0.1mm程度の厚みの銅で遮蔽することができ
る。
In the present invention, as a source of ionizing radiation, 10
Since a sealed radioactive isotope consisting of 55 Fe below μCi was used, there is no need for notification or permission as a radioactive isotope, and there is no restriction on handling. Further, the ionizing radiation generated is weak γ-ray generated by the decay of the electron capture type, and the thickness of the foil which has small intensity and can be measured is 50 μm for copper or nickel, but is about 0.1 mm. Can be shielded with copper.

【0018】しかも、放射性同位体であるので発生する
γ線の強度が安定しており、55Feの2.7年の半減期
から、強度の変化を知ることができるので、経時変化に
よる線源の強度の較正も自動的に行うことが可能であ
る。また、単一の波長のX線を使用しているので、検出
側には波高分析装置などを設ける必要がない。
Moreover, since the intensity of γ-rays generated is stable because it is a radioactive isotope, the change in intensity can be known from the 2.7-year half-life of 55 Fe. The intensity calibration can also be done automatically. Moreover, since the X-ray having a single wavelength is used, it is not necessary to provide a wave height analyzer on the detection side.

【0019】X線、γ線等の強度を測定する検出器は、
ガイガーカウンター、比例計数管、シンチレーションカ
ウンターが使用される。また、これらの検出器は、検出
器自体の特性により、計測値Nに対しN1/2 の統計ゆら
ぎを持っているので、目的の精度で計測するためには、
十分に計測値Nを大きくする必要がある。
A detector for measuring the intensity of X-rays, γ-rays, etc.
Geiger counters, proportional counters, scintillation counters are used. Further, these detectors have statistical fluctuations of N 1/2 with respect to the measured value N due to the characteristics of the detectors themselves.
It is necessary to sufficiently increase the measurement value N.

【0020】検出器は、入射したX線、γ線量と計数値
が比例するが、入射したX線、γ線が強くなると検出器
は飽和し、その結果正確な測定値が得られなくなる。そ
のために検出器が飽和しない領域において計測値を大き
くとるためには長い時間の測定が必要となる。また、検
出器として比例計数領域が500cpsないし1000
cpsのガイガーカウンターを使用する場合には、入射
するX線、γ線の強度は1000cpsまでの強度と
し、比例計数領域が10,000cpsのシンチレーシ
ョンカウンターを使用する場合には、ガイガーカウンタ
ーの10倍程度の強度のX線を使用することができる。
また、検出器には、アルミニウム箔などからなるフィル
ターを設けて長波長の散乱を取り除くことが好ましい。
In the detector, the incident X-ray and γ-ray dose are proportional to the count value, but when the incident X-ray and γ-ray become strong, the detector saturates, and as a result, accurate measured values cannot be obtained. Therefore, it takes a long time to obtain a large measurement value in a region where the detector is not saturated. Also, the detector has a proportional counting area of 500 cps to 1000
When using a Geiger counter of cps, the intensity of incident X-rays and γ rays is up to 1000 cps, and when using a scintillation counter with a proportional counting area of 10,000 cps, it is about 10 times that of the Geiger counter. X-rays of intensity can be used.
Further, it is preferable that the detector is provided with a filter made of aluminum foil or the like to remove long-wavelength scattering.

【0021】電解箔の製造における箔の厚さは、箔の製
造速度と電解電流によって決まるが、得られる箔の幅方
向の厚さの均一性の保持が重要である。幅方向の厚さの
均一性はプリント基板に使用する銅箔では、標準厚さ3
5μmに対して±1μm程度の精度で制御する必要があ
るが、幅方向の厚さの均一性は、急には変化するもので
はなく、陰極のローラーや対極が変化していくに従って
生じるものであるので、ある瞬間での厚みの変化を把握
することよりも、むしろ時間的な変化を把握することが
必要となる。
The thickness of the foil in the production of the electrolytic foil is determined by the production rate of the foil and the electrolytic current, and it is important to maintain the thickness uniformity of the obtained foil in the width direction. Thickness uniformity in the width direction is standard thickness 3 for copper foil used for printed circuit boards.
It is necessary to control with an accuracy of about ± 1 μm with respect to 5 μm, but the uniformity of the thickness in the width direction does not change suddenly but occurs as the cathode roller and counter electrode change. Therefore, it is necessary to grasp temporal changes rather than grasping changes in thickness at a certain moment.

【0022】透過した電離放射線の強度の測定は、箔の
端部からの幅方向の距離が等しい点の測定値を、箔の長
さ方向に積算することによって、十分な精度で厚み変動
を計測することができる。したがって、検出器を箔の幅
方向に変位させながら、連続して計測する際に、その移
動変速を十分に遅くとれば、場所ごとの測定精度は十分
に高くなる。しかも、ある1点における測定値によるも
のではなく、一定の長さの計測値を積算することによっ
て計測値を大きくすることができる。また、積算する長
さが長くなると正確な厚み分布の測定が困難となり、一
方、積算する長さが小さくなると、測定信号の処理のた
めの信号処理装置のチャンネル数が多く必要となるが、
積算する長さは3cmないし5cm程度の大きさとする
ことによって十分な精度を得ることが可能である。
The intensity of the transmitted ionizing radiation is measured by integrating the measured values at points having the same widthwise distance from the edge of the foil in the lengthwise direction of the foil to measure the thickness variation with sufficient accuracy. can do. Therefore, when the detector is displaced in the width direction of the foil and the measurement is continuously performed while the movement speed is sufficiently slowed, the measurement accuracy at each location becomes sufficiently high. Moreover, the measured value can be increased by integrating the measured values of a certain length, not by the measured value at one point. Further, when the accumulated length becomes long, it becomes difficult to measure the thickness distribution accurately, while when the accumulated length becomes small, a large number of channels of the signal processing device for processing the measurement signal are required.
Sufficient accuracy can be obtained by setting the integrated length to about 3 cm to 5 cm.

【0023】箔の幅方向の測定位置の位置信号の発生
は、線源および検出器の移動装置に設けた位置測定装置
によって得られる信号に基づいて発生させてもよいが、
測定装置の走査速度を一定とすることによって、箔の端
部からの走査した経過時間を位置信号に代えてもよい。
端部からの時間を位置信号に代える方法は、測定装置の
走査速度に依存するために位置を検出する方法に比べて
精度が劣るが装置が簡単となる。測定装置の走査速度は
10cm〜1m/時程度とするとよい。
The position signal at the measuring position in the width direction of the foil may be generated based on a signal obtained by a position measuring device provided in the moving device of the radiation source and the detector.
By keeping the scanning speed of the measuring device constant, the elapsed time scanned from the edge of the foil may be replaced with the position signal.
The method of replacing the time from the end with the position signal is less accurate than the method of detecting the position because it depends on the scanning speed of the measuring device, but the device is simple. The scanning speed of the measuring device is preferably about 10 cm to 1 m / hour.

【0024】また、電子管によって発生するX線を使用
して長時間の連続測定を行う場合には、発生するX線が
変動することがあり、測定精度に問題を生じることが起
こるので、較正用の検出装置を設けたり、厚みが明かな
標準試料を測定対象の箔の端部の近傍に設けて測定中に
も較正を行うことが必要となるが、本発明の線源は半減
期が2.7年の放射性同位元素であるので、1カ月後に
約1%の減少がおこるが、1回の箔の連続製造期間での
強度は極めて安定しており、また強度の低下は半減期と
経過時間から容易に知ることができる。
When continuous measurement is performed for a long time using X-rays generated by an electron tube, the X-rays generated may fluctuate, which may cause problems in measurement accuracy. It is necessary to provide a detection device of (1) or a standard sample having a clear thickness in the vicinity of the edge of the foil to be measured to calibrate during measurement, but the half-life of the radiation source of the present invention is 2 Since it is a radioisotope of 7 years, it will decrease by about 1% after one month, but the strength during the continuous production period of one foil is extremely stable, and the decrease in strength is a half-life. You can easily know from time.

【0025】[0025]

【作用】電離放射線の線源として10μCi以下の55
eからなる密封型放射線同位体の線源、該線源とは箔の
反対側に設けた電離放射線の検出器、該線源および該検
出器を同期して箔の幅方向に走査させる移動装置、箔の
検出位置の箔端部からの距離を示す信号または端部から
の経過時間を示す信号を発生する信号発生装置、信号発
生装置が発生する信号によって、該検出器から得られる
検出信号を積算する計数装置の積算チャンネルを切り換
える信号切換装置、各チャンネル毎に積算した計数値か
ら箔の厚みを演算する演算装置、箔の厚みの分布を出力
する出力装置を有する箔厚み連続測定装置を設けたの
で、箔の幅方向の厚さを正確に把握することが可能とな
る。
[Function] 55 F of 10 μCi or less as a source of ionizing radiation
a sealed radiation isotope source consisting of e, a detector for ionizing radiation provided on the opposite side of the foil from the source, and a moving device for synchronizing the source and the detector in the width direction of the foil. , A signal generator that generates a signal indicating the distance from the foil edge of the detection position of the foil or a signal indicating the elapsed time from the edge, and the detection signal obtained from the detector by the signal generated by the signal generator. Provided is a signal switching device that switches the integration channel of the counting device that performs integration, a computing device that computes the foil thickness from the integrated value for each channel, and a foil thickness continuous measurement device that has an output device that outputs the distribution of foil thickness. Therefore, it is possible to accurately grasp the widthwise thickness of the foil.

【0026】[0026]

【実施例】以下に図面を参照して本発明をさらに詳細に
説明する。図1は、本発明の箔厚み連続測定装置の一実
施例を示す図である。箔厚み連続測定装置1は、U字状
のアーム2に線源3とそれに対向してシンチレーション
カウンター等の検出器4が箔5の上下に設けられてお
り、線源には金属のフード6を設けて散乱を防止してお
り、検出器には長波長の散乱X線を取り除くためにフィ
ルター7を設けている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a continuous foil thickness measuring device of the present invention. In the continuous foil thickness measuring device 1, a U-shaped arm 2 is provided with a radiation source 3 and a detector 4 such as a scintillation counter facing the radiation source 3 above and below the foil 5, and a metal hood 6 is provided at the radiation source. It is provided to prevent scattering, and the detector is provided with a filter 7 to remove long-wavelength scattered X-rays.

【0027】図1では線源はアームの上部に設け、下部
に検出器を設けているが、線源を下部に設けて、検出器
を上部に設けてもよい。
In FIG. 1, the radiation source is provided in the upper part of the arm and the detector is provided in the lower part, but the radiation source may be provided in the lower part and the detector may be provided in the upper part.

【0028】アームの下部には、アームを走査する移動
装置8が設けられており、アームを所定の速度で走査す
る。アームの走査には、ラックとピニオンによる歯車機
構、車輪とレールによる機構などを用い、モーター、油
圧、空気圧等によって駆動する。測定装置の較正のため
に箔の近傍の台には凹凸が少ない標準試料9が設けられ
ている。検出器からの信号は、箔の端部からの幅方向の
距離を示す信号あるいは箔の端部からの時間を示す信号
を発生させる信号発生装置10、および信号発生装置の
信号によって動作する信号切換装置11によって計数装
置12のチャンネル13を切り替えて積算する。また、
箔の端部の検出は、検出信号の急激な変動から検知する
ことができる。
A moving device 8 for scanning the arm is provided below the arm, and the arm is scanned at a predetermined speed. For scanning the arm, a gear mechanism including a rack and a pinion, a mechanism including a wheel and a rail, and the like are used and driven by a motor, hydraulic pressure, pneumatic pressure, or the like. To calibrate the measuring device, a standard sample 9 with less unevenness is provided on the table near the foil. The signal from the detector is a signal generator 10 for generating a signal indicating the widthwise distance from the edge of the foil or a signal indicating the time from the edge of the foil, and signal switching operated by the signal of the signal generator. The device 11 switches the channel 13 of the counting device 12 to perform integration. Also,
The detection of the edge portion of the foil can be performed by detecting a rapid change in the detection signal.

【0029】箔の幅方向へ一端から他端への走査が終わ
ると、逆方向へ駆動させて、同様に測定を行う。検出信
号は積算回数制御装置14によって反対方向の走査と同
様に、箔の端部からの位置もしくは時間信号によって信
号切換装置を動作させ、箔の端部から幅方向の距離が等
しい部分のチャンネルに信号を積算する。所定の走査回
数の信号を各チャンネル毎に積算し、その積算値から厚
み演算装置15によって厚みの分布状態を演算して出力
するとともに、長さ方向厚み記録装置16に記録され
る。
When the scanning from one end to the other end in the width direction of the foil is completed, the foil is driven in the opposite direction and the same measurement is performed. The detection signal is operated by the integration number control device 14 in the same manner as scanning in the opposite direction, and the signal switching device is operated by the position or time signal from the edge of the foil, so that the channel of the portion where the distance in the width direction is equal from the edge of the foil. Add up the signals. The signals of a predetermined number of scans are integrated for each channel, and the thickness calculation device 15 calculates and outputs the thickness distribution state from the integrated value and is recorded in the length direction thickness recording device 16.

【0030】図1の装置は線源と検出器とが一体となっ
たU字状のアームに取り付けられているので、線源と検
出器との相対位置のずれが生じることはないが、U字状
のアームは測定する箔の幅以上の大きさとする必要があ
り、さらに本発明の測定装置が作動する場合には、U字
状のアームの長さに相当する空間を設けることが必要と
なるので、箔の製造用の電解槽を多数設置する場合に
は、隣接する電解槽の間に、U字状のアームの長さの間
隔を設ける必要がある。このために、電解槽の間隔が大
きくなり、電解槽の導電接続用のブスバーが長く必要と
なり、また一定の面積の部分に設ける製造設備の数が少
なくなる。
Since the apparatus shown in FIG. 1 is attached to the U-shaped arm in which the radiation source and the detector are integrated, the relative position of the radiation source and the detector does not deviate. The U-shaped arm needs to have a size larger than the width of the foil to be measured, and when the measuring device of the present invention operates, it is necessary to provide a space corresponding to the length of the U-shaped arm. Therefore, when a large number of electrolytic baths for foil production are installed, it is necessary to provide a U-shaped arm length interval between adjacent electrolytic baths. For this reason, the interval between the electrolytic cells becomes large, a bus bar for conductive connection of the electrolytic cells is required to be long, and the number of manufacturing facilities provided in a portion having a constant area is reduced.

【0031】したがって、多数の電解箔製造設備を設け
る場合には、測定装置のU字状アームに代えて、レール
などの固定式の支持体を箔の上下に設置して、線源およ
び検出器を同期して支持体上を移動させることが好まし
い。
Therefore, when a large number of electrolytic foil manufacturing facilities are provided, instead of the U-shaped arm of the measuring device, fixed supports such as rails are installed above and below the foil, and the radiation source and the detector. Is preferably moved on the support in synchronization.

【0032】図2には、固定した支持体を使用した場合
の線源と検出器の走査装置の一例を示す断面図を示す
が、箔21の上部に設けた上部支持体22には、ねじを
設けた上部駆動軸23が設けられている。上部支持体上
に支持された検出器24は上部駆動軸23のねじとかみ
合う歯車を有しており、駆動軸の回転によって検出器2
4は支持体上を移動する。
FIG. 2 is a sectional view showing an example of the scanning device of the radiation source and the detector when a fixed support is used. The upper support 22 provided on the upper part of the foil 21 is provided with a screw. The upper drive shaft 23 is provided. The detector 24 supported on the upper support has a gear that meshes with the screw of the upper drive shaft 23, and the detector 2 is rotated by the rotation of the drive shaft.
4 moves on the support.

【0033】一方、箔21の下部には下部支持体25が
設けられており、上部支持体に設けた駆動軸と同様のね
じを設けた下部駆動軸26が設けられており、下部支持
体25に支持されたX線源27は、下部駆動軸26とか
み合う歯車によって下部支持体上を移動する。上下の駆
動軸にはモータ28から歯車などからなる伝導装置29
を介して駆動力が与えられており、線源と検出器は同期
して移動する。
On the other hand, a lower support 25 is provided below the foil 21, and a lower drive shaft 26 provided with a screw similar to the drive shaft provided on the upper support is provided. The X-ray source 27 supported by is moved on the lower support by a gear that meshes with the lower drive shaft 26. The upper and lower drive shafts have a transmission device 29 including a motor 28 and gears.
The driving force is given through the source and the source and the detector move synchronously.

【0034】線源と検出器の移動は、ウォーム歯車等の
ねじを有する回転軸による方法以外にも、ベルト駆動、
ワイヤー駆動、チェーン駆動、流体の圧力を利用したシ
リンダ、電磁力等の駆動方法、あるいは線源およぼ検出
器のそれぞれにモータを設けて直接駆動する方法を採用
することが可能である。また、線源と検出器の相対的な
位置のずれの検出装置を設けて、線源と検出装置とが同
一直線上となるように駆動装置を制御しても良い。ま
た、線源と検出器の相対的な位置のずれに対処するため
に、検出器に設けるスリットの幅を線源のスリットの幅
よりも大としても良い。
The movement of the radiation source and the detector is not limited to the method using a rotating shaft having a screw such as a worm gear, but belt driving,
It is possible to employ wire drive, chain drive, a cylinder using fluid pressure, a drive method such as electromagnetic force, or a method in which a motor is provided for each of the radiation source and the detector to directly drive. Further, it is also possible to provide a detection device for the relative positional deviation between the radiation source and the detector and control the drive device so that the radiation source and the detection device are on the same straight line. Further, the width of the slit provided in the detector may be larger than the width of the slit of the radiation source in order to deal with the relative displacement between the radiation source and the detector.

【0035】図3に箔の検出部分の軌跡を示すが、測定
装置の走査速度と箔の移動速度によって、検出部分は箔
31上を斜めに示す検出線32上を移動することにな
り、検出器からの信号は積算区間33毎に積算する。そ
して、次の反対方向への走査の際には箔の端部からの幅
方向の距離が等しい積算区間の計数信号を加算する。そ
して、このような加算を所定の回数行うことによって、
箔の端部からの距離の等しい部分の計数値を高めること
ができる。
FIG. 3 shows the locus of the detection portion of the foil. The detection portion moves on the detection line 32 that is obliquely on the foil 31 due to the scanning speed of the measuring device and the moving speed of the foil, and the detection is performed. The signal from the container is integrated for each integration section 33. Then, at the time of the next scanning in the opposite direction, the count signals of the integration sections having the same widthwise distance from the edge of the foil are added. Then, by performing such addition a predetermined number of times,
It is possible to increase the count value of the portion at the same distance from the edge of the foil.

【0036】電解銅箔の場合には、厚み分布の変化は急
激には生じないので、このように複数の積算区間の計数
値を加算することによって正確な測定をすることが可能
となる。また、積算区間の加算回数は、5回ないし10
回が適当であるが、測定装置の走査速度と箔の移動速度
によって適宜定めることができる。
In the case of electro-deposited copper foil, the thickness distribution does not change abruptly, so that accurate measurement can be performed by adding the count values of a plurality of integration sections in this way. Also, the number of times of addition in the integration section is 5 to 10
Although the number of turns is appropriate, it can be appropriately determined depending on the scanning speed of the measuring device and the moving speed of the foil.

【0037】計数信号の処理装置内の1個のチャンネル
でのメモリーの使用状態を、図4に示す。図4(A)は
積算回数制御装置によって積算回数が10回に設定され
ている場合に、メモリー41へ第1回目から第10回目
までの走査で得られた10回の積算区間の計数信号を記
憶した状態を示しており、次に図4(B)に示すように
第11回目の積算区間の計数信号が加わると第1回目の
信号は消去される。そしてメモリーには常に一定の回数
の積算区間での信号を加算した計数信号が記録されてい
る。このようにして得られた一定の数の積算区間を加算
した信号は、厚さ演算装置において幅方向の厚みの分布
状態を演算して出力するとともに、所定の時間間隔で長
さ方向分布記録装置に蓄積されて、膜厚の長時間にわた
る変化を知ることが可能となる。
FIG. 4 shows the usage state of the memory in one channel in the counting signal processing device. FIG. 4 (A) shows a count signal of 10 integration intervals obtained by the first to tenth scans to the memory 41 when the integration count controller sets the integration count to 10 times. The stored state is shown. Next, as shown in FIG. 4B, when the count signal of the eleventh integration section is added, the first signal is erased. A count signal obtained by adding the signals in the integration section of a certain number of times is always recorded in the memory. The signal obtained by adding a certain number of integration sections thus obtained calculates and outputs the distribution state of the thickness in the width direction in the thickness calculation device, and also outputs the signal in the length direction distribution recording device at predetermined time intervals. It becomes possible to know the change of the film thickness over time.

【0038】また、箔の幅方向の積算区間の数とメモリ
ーの数が同じまたはメモリーの方が多い場合には、一回
の走査毎にすべてのメモリーに蓄積されている信号を同
時に消去してもよい。
When the number of integrated sections in the width direction of the foil is the same as the number of memories or the number of memories is larger, the signals accumulated in all the memories are erased at the same time for each scanning. Good.

【0039】実施例1 幅1mの電解銅箔連続製造装置によって、4cm/秒の
速さで製造される厚さ35μmの銅箔の幅方向の厚みを
測定した。
Example 1 The widthwise thickness of a 35 μm thick copper foil produced at a speed of 4 cm / sec was measured by a continuous production apparatus for electrolytic copper foil having a width of 1 m.

【0040】線源および検出器は、箔の上下に設けた長
さ1.2mの支持体に、ねじを設けた駆動軸の回転によ
り箔の幅方向に走査できるように取付けられ、上下の駆
動軸には、1台の同期電動機からウォームギヤによって
駆動力を与えた。箔の端部の近傍の標準試料取り付け台
には較正用の標準試料として凹凸のない厚さ35μmの
銅箔を取り付けた。
The radiation source and the detector are attached to a support body having a length of 1.2 m provided above and below the foil so as to scan in the width direction of the foil by rotation of a drive shaft provided with a screw. Driving force was applied to the shaft from one synchronous motor by a worm gear. As a standard sample for calibration, a copper foil having a thickness of 35 μm and having no unevenness was mounted on a standard sample mounting table near the edge of the foil.

【0041】線源として、10μCiの55Feからなる
密封型放射線同位体を使用し、線源にはアルミニウムの
フードを取り付け、検出器には比例計数管を使用し、ア
ルミニウムのフィルターを設けて散乱X線を取り除い
た。線源と検出器との距離は30mmとした。
A sealed radioisotope consisting of 10 μCi of 55 Fe was used as a radiation source, an aluminum hood was attached to the radiation source, a proportional counter was used as a detector, and an aluminum filter was provided to scatter. X-rays were removed. The distance between the radiation source and the detector was 30 mm.

【0042】箔の幅方向への走査は5mm/分で行っ
た。箔の端部から50mmの区間に相当する10分毎の
時間信号を発生させて、信号切換装置に供給した。信号
切換装置では、計数装置のチャンネルを切り換えて信号
を積算した。また、検出信号が急激に10%以上変化す
る時点を箔の端部として検出した。
Scanning in the width direction of the foil was performed at 5 mm / min. A signal for every 10 minutes corresponding to a section of 50 mm from the edge of the foil was generated and supplied to the signal switching device. In the signal switching device, the channels of the counting device were switched to integrate the signals. Further, the time point when the detection signal suddenly changed by 10% or more was detected as the edge of the foil.

【0043】10分毎に積算した50mmの区間の積算
値を縦軸に、横軸には箔の端部からの距離を図5に示
す。積算値は、24000cpsとなり検出器の統計誤
差はσ=160cpsであり、計数値に対して0.6%
となった。また、厚みが36μmで凹凸のない銅箔につ
いての10分間の積算値は22500cpsであり、一
方、積算値の変動は、±2σとして絶対値で1.2%で
あるので、1μm以下の厚みの変化を把握することが可
能である。
The vertical axis shows the integrated value in the section of 50 mm which is integrated every 10 minutes, and the horizontal axis shows the distance from the edge of the foil in FIG. The integrated value is 24000 cps, and the statistical error of the detector is σ = 160 cps, which is 0.6% of the count value.
Became. In addition, the integrated value for 10 minutes for a copper foil having a thickness of 36 μm and no unevenness is 22500 cps, while the fluctuation of the integrated value is 1.2% in absolute value as ± 2σ, so that the thickness of 1 μm or less It is possible to understand the changes.

【0044】[0044]

【発明の効果】本発明は、電離放射線の線源として10
μCi以下の55Feからなる密封型放射線同位体の線
源、該線源とは箔の反対側に設けた電離放射線の検出
器、該線源および該検出器を同期して箔の幅方向に走査
させる移動装置、箔の検出位置の箔端部からの距離を示
す信号または端部からの経過時間を示す信号を発生する
信号発生装置、信号発生装置が発生する信号によって、
該検出器から得られる検出信号を積算する計数装置の積
算チャンネルを切り換える信号切換装置、各チャンネル
毎に積算した計数値から箔の厚みを演算する演算装置、
箔の厚みの分布を出力する出力装置からなる箔厚み連続
測定装置であって、検出信号を積算することによって幅
方向の所定の領域内での計測値が多く得られるので、精
度の高い測定が可能となる。
INDUSTRIAL APPLICABILITY The present invention provides a radiation source of ionizing radiation, which is 10
Radiation source of sealed radioisotope consisting of 55 Fe of μCi or less, detector of ionizing radiation provided on the opposite side of the foil from the radiation source, in the width direction of the foil by synchronizing the radiation source and the detector. A moving device for scanning, a signal generator for generating a signal indicating the distance from the foil end portion of the detection position of the foil or a signal indicating the elapsed time from the end portion, by a signal generated by the signal generator,
A signal switching device that switches the integration channel of a counting device that integrates the detection signals obtained from the detector, a computing device that computes the foil thickness from the count value that is integrated for each channel,
A foil thickness continuous measuring device comprising an output device for outputting the distribution of the foil thickness, and since a large number of measurement values can be obtained within a predetermined region in the width direction by integrating the detection signals, highly accurate measurement is possible. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の箔厚みの連続測定装置の一実施例を示
す図。
FIG. 1 is a diagram showing an embodiment of a continuous foil thickness measuring device of the present invention.

【図2】X線源と検出器を固定した支持体上を別個の駆
動軸によって移動する測定装置の一実施例を示す図。
FIG. 2 is a diagram showing an embodiment of a measuring apparatus which moves on a support body to which an X-ray source and a detector are fixed by a separate drive shaft.

【図3】箔上の検出部分と積算区間を示す図。FIG. 3 is a diagram showing a detection portion on a foil and an integration section.

【図4】メモリーでのデータの積算過程を説明する図。FIG. 4 is a diagram illustrating a process of accumulating data in a memory.

【図5】箔の幅方向の厚さの測定結果を示す図。FIG. 5 is a view showing a measurement result of the thickness of the foil in the width direction.

【図6】電解による銅箔製造装置を示す図。FIG. 6 is a view showing a copper foil manufacturing apparatus by electrolysis.

【符号の説明】[Explanation of symbols]

1…箔厚み連続測定装置、2…アーム、3…線源、4…
検出器、5…箔、6…フード、7…フィルター、8…移
動装置、9…標準試料、10…信号発生装置、11…信
号切換装置、12…計数装置、13…チャンネル、14
…積算回数制御装置、15…厚み演算装置、16…長さ
方向厚み記録装置、21…箔、22…上部支持体、23
…上部駆動軸、24…検出器、25…下部支持体、26
…下部駆動軸、27…X線源、28…モータ、29…伝
導装置、31…箔、32…検出線、33…積算区間、4
1…メモリー、61…電解槽、62…電解液、63…陰
極ローラー、64…不溶性の陽極、65…金属銅、66
…銅箔
1 ... Foil thickness continuous measuring device, 2 ... Arm, 3 ... Radiation source, 4 ...
Detector, 5 ... Foil, 6 ... Hood, 7 ... Filter, 8 ... Moving device, 9 ... Standard sample, 10 ... Signal generating device, 11 ... Signal switching device, 12 ... Counting device, 13 ... Channel, 14
... integration number control device, 15 ... thickness calculation device, 16 ... length direction thickness recording device, 21 ... foil, 22 ... upper support, 23
... upper drive shaft, 24 ... detector, 25 ... lower support, 26
... Lower drive shaft, 27 ... X-ray source, 28 ... Motor, 29 ... Conductor, 31 ... Foil, 32 ... Detection line, 33 ... Integration section, 4
DESCRIPTION OF SYMBOLS 1 ... Memory, 61 ... Electrolyte tank, 62 ... Electrolyte, 63 ... Cathode roller, 64 ... Insoluble anode, 65 ... Metallic copper, 66
…Copper foil

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 箔の製造装置に設ける箔厚み連続測定装
置において、10μCi以下の55Feからなる密封型放
射線同位体の線源、該線源とは箔の反対側に設けた電離
放射線の検出器、該線源および該検出器を同期して箔の
幅方向に走査させる移動装置、箔の検出位置の箔端部か
らの距離を示す信号または端部からの経過時間を示す信
号を発生する信号発生装置、信号発生装置が発生する信
号によって、該検出器から得られる検出信号を積算する
計数装置の積算チャンネルを切り換える信号切換装置、
各チャンネル毎に積算した計数値から箔の厚みを演算す
る演算装置、箔の厚みの分布を出力する出力装置を有す
ることを特徴とする箔厚み連続測定装置。
1. A foil thickness continuous measuring apparatus provided in a foil manufacturing apparatus, wherein a radiation source of a sealed radioisotope consisting of 55 Fe of 10 μCi or less, and ionizing radiation provided on the opposite side of the foil from the radiation source are detected. Device, a moving device that synchronously scans the radiation source and the detector in the width direction of the foil, and generates a signal indicating the distance from the edge of the foil at the detection position of the foil or a signal indicating the elapsed time from the edge. A signal generating device, a signal switching device for switching an integrating channel of a counting device for accumulating detection signals obtained from the detector by a signal generated by the signal generating device,
A foil thickness continuous measuring device comprising: an arithmetic unit for calculating the foil thickness from a count value accumulated for each channel; and an output unit for outputting the distribution of the foil thickness.
【請求項2】 移動装置が線源と検出器の相対的な位置
を変化させずに箔の幅方向に走査する機構を有すること
を特徴とする請求項1記載の箔厚み連続測定装置。
2. The continuous foil thickness measuring device according to claim 1, wherein the moving device has a mechanism for scanning in the width direction of the foil without changing the relative positions of the radiation source and the detector.
【請求項3】 箔の端部を検出器の信号によって検出す
ることを特徴とする請求項1記載の箔厚み連続測定装
置。
3. The continuous foil thickness measuring device according to claim 1, wherein the edge of the foil is detected by a signal from a detector.
【請求項4】 検出器には、長波長の散乱X線を透過し
ないフィルターを有することを特徴とする請求項1記載
の箔厚み連続測定装置。
4. The continuous foil thickness measuring device according to claim 1, wherein the detector has a filter that does not transmit scattered X-rays having a long wavelength.
【請求項5】 線源及び検出器には散乱を防ぐフードを
取り付けたことを特徴とする請求項1記載の箔厚み連続
測定装置。
5. The continuous foil thickness measuring device according to claim 1, wherein a hood for preventing scattering is attached to the radiation source and the detector.
【請求項6】 箔が電解金属箔であることを特徴とする
請求項1記載の箔厚み連続測定装置。
6. The continuous foil thickness measuring device according to claim 1, wherein the foil is an electrolytic metal foil.
JP03255509A 1991-10-02 1991-10-02 Continuous foil thickness measuring device Expired - Fee Related JP3103399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03255509A JP3103399B2 (en) 1991-10-02 1991-10-02 Continuous foil thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03255509A JP3103399B2 (en) 1991-10-02 1991-10-02 Continuous foil thickness measuring device

Publications (2)

Publication Number Publication Date
JPH0593617A true JPH0593617A (en) 1993-04-16
JP3103399B2 JP3103399B2 (en) 2000-10-30

Family

ID=17279745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03255509A Expired - Fee Related JP3103399B2 (en) 1991-10-02 1991-10-02 Continuous foil thickness measuring device

Country Status (1)

Country Link
JP (1) JP3103399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2759594C2 (en) * 1977-03-02 1993-05-13 Tetsuya Tokio/Tokyo Jp Tada Spray gun assembly with trigger
CN102706296A (en) * 2012-03-21 2012-10-03 马钢(集团)控股有限公司 Detecting device and detecting method for thickness uniformity of silicon steel in width direction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2759594C2 (en) * 1977-03-02 1993-05-13 Tetsuya Tokio/Tokyo Jp Tada Spray gun assembly with trigger
CN102706296A (en) * 2012-03-21 2012-10-03 马钢(集团)控股有限公司 Detecting device and detecting method for thickness uniformity of silicon steel in width direction

Also Published As

Publication number Publication date
JP3103399B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US3984679A (en) Coating thickness monitor for multiple layers
US5255302A (en) Foil-thickness measuring device
US3056027A (en) Apparatus for measuring the thickness of a deposit
CN114720324B (en) Method, device and system for detecting net coating amount of lithium battery pole piece
US3914607A (en) Thickness measuring apparatus and method for tire ply and similar materials
EP0703632A1 (en) Apparatus for coating pasty mixture and method for coating the pasty mixture
US4129778A (en) Method and apparatus for measuring the thickness of a non-metallic coating on a plated metal plate
JP3103399B2 (en) Continuous foil thickness measuring device
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
DE10048398A1 (en) X-ray fluorescence spectrometer for X-ray sample analysis has correction calculator that corrects numerical value of pulses based on fixed counting time in response to generated selection signal
Bushnin et al. A hodoscope spectrometer for high-energy photons
DE2812995C3 (en) Backscatter measuring device for measuring the thickness of a layer
EP2492650A1 (en) Apparatus for detecting and displaying varying levels of a metal melt
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
DE69705244T2 (en) METHOD FOR DETERMINING THE SEALING PROFILE
EP0070974B1 (en) Method and device for the non destructive determination of the thickness of the iron-tin intermediate layer of electrolytically tinned sheet metal
JPS61259151A (en) X-ray analyser
US3716715A (en) Thickness measurements using the mossbauer effect
Syke A gamma ray thickness gauge for hot steel strips and tubes
JP2002098656A (en) On-line measurement method and device of amount of adhesion of metal phase contained in plated layer
JP2000065944A (en) X-ray energy-measuring apparatus of handy type
JPS60230009A (en) Radiation thickness gauge
JP2007051978A (en) Measuring device and method of coated sheet using x-ray inspection
KR200310810Y1 (en) The measuring apparatus of the coating amount on strip
US4587667A (en) Method and apparatus for inspection by radioactive gage of a moving strip of material, in particular a strip of rubber for tires

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees