JPH0593541A - Operation controlling method of heat storage system refrigerating cycle apparatus - Google Patents

Operation controlling method of heat storage system refrigerating cycle apparatus

Info

Publication number
JPH0593541A
JPH0593541A JP3253251A JP25325191A JPH0593541A JP H0593541 A JPH0593541 A JP H0593541A JP 3253251 A JP3253251 A JP 3253251A JP 25325191 A JP25325191 A JP 25325191A JP H0593541 A JPH0593541 A JP H0593541A
Authority
JP
Japan
Prior art keywords
heat
heat storage
cooling
amount
cooling operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3253251A
Other languages
Japanese (ja)
Other versions
JP2710883B2 (en
Inventor
Katsuto Fujiwara
克仁 藤原
Akihisa Nakaso
暁尚 中曽
Hiroaki Hama
宏明 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kajima Corp
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kajima Corp
Priority to JP3253251A priority Critical patent/JP2710883B2/en
Publication of JPH0593541A publication Critical patent/JPH0593541A/en
Application granted granted Critical
Publication of JP2710883B2 publication Critical patent/JP2710883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method for controlling an operation in a heat storage system refrigerating cycle apparatus which can effectively cool with an inexpensive midnight power fee by alleviating power using amount in a daytime by more efficiently using storage heat amount stored in a heat storage medium by a heat storage operation in a midnight power time zone. CONSTITUTION:A heat storage amount stored in a heat storage medium is used by a heat storage operation in a midnight power time zone by a heat storage system refrigerating cycle apparatus having a general cooling circuit, a liquid overcooling room cooler circuit, a cold storage condenser circuit and a heat storage circuit. Whether it is the midsummer or not is judged by electric control means, and the apparatus is controlled by switching a liquid overcooling room cooling operation, a cold storage condensing operation, a general room cooling operation by the electric control means as required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蓄熱式冷凍サイクル装置
におけるシステム制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system control method for a heat storage type refrigeration cycle apparatus.

【0002】[0002]

【従来の技術】例えば特開昭63−116055号公報に示され
ているような蓄熱式冷凍装置では、冷媒循環ポンプをす
べての運転モードにて稼働しなければならず、また冷凍
サイクルの最大能力を賄うだけの冷媒循環量を確保しな
ければならない。このことは省エネルギーに反するばか
りでなく、冷媒循環ポンプのトラブル時に冷房運転を停
止しなければならないといった問題があった。
2. Description of the Related Art In a heat storage type refrigerating apparatus as disclosed in, for example, Japanese Patent Laid-Open No. 63-116055, the refrigerant circulation pump must be operated in all operation modes, and the maximum capacity of the refrigerating cycle is required. It is necessary to secure a sufficient amount of refrigerant circulation to cover the above. This is not only against energy saving, but also has a problem that the cooling operation must be stopped when the refrigerant circulation pump has a trouble.

【0003】そこで、上記のような問題点を解決した装
置として、図10〜図15に示すような蓄熱式冷凍サイクル
装置が開発されている。この装置は、図11に示すように
構成されている。すなわち、1は圧縮機、2は熱源側熱
交換器、3は第1の絞り装置、4はエアコンの室内機な
どの利用側熱交換器、5はアキュムレータで、上記機器
1〜4と順次接続されて冷凍サイクルを形成している。
また、6は蓄熱槽で内部に蓄熱媒体7、例えば水を収納
している。8は蓄熱媒体7を、蓄熱槽6と蓄熱用熱交換
器9の間で循環させる蓄熱媒体循環ポンプ、10は蓄熱用
バイパス路で、蓄熱用熱交換器9を有し、圧縮機1の吸
入側と熱源側熱交換器2の出口側とを接続している。10
a、10b、10cは蓄熱用バイパス路用の開閉装置、11は
熱源側熱交換器2の出口側と蓄熱用熱交換器9の入口側
との間に設けられた第2の絞り装置、12は、第2の絞り
装置11の入口側と出口側とを接続する第2の絞り装置用
バイパス路、12aは第2の絞り装置用バイパス路用の開
閉装置、13は、一端が蓄熱用熱交換器9の出口側と開閉
装置10bとの間に、また他端が開閉装置10cと第1の絞
り装置3の入口側との間に接続された第1の蓄熱利用用
バイパス路、13aは、その第1の蓄熱利用用バイパス路
用の開閉装置である。
Therefore, as a device for solving the above problems, a heat storage type refrigeration cycle device as shown in FIGS. 10 to 15 has been developed. This device is configured as shown in FIG. That is, 1 is a compressor, 2 is a heat source side heat exchanger, 3 is a first expansion device, 4 is a usage side heat exchanger such as an indoor unit of an air conditioner, and 5 is an accumulator, which is sequentially connected to the above devices 1 to 4. The refrigeration cycle is formed.
A heat storage tank 6 stores a heat storage medium 7, for example, water therein. Reference numeral 8 denotes a heat storage medium circulation pump that circulates the heat storage medium 7 between the heat storage tank 6 and the heat storage heat exchanger 9, and 10 denotes a heat storage bypass passage that has the heat storage heat exchanger 9 and is sucked by the compressor 1. Side and the outlet side of the heat source side heat exchanger 2 are connected. Ten
a, 10b, 10c are switchgear for heat storage bypass passage, 11 is a second expansion device provided between the outlet side of the heat source side heat exchanger 2 and the inlet side of the heat storage heat exchanger 9, 12 Is a second bypass passage for the throttle device that connects the inlet side and the outlet side of the second throttle device 11, 12a is an opening / closing device for the second bypass passage for the throttle device, and 13 is heat storage heat for one end. A first heat storage bypass path 13a connected between the outlet side of the exchanger 9 and the switchgear 10b, and the other end connected between the switchgear 10c and the inlet side of the first expansion device 3, 13a The first opening / closing device for the bypass path for utilizing heat storage.

【0004】上記のような構成の蓄熱式冷凍サイクル装
置によって夜間の運転となる蓄熱運転時には、図12に示
すように、開閉装置10c、12a、13aを閉じ、開閉装置
10a、10bを開き、圧縮機1及び蓄熱媒体循環ポンプ8
を運転させると、圧縮機1よりの高温高圧ガス冷媒は、
熱源側熱交換器2で放熱、自身は凝縮液化し、第2の絞
り装置11で断熱膨張し、低温の液ガス二相流体となって
蓄熱用熱交換器9に入り、蓄熱媒体7から熱を奪い、自
身は蒸発ガス化して、アキュムレータ5を経て圧縮機1
に戻る。かかる動作により、蓄熱媒体7中の水を凍結さ
せるなどにより低温の熱を蓄える。
At the time of heat storage operation which is the nighttime operation by the heat storage type refrigeration cycle apparatus having the above-mentioned structure, as shown in FIG. 12, the opening / closing devices 10c, 12a and 13a are closed and the opening / closing device is opened.
Open 10a, 10b, compressor 1 and heat storage medium circulation pump 8
Is operated, the high-temperature high-pressure gas refrigerant from the compressor 1 becomes
The heat is dissipated in the heat source side heat exchanger 2, condensed and liquefied by itself, and adiabatically expanded in the second expansion device 11 to become a low temperature liquid gas two-phase fluid and enter the heat storage heat exchanger 9 to generate heat from the heat storage medium 7. The gas from the compressor 1 via the accumulator 5
Return to. By this operation, low temperature heat is stored by freezing the water in the heat storage medium 7.

【0005】また、液過冷却冷房運転時は、図13に示す
ように開閉装置10b、10cを閉じ、開閉装置10a、12
a、13aを開き、圧縮機1と蓄熱媒体循環ポンプ8を運
転させると、圧縮機1よりの高温高圧ガス冷媒は、熱源
側熱交換器2で放熱、自身は凝縮液化し、第2の絞り装
置用バイパス路12を経て蓄熱用交換器9に入る。ここで
蓄熱媒体循環ポンプ8により送り込まれた蓄熱媒体7に
より液冷媒は更に冷却され、過冷却された液となって第
1の絞り装置3に送られ、ここで断熱膨張し低温の液ガ
ス二相流体となって利用側熱交換器4に入り、ここで周
囲より熱を奪って冷房し、自身は蒸発してガス化し、ア
キュムレータ5を経て圧縮機1に戻る。この時の動作を
モリエル線図上に表すと、図14に示すように、過冷却エ
ンタルピ分だけ横に広がった形の運転となり、圧縮機入
力エンタルピΔidはその儘で冷房のための蒸発エンタ
ルピΔi1からΔi2に増大する。
Further, during the liquid subcooling cooling operation, the opening / closing devices 10b, 10c are closed as shown in FIG.
When a and 13a are opened and the compressor 1 and the heat storage medium circulation pump 8 are operated, the high-temperature high-pressure gas refrigerant from the compressor 1 radiates heat in the heat source side heat exchanger 2 and condenses itself into the second throttle. It enters the heat storage exchanger 9 through the device bypass passage 12. Here, the liquid refrigerant is further cooled by the heat storage medium 7 sent by the heat storage medium circulation pump 8 and becomes a supercooled liquid which is sent to the first expansion device 3, where it is adiabatically expanded and cooled to a low temperature liquid gas two. It becomes a phase fluid and enters the utilization side heat exchanger 4, where heat is taken from the surroundings to be cooled, and itself evaporates and gasifies, and then returns to the compressor 1 via the accumulator 5. When the operation at this time is represented on the Mollier diagram, as shown in FIG. 14, the operation is expanded laterally by the supercooling enthalpy, and the compressor input enthalpy Δid is the same as the evaporation enthalpy Δi1 for cooling. To Δi2.

【0006】また、一般冷房の冷凍サイクル運転時は、
図15に示すように開閉装置10a、13a、14aを閉じ、開
閉装置10b、10c、12aを開き、蓄熱媒体循環ポンプ8
は停止したまま、圧縮機1を運転させると、圧縮機1よ
りの高高圧ガス冷媒は、熱源側熱交換器2で放熱、自身
は凝縮液化し、第2の絞り装置用バイパス路12を経て第
1の絞り装置3に送られ、ここで断熱膨張し低温の液ガ
ス二相流体となって利用側交換器4に入り、ここで周囲
より熱を奪って冷房し、自身は蒸発してガス化し、アキ
ュムレータ5を経て圧縮機1に戻る。上述のような各々
運転により、この従来の装置の運転制御方法としては図
10に示すような運転制御が行われる。すなわち、冷房運
転を開始し、前記液過冷却冷房回路による液過冷却冷房
運転を行うと共に、前記蓄熱回路による蓄熱運転によっ
て蓄熱媒体に蓄熱された蓄熱量の残熱量が所定量有るか
否かを電気制御手段によって判断し、残熱量が所定量有
れば引き続き液過冷却冷房運転を続行し、残熱量が所定
量無ければ前記一般冷房冷却運転に切り替えて一般冷房
冷却運転を行う。上記のようにして運転制御されるこの
装置では、一般冷却運転時の能力よりも液過冷却冷房運
転時の能力の方が過冷却された熱量分だけ大きい。従っ
て設備の容量は液過冷却運転時の性能によって決定され
る。また装置の一般的な運転は、夜間に深夜電力によっ
て蓄熱運転を行い、この蓄熱運転によって蓄熱媒体に蓄
熱された蓄熱量の残熱量が所定量有る場合は液過冷却冷
房運転を行い、蓄熱残量が無くなったとき、或いは蓄熱
利用運転時間帯に入る前の蓄熱量の温存を要するときは
一般冷房の冷凍サイクル運転にて冷房するようにしてい
る。
During the refrigeration cycle of general cooling,
As shown in FIG. 15, the opening / closing devices 10a, 13a, 14a are closed, the opening / closing devices 10b, 10c, 12a are opened, and the heat storage medium circulation pump 8
When the compressor 1 is operated while stopped, the high-pressure gas refrigerant from the compressor 1 dissipates heat in the heat source side heat exchanger 2, condenses itself into liquid, and passes through the second throttle device bypass passage 12. It is sent to the first expansion device 3, where it adiabatically expands to become a low-temperature liquid gas two-phase fluid and enters the utilization side exchanger 4, where it takes heat from the surroundings to cool it, and evaporates itself to form gas. And returns to the compressor 1 through the accumulator 5. As a method of controlling the operation of this conventional device by each operation as described above,
Operation control as shown in 10 is performed. That is, the cooling operation is started, and the liquid supercooling cooling operation by the liquid supercooling cooling circuit is performed, and whether or not the residual heat amount of the heat storage amount stored in the heat storage medium by the heat storage operation by the heat storage circuit is a predetermined amount or not. When judged by the electric control means, if the residual heat amount is a predetermined amount, the liquid subcooling cooling operation is continued. If the residual heat amount is not the predetermined amount, the general cooling operation is switched to the general cooling operation. In this device which is operation-controlled as described above, the capacity during the liquid subcooling cooling operation is larger than the capacity during the general cooling operation by the amount of heat of supercooling. Therefore, the capacity of the equipment is determined by the performance during liquid subcooling operation. In addition, the general operation of the device is to perform heat storage operation at midnight at night, and perform liquid subcooling cooling operation when there is a predetermined amount of residual heat stored in the heat storage medium by this heat storage operation, and perform heat storage residual operation. When the amount is exhausted or when it is necessary to preserve the heat storage amount before entering the heat storage utilization operation time zone, cooling is performed by the refrigeration cycle operation of general cooling.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の蓄熱式冷凍サイクル装置では、その構成から蓄熱運
転によって蓄熱媒体に蓄熱された蓄熱量の利用は、液過
冷却冷房運転によってのみ利用されていた。この液過冷
却冷房運転の場合、図14に示すように、蓄熱利用率はΔ
u /Δi2 、すなわち0.2 〜0.3 程度であるが、蓄熱
利用率は軽負荷時であっても同程度である。従って、蓄
熱残量が十分にあっても、同じ割合でしか利用しないた
め、負荷が軽くなると蓄熱量が余ってくることになる。
このことは上記従来の蓄熱式冷凍サイクル装置では、蓄
熱槽の大きさの割りには蓄熱を効率良く利用することが
できず、蓄熱利用といいながらも夜間電力の利用による
経済的効果は不十分であり、昼間の電力抑制が十分でな
い社会では課題を残したままとなっている。本発明は上
記のような点に鑑みて開発されたものであり、その目的
とする処は、深夜電力時間帯に蓄熱運転によって蓄熱媒
体に蓄熱された蓄熱量をより効率よく利用して昼間の電
力使用量を軽減させ、安価な深夜電力料金でより効果的
に冷却冷房を行うことができるようにした蓄熱式冷凍サ
イクル装置における運転制御方法を提供することにあ
る。
However, in the above conventional heat storage type refrigeration cycle apparatus, the heat storage amount stored in the heat storage medium by the heat storage operation is utilized only in the liquid subcooling cooling operation due to its configuration. .. In the case of this liquid subcooling cooling operation, the heat storage utilization factor is Δ
i u / Δi 2 , that is, about 0.2 to 0.3, but the heat storage utilization rate is about the same even when the load is light. Therefore, even if the remaining amount of heat storage is sufficient, it is used only at the same rate, so that the amount of heat storage will become surplus when the load becomes light.
This means that in the above conventional heat storage refrigeration cycle device, heat storage cannot be efficiently used for the size of the heat storage tank, and although it is called heat storage use, the economic effect of using nighttime electric power is insufficient. Therefore, the problem remains in the society where the power control during the daytime is not sufficient. The present invention has been developed in view of the above points, and its purpose is to use the heat storage amount stored in the heat storage medium by the heat storage operation during the midnight power time more efficiently during the daytime. It is an object of the present invention to provide an operation control method for a heat storage type refrigeration cycle apparatus that reduces the amount of power used and can more effectively perform cooling and cooling at an inexpensive midnight power rate.

【0008】[0008]

【課題を解決するための手段】そこで、本発明は上記目
的を有効に達するために、次のような構成にしてある。
すなわち、圧縮機、熱源側熱交換器、第1の絞り装置、
及び利用側熱交換器を順次接続して形成された冷凍サイ
クルと、蓄熱用熱交換器を有し上記圧縮機の吸入側と、
上記熱源側熱交換器の出口側とを接続する蓄熱用バイパ
ス路と、上記熱源側熱交換器の出口側と上記蓄熱用熱交
換器の入口側との間に設けられた第2の絞り装置と、こ
の第2の絞り装置の入口側と出口側とを接続する第2の
絞り装置用バイパス路と、内部に蓄熱媒体を収容し上記
蓄熱用熱交換器と熱交換可能に設けられた蓄熱槽と、上
記蓄熱用熱交換器の出口側と上記第1の絞り装置の入口
側とを接続する第1の蓄熱利用用バイパス路と、冷媒循
環ポンプを有し上記蓄熱用熱交換器の入口側と上記第1
の絞り装置の入口側とを接続する第2の蓄熱利用用バイ
パス路とを備えた蓄熱式冷凍サイクル装置によって、冷
房運転を開始し、電気制御手段により、初期設定された
所定期間内か否かで盛夏か否かを判断し、盛夏であれば
前記圧縮機から熱源側熱交換器、第2の絞り装置用バイ
パス路、蓄熱用熱交換器、第1の蓄熱利用用バイパス
路、第1の絞り装置、及び利用側熱交換器を介して上記
圧縮機へ至る液過冷却冷房回路によって液過冷却冷房運
転を行うと共に、深夜電力時間帯に前記圧縮機から熱源
側熱交換器、第2の絞り装置、及び蓄熱用熱交換器を介
して上記圧縮機へ至る蓄熱回路による蓄熱運転によって
蓄熱媒体に蓄熱された蓄熱量の残熱量が所定量有るか否
かを前記電気制御手段によって判断し、残熱量が所定量
有れば引き続き前記液過冷却冷房運転を続行し、残熱量
が所定量無ければ前記冷凍サイクルを形成する冷却回路
による一般冷房冷却運転に切り替え、一般冷房冷却運転
を行うようにし、一方、前記盛夏でないと判定した場
合、前記第2の蓄熱利用用バイパス路、第1の絞り装
置、利用側熱交換器、及び蓄熱用熱交換器を介して冷媒
循環ポンプへ至る蓄冷凝縮回路によって蓄冷凝縮冷房運
転を行うと共に、前記蓄熱残量が所定量有るか否かを前
記電気制御手段によって判断し、蓄熱残量が所定量有れ
ば引き続き上記蓄冷凝縮冷房運転を続行し、蓄熱残量が
所定量無ければ前記一般冷房冷却運転を行うようにした
構成である。
In order to effectively achieve the above object, the present invention has the following structure.
That is, the compressor, the heat source side heat exchanger, the first expansion device,
And a refrigeration cycle formed by sequentially connecting the use side heat exchangers, and a suction side of the compressor having a heat storage heat exchanger,
A heat storage bypass path connecting the outlet side of the heat source side heat exchanger, and a second expansion device provided between the outlet side of the heat source side heat exchanger and the inlet side of the heat storage heat exchanger. And a second bypass passage for the expansion device that connects the inlet side and the exit side of the second expansion device, and a heat storage device that accommodates a heat storage medium therein and is capable of exchanging heat with the heat storage heat exchanger. An inlet of the heat storage heat exchanger having a tank, a first heat storage use bypass passage connecting the outlet side of the heat storage heat exchanger and the inlet side of the first expansion device, and a refrigerant circulation pump. Side and above first
Whether or not it is within a predetermined period initially set by the electric control means by the heat storage type refrigeration cycle device having the second heat storage utilization bypass path connecting to the inlet side of the expansion device It is determined whether or not it is midsummer. If it is midsummer, the heat source side heat exchanger, the second expansion device bypass path, the heat storage heat exchanger, the first heat storage bypass path, and the first heat storage side The liquid supercooling cooling operation is performed by the liquid supercooling cooling circuit reaching the compressor via the expansion device and the utilization side heat exchanger, and at the same time as the midnight power time zone, the heat source side heat exchanger and the heat source side heat exchanger are provided. Throttling device, and determines by the electrical control means whether there is a predetermined amount of residual heat amount of the heat storage amount stored in the heat storage medium by the heat storage operation by the heat storage circuit to the compressor through the heat storage heat exchanger, If there is a certain amount of residual heat, continue Continue the supercooling cooling operation, if the residual heat amount is not a predetermined amount, switch to the general cooling cooling operation by the cooling circuit forming the refrigeration cycle, to perform the general cooling cooling operation, on the other hand, if it is determined not to be the midsummer, The cold storage condensing and cooling operation is performed by the cold storage condensing circuit that reaches the refrigerant circulation pump through the second heat storage utilization bypass path, the first expansion device, the use side heat exchanger, and the heat storage heat exchanger, and the heat storage is performed. Whether or not there is a predetermined amount of remaining amount is determined by the electric control means, and if the remaining amount of heat storage is a predetermined amount, the cold storage condensation cooling operation is continued, and if the remaining amount of heat storage is not the predetermined amount, the general cooling cooling operation is performed. The configuration is such that

【0009】また、前記蓄熱式冷凍サイクル装置によ
り、冷房運転を開始し、電気制御手段によって、室温の
冷却速度が所定値以上、または所定時間内に設定室温以
下になったか否かを判断し、室温の冷却速度が所定値以
上または所定時間内に設定室温以下になったとき以外で
あれば盛夏と判定して、前記液過冷却冷房回路によって
液過冷却冷房運転を行うと共に、冷房能力が過剰か否か
を、前記圧縮機の容量制御が働いてインバータの出力周
波数が所定値以下になったか否かによって判断し、イン
バータの出力周波数が所定値以下になったときは冷房能
力過剰と判定して、上記液過冷却冷房運転から前記蓄冷
凝縮回路による蓄冷凝縮冷房運転に切り替え、この蓄熱
凝縮冷房運転中に冷房負荷過剰か否かを冷媒の蒸発温度
が上昇したか否かによって判断し、冷媒の蒸発温度が上
昇しはじめたら冷房負荷過剰と判定して再び前記液過冷
却冷房運転に切り替え、冷房負荷過剰でないと判定した
時は、前記蓄熱回路による蓄熱運転によって蓄熱媒体に
蓄熱された蓄熱量の残熱量が所定量有るか否かを前記電
気制御手段によって判断し、残熱量が所定量有れば引き
続き前記蓄冷凝縮冷房運転を続行し、残熱量が所定量無
ければ前記冷却回路による一般冷房冷却運転に切り替
え、一般冷却冷房運転を行うようにし、また、前記冷房
能力が過剰過剰でないと判定した場合、前記蓄熱媒体に
蓄熱された蓄熱量の残熱量が所定量有るか否かを前記電
気制御手段によって判断し、残熱量が所定量有れば引き
続き前記液過冷却冷房運転を続行し、残熱量が所定量無
いと判断した場合は、前記一般冷房冷却運転に切り替
え、一般冷却冷房運転を行うようにし、一方、前記盛夏
でないと判定した場合は、前記蓄冷凝縮冷房運転を行
い、この蓄熱凝縮冷房運転中に前記した冷房負荷過剰か
否かを判断し、冷房負荷過剰と判定した場合は前記液過
冷却冷房運転に切り替え、また、冷房負荷過剰でないと
判定した場合、前記した残熱量が所定量有るか否かを前
記電気制御手段によって判断し、残熱量が所定量有れば
引き続き前記蓄冷凝縮運転を続行し、残熱量が所定量無
ければ前記冷却回路による一般冷房冷却運転に切り替
え、一般冷却冷房運転を行うようにした構成でもある。
Further, the heat storage type refrigeration cycle apparatus starts the cooling operation, and the electric control means judges whether or not the cooling rate of the room temperature becomes equal to or higher than a predetermined value or becomes equal to or lower than the set room temperature within a predetermined time, Except when the cooling rate of the room temperature is equal to or higher than a predetermined value or becomes lower than the set room temperature within a predetermined time, it is determined that it is midsummer, and the liquid subcooling cooling circuit performs the liquid subcooling cooling operation, and the cooling capacity is excessive. It is determined whether or not the output frequency of the inverter is below a predetermined value due to the capacity control of the compressor, and it is determined that the cooling capacity is excessive when the output frequency of the inverter is below a predetermined value. Then, the liquid subcooling cooling operation is switched to the cold storage condensation cooling operation by the cold storage condensation circuit, and whether the cooling load is excessive during this heat storage condensation cooling operation is determined by whether or not the evaporation temperature of the refrigerant has risen. Therefore, when the evaporation temperature of the refrigerant starts to rise, it is determined that the cooling load is excessive and the liquid subcooling cooling operation is switched again, and when it is determined that the cooling load is not excessive, the heat storage medium by the heat storage operation is performed. It is determined by the electric control means whether or not there is a predetermined amount of residual heat amount of the stored heat amount, and if the residual heat amount is a predetermined amount, the cold storage condensation cooling operation is continued, and if the residual heat amount is not the predetermined amount. When the general cooling / cooling operation is switched to the general cooling / cooling operation by the cooling circuit and the general cooling / cooling operation is performed, and when it is determined that the cooling capacity is not excessive or excessive, the residual heat amount of the heat storage amount stored in the heat storage medium is a predetermined amount. Whether or not it is determined by the electric control means, if the residual heat amount is a predetermined amount, the liquid subcooling cooling operation is continued, and if it is determined that the residual heat amount is not the predetermined amount, the general cooling cooling is performed. In order to perform the general cooling and cooling operation, on the other hand, when it is determined that it is not the midsummer, the cold storage condensation cooling operation is performed, and it is determined whether the cooling load is excessive during the heat storage condensation cooling operation. When it is determined that the cooling load is excessive, the liquid subcooling cooling operation is switched to, and when it is determined that the cooling load is not excessive, it is determined by the electric control means whether or not the residual heat amount is a predetermined amount, and If there is a predetermined amount of heat, the cold storage condensing operation is continued, and if there is no predetermined amount of residual heat, the cooling circuit is switched to the general cooling / cooling operation to perform the general cooling / cooling operation.

【0010】更には上記並びに前記構成の冷房運転開始
時に所定時間、前記液過冷却冷房運転を行うようにした
構成でもある。
Further, the liquid subcooling cooling operation is performed for a predetermined time at the start of the cooling operation of the above and the above configuration.

【0011】[0011]

【作用】上述のような構成により、盛夏か否かを電気制
御手段によって初期設定された所定期間内か否かによっ
て判定し、前記蓄熱式冷凍サイクル装置を運転制御する
場合は、先ず深夜電力時間帯に蓄熱回路による蓄熱運転
によって蓄熱媒体に蓄熱しておき、蓄熱式冷凍サイクル
装置の冷房運転開始により、電気制御手段によって盛夏
か否かを判定し、盛夏で有れば液過冷房冷却運転を行
い、盛夏で無ければ蓄冷凝縮冷房運転を行う。またそれ
ぞれの運転中に前記蓄熱運転によって蓄熱媒体に蓄熱さ
れた蓄熱量の残熱量が所定量有るか否かを判定し、残熱
量が所定量有れば上記それぞれの運転を続行し、無けれ
ば一般冷房冷却運転に切り替える。
With the above-described structure, whether or not it is a midsummer is determined by whether or not it is within a predetermined period initially set by the electric control means, and when the operation of the heat storage refrigeration cycle apparatus is controlled, first, the midnight power time is set. The heat is stored in the heat storage medium by the heat storage operation by the heat storage circuit in the zone, and by the start of the cooling operation of the heat storage type refrigeration cycle device, it is judged whether or not it is the high summer by the electric control means, and if it is the high summer, the liquid subcooling cooling operation If it is not midsummer, cool storage condensation cooling operation is performed. Also, during each operation, it is determined whether or not the residual heat amount of the heat storage amount stored in the heat storage medium by the heat storage operation is a predetermined amount, and if the residual heat amount is a predetermined amount, the respective operations are continued, and if there is not, Switch to general cooling and cooling operation.

【0012】また、盛夏か否かを電気制御手段によって
室温の冷却速度が所定値以上、または所定時間内に設定
室温以下になったか否かによって判定し、前記蓄熱式冷
凍サイクル装置を運転制御する場合は、先ず前記同様、
深夜電力時間帯に蓄熱回路による蓄熱運転によって蓄熱
媒体に蓄熱しておき、蓄熱式冷凍サイクル装置の冷房運
転開始により、電気制御手段によって上記冷却速度また
は室温の状態を検出して盛夏か否かを判定し、盛夏で有
れば液過冷房冷却運転を行い、盛夏で無ければ蓄冷凝縮
冷房運転を行う。
Further, whether or not it is a hot summer is judged by the electric control means whether or not the cooling rate of the room temperature becomes equal to or higher than a predetermined value or becomes equal to or lower than the set room temperature within a predetermined time, and the operation control of the heat storage type refrigeration cycle apparatus is performed. In the case, first of all,
It stores heat in the heat storage medium by the heat storage operation by the heat storage circuit in the midnight power time zone, and when the cooling operation of the heat storage type refrigeration cycle device starts, the electric control means detects the cooling rate or the state of room temperature to determine whether or not it is midsummer. If it is determined that it is midsummer, the liquid subcooling cooling operation is performed, and if it is not midsummer, the cold storage condensation cooling operation is performed.

【0013】上記液過冷房冷却運転中に冷房能力過剰か
否かを電気制御手段によって判定し、過剰であれば蓄冷
凝縮冷房運転に切り替え、過剰でなければ更に前記蓄熱
運転によって蓄熱媒体に蓄熱された蓄熱量の残熱量が所
定量有るか否かを判定し、残熱量が所定量有れば液過冷
房冷却運転を続行し、無ければ一般冷房冷却運転に切り
替える。また、上記蓄冷凝縮冷房運転中に冷房負荷過剰
か否かを電気制御手段によって判定し、過剰であれば液
過冷房冷却運転に切り替え、過剰でなければ更に前記蓄
熱運転によって蓄熱媒体に蓄熱された蓄熱量の残熱量が
所定量有るか否かを電気制御手段によって判定し、残熱
量が所定量有れば蓄冷凝縮冷房運転を続行し、無ければ
一般冷房冷却運転に切り替える。
During the above liquid supercooling cooling operation, whether or not the cooling capacity is excessive is judged by the electric control means, and if it is excessive, it is switched to the cold storage condensation cooling operation, and if it is not excessive, heat is further stored in the heat storage medium by the heat storage operation. It is determined whether or not the remaining heat amount of the stored heat amount is a predetermined amount, and if the remaining heat amount is a predetermined amount, the liquid subcooling cooling operation is continued, and if there is no remaining heat amount, it is switched to the general cooling operation. Further, during the cold storage condensation cooling operation, whether or not the cooling load is excessive is determined by the electric control means. If it is excessive, it is switched to the liquid subcooling cooling operation, and if it is not excessive, heat is further stored in the heat storage medium by the heat storage operation. Whether or not the residual heat amount of the stored heat amount is a predetermined amount is determined by the electric control means. If the residual heat amount is the predetermined amount, the cold storage condensation cooling operation is continued, and if there is no residual heat amount, it is switched to the general cooling operation.

【0014】また、上記各運転制御の場合において、冷
房運転開始時に先ず液過冷却冷房運転を所定時間行い、
この間に盛夏か否かを電気制御手段によって判定するた
めの諸要件の検出・演算等を行う。また、この場合の液
過冷却冷房運転は、運転開始時の蓄熱式冷凍サイクル装
置全体の慣らし運転としての働きもなす。
Further, in the case of each operation control described above, the liquid subcooling cooling operation is first performed for a predetermined time at the start of the cooling operation,
During this period, various requirements for detecting whether or not it is midsummer by the electric control means are calculated and calculated. Further, the liquid subcooling cooling operation in this case also functions as a running-in operation of the entire heat storage refrigeration cycle apparatus at the start of the operation.

【0015】[0015]

【実施例】以下、本発明の実施例を図1〜図9に基づい
て説明する。図1は本発明に係る蓄熱式冷凍サイクル装
置による一実施例の運転制御方法の流れ図であり、図2
は他の実施例の運転制御方法の流れ図である。また図3
は、この発明に蓄熱式冷凍装置のサイクルを示す説明図
であり、同図において、1は圧縮機、2は熱源側熱交換
器、3は第1の絞り装置、4はエアコンの室内機などの
利用側熱交換器、5はアキュムレータで、上記機器1〜
4と順次接続され、冷凍サイクルを形成している。6は
蓄熱槽で内部に蓄熱媒体7、例えば水を収納している。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a flow chart of an operation control method according to an embodiment of the heat storage type refrigeration cycle apparatus according to the present invention.
6 is a flow chart of an operation control method of another embodiment. See also FIG.
FIG. 1 is an explanatory view showing a cycle of a heat storage type refrigerating apparatus according to the present invention, in which 1 is a compressor, 2 is a heat source side heat exchanger, 3 is a first expansion device, 4 is an air conditioner indoor unit, etc. User side heat exchanger, 5 is an accumulator,
4 are sequentially connected to form a refrigeration cycle. A heat storage tank 6 stores a heat storage medium 7, for example, water therein.

【0016】8は蓄熱媒体循環ポンプであって、蓄熱媒
体7を蓄熱槽6と蓄熱用熱交換器9の間で循環させる。
10は蓄熱用バイパス路で、蓄熱用熱交換器9を有し、圧
縮機1の吸入側と熱源側熱交換器2の出口側とを接続し
ている。10a、10b、10cは蓄熱用バイパス路用の開閉
装置、11は第2の絞り装置であって、熱源側熱交換器2
の出口側と蓄熱用熱交換器9の入口側との間に設けられ
る。12は第2の絞り装置用バイパス路であって、第2の
絞り装置11の入口側と出口側とを接続する。12aは第2
の絞り装置用バイパス路用の開閉装置、13は第1の蓄熱
利用用バイパス路であって、一端が蓄熱用熱交換器9の
出口側と開閉装置10bとの間に、また他端が開閉装置10
cと第1の絞り装置3の入口側との間に接続されてい
る。13aはその第1の蓄熱利用用バイパス路用の開閉装
置、14は第2の蓄熱利用用バイパス路であって、一端が
蓄熱用熱交換器9の入口側と開閉装置10aとの間に、ま
た他端が開閉装置10cと第1の絞り装置3の入口側との
間に接続されている。14aは第2の蓄熱利用用バイパス
路用の開閉装置、15は冷媒循環ポンプであって、第2の
蓄熱利用用バイパス路14上に設けられ、その容量は蓄熱
凝縮運転時の必要循環量にて決定される。次に作用につ
いて説明する。
A heat storage medium circulating pump 8 circulates the heat storage medium 7 between the heat storage tank 6 and the heat storage heat exchanger 9.
Reference numeral 10 denotes a heat storage bypass path, which has a heat storage heat exchanger 9 and connects the suction side of the compressor 1 and the outlet side of the heat source side heat exchanger 2. Reference numerals 10a, 10b and 10c are heat storage bypass passage opening / closing devices, and 11 is a second expansion device for the heat source side heat exchanger 2
Is provided between the outlet side and the inlet side of the heat storage heat exchanger 9. Reference numeral 12 is a bypass passage for the second expansion device, which connects the inlet side and the outlet side of the second expansion device 11. 12a is the second
The opening / closing device for the bypass passage for the expansion device, 13 is the first bypass passage for heat storage, one end is between the outlet side of the heat storage heat exchanger 9 and the opening / closing device 10b, and the other end is the opening / closing device. Device 10
It is connected between c and the inlet side of the first expansion device 3. 13a is a switch device for the first heat storage use bypass passage, 14 is a second heat storage use bypass passage, and one end is between the inlet side of the heat storage heat exchanger 9 and the switch device 10a, The other end is connected between the opening / closing device 10c and the inlet side of the first expansion device 3. 14a is an opening / closing device for the second heat-storage-use bypass passage, and 15 is a refrigerant circulation pump, which is provided on the second heat-storage-use bypass passage 14, the capacity of which is the necessary circulation amount during the heat storage condensation operation. Will be decided. Next, the operation will be described.

【0017】図4は主として深夜電力時間帯の運転とな
る蓄熱運転時の動作を示す回路図であり、開閉装置10
c、12a、13a、14aを閉じ、開閉装置10a、10bを開
き、冷媒循環ポンプ15は停止したままで、圧縮機1及び
蓄熱媒体循環ポンプ8を運転させると、圧縮機1よりの
高温高圧ガス冷媒は、熱源側熱交換器2で放熱、自身は
凝縮液化し、第2の絞り装置11で断熱膨張し低温の液ガ
ス二相流体となって蓄熱用熱交換器9に入り、蓄熱媒体
7から熱を奪い、自身は蒸発ガス化して、アキュムレー
タ5を経て圧縮機1に戻る。かかる動作により、蓄熱媒
体7中の水を連結されるなどにより低温の熱を蓄える。
なおこの実施例では、強制対流型の蓄熱用熱交換器を採
用しているため蓄熱媒体循環ポンプを使っているが、一
般的に使用されている自然対流形に比べ効率が高く、ポ
ンプ動力の追加以上に圧縮機動力の低下が期待できるの
で、この方式を採用している。
FIG. 4 is a circuit diagram showing the operation during the heat storage operation, which is mainly the operation in the midnight power time zone.
When c, 12a, 13a, 14a are closed, switchgear 10a, 10b is opened, the refrigerant circulation pump 15 is stopped, and the compressor 1 and the heat storage medium circulation pump 8 are operated, the high temperature high pressure gas from the compressor 1 The refrigerant radiates heat in the heat source-side heat exchanger 2, condenses itself into a liquid, and adiabatically expands in the second expansion device 11 to become a low-temperature liquid-gas two-phase fluid, which enters the heat storage heat exchanger 9 and the heat storage medium 7 The heat is taken from the gas, and the gas is evaporated into gas and returns to the compressor 1 through the accumulator 5. By such an operation, low temperature heat is stored by connecting water in the heat storage medium 7 or the like.
In this embodiment, a heat storage medium circulation pump is used because a forced convection type heat storage heat exchanger is used, but the efficiency is higher than that of a generally used natural convection type pump, and This method is adopted because it can be expected to reduce the compressor power more than the addition.

【0018】図5、図7、図9は冷房運転の動作図であ
り、図5は蓄冷凝縮冷房運転時の回路図を示す。この場
合は開閉装置10a、10b、13aを閉じ、開閉装置10b、
14aを開き、圧縮機1は停止したままで、冷媒循環ポン
プ15と蓄熱媒体循環ポンプ8を運転させると、蓄熱用熱
交換器9にて凝縮液化した低温の液媒体は、冷媒循環ポ
ンプ15により第1の絞り装置3に送り込まれる。このと
き、複数の第1の絞り装置3の各々は、複数の利用側熱
交換器4に液が均等に分配されるように、自動的に開度
調節を行っている。利用側熱交換器4に入った低温低圧
側気液分離装置の液冷媒は、ここで周囲より熱を奪って
冷房し、自身は蒸発してガス化し蓄熱用熱交換器9に戻
り、蓄熱媒体循環ポンプ8により送り込まれた低温の蓄
熱媒体7により冷却され再び凝縮する。
FIGS. 5, 7, and 9 are operation diagrams of the cooling operation, and FIG. 5 is a circuit diagram during the cold storage condensation cooling operation. In this case, the switchgear 10a, 10b, 13a is closed, and the switchgear 10b,
When the refrigerant circulation pump 15 and the heat storage medium circulation pump 8 are operated with 14a opened and the compressor 1 stopped, the low temperature liquid medium condensed and liquefied in the heat storage heat exchanger 9 is generated by the refrigerant circulation pump 15. It is sent to the first diaphragm device 3. At this time, each of the plurality of first expansion devices 3 automatically adjusts the opening degree so that the liquid is evenly distributed to the plurality of usage-side heat exchangers 4. The liquid refrigerant of the low-temperature low-pressure side gas-liquid separation device, which has entered the use-side heat exchanger 4, takes heat from the surroundings and is cooled here, and evaporates and gasifies itself to return to the heat storage heat exchanger 9 to store the heat storage medium. It is cooled by the low temperature heat storage medium 7 sent by the circulation pump 8 and condensed again.

【0019】この時の動作をモリエル線図上に表すと、
図6に示すように、この蓄冷凝縮冷房運転は、蒸発作用
が、凝縮圧力より僅かに高いほぼ同等の圧力で行われ、
しかも熱輸送のほとんどを潜熱変化により賄うため、冷
媒循環ポンプ15は、液を循環させ得て且つ前述の液の均
等分配のための圧損を吸収することができる程度の掲程
を持つ、僅かな動力のポンプで済むこととなり、蓄熱媒
体からは、冷房のための蒸発エンタルピΔieとほぼ同
僚の凝縮エンタルピΔicを消費するだけの高C.O.
Pの運転を達成する。なお、図中の英記号は図5中に示
す位置の線図上の状態を示す。
When the operation at this time is shown on the Mollier diagram,
As shown in FIG. 6, in this cold storage condensation cooling operation, the evaporation action is performed at a pressure almost equal to or slightly higher than the condensation pressure,
Moreover, since most of the heat transfer is covered by the latent heat change, the refrigerant circulation pump 15 has a margin that allows the liquid to circulate and absorbs the pressure loss for equal distribution of the liquid. A power pump will suffice, and the heat storage medium will have a high C.I. to consume the evaporation enthalpy Δie for cooling and almost the condensation enthalpy Δic of a colleague. O.
Achieve P operation. The English symbols in the figure indicate the state on the diagram at the position shown in FIG.

【0020】図7は液過冷却冷房運転時の回路図を示
す。この場合は開閉装置10b、10cを閉じ、開閉装置10
a、12a、13aを開き、冷媒循環ポンプ15は停止したま
ま、圧縮機1と蓄熱媒体循環ポンプ8を運転させると、
圧縮機1よりの高温高圧ガス冷媒は、熱源側熱交換器2
で放熱、自身は凝縮液化し、第2の絞り装置用バイパス
路12を経て蓄熱用交換器9に入る。ここで蓄熱媒体循環
ポンプ8により送り込まれた蓄熱媒体7により液冷媒は
更に冷却され、過冷却された液となって第1の絞り装置
3に送られ、ここで断熱膨張し低温の液ガス二相流体と
なって利用側熱交換器4に入り、ここで周囲より熱を奪
って冷房し、自身は蒸発してガス化し、アキュムレータ
5を経て圧縮機1に戻る。この時の動作をモリエル線図
上に表すと、図8に示すように、過冷却エンタルピ分だ
け横に広がった形の運転となり、圧縮機入力エンタルピ
Δidはその儘で冷房のための蒸発エンタルピΔi1か
らΔi2に増大する。
FIG. 7 shows a circuit diagram during the liquid subcooling cooling operation. In this case, close the switchgear 10b, 10c,
When a, 12a, 13a are opened and the refrigerant circulation pump 15 is stopped and the compressor 1 and the heat storage medium circulation pump 8 are operated,
The high-temperature high-pressure gas refrigerant from the compressor 1 is transferred to the heat source side heat exchanger 2
Then, the heat is dissipated, and the condensed liquid itself enters the heat storage exchanger 9 through the second bypass passage 12 for the expansion device. Here, the liquid refrigerant is further cooled by the heat storage medium 7 sent by the heat storage medium circulation pump 8 and becomes a supercooled liquid which is sent to the first expansion device 3, where it is adiabatically expanded and cooled to a low temperature liquid gas two. It becomes a phase fluid and enters the utilization side heat exchanger 4, where heat is taken from the surroundings to be cooled, and itself evaporates and gasifies, and then returns to the compressor 1 via the accumulator 5. When the operation at this time is represented on the Mollier diagram, as shown in FIG. 8, the operation is expanded laterally by the supercooling enthalpy, and the compressor input enthalpy Δid is the same as the evaporation enthalpy Δi1 for cooling. To Δi2.

【0021】図9は一般冷房の冷凍サイクル運転時の回
路図を示す。この場合は開閉装置10a、13a、14aを閉
じ、開閉装置10b、10c、12aを開き、冷媒循環ポンプ
15と蓄熱媒体循環ポンプ8は停止したまま、圧縮機1を
運転させると、圧縮機1よりの高高圧ガス冷媒は、熱源
側熱交換器2で放熱、自身は凝縮液化し、第2の絞り装
置用バイパス路12を経て第1の絞り装置3に送られ、こ
こで断熱膨張し低温の液ガス二相流体となって利用側交
換器4に入り、ここで周囲より熱を奪って冷房し、自身
は蒸発してガス化し、アキュムレータ5を経て圧縮機1
に戻る。なお、このシステムの冷房能力は、従来の実施
例と同様、一般冷房の冷凍サイクル運転時の能力よりも
液過冷却冷房運転時の能力が、過冷却された熱量分大き
い。従って設備の容量は液過冷却冷房運転時の性能にて
決定し、システムの一般的な運転は、夜間に蓄熱運転を
行い、負荷が小さいときは蓄冷凝縮冷房運転にて冷房
し、負荷が大きいときは液過冷却冷房運転にて冷房し、
蓄熱が無くなったとき、或いは蓄熱利用運転時間帯に入
る前の蓄熱量の温存を要するときは一般冷房の冷凍サイ
クル運転にて冷房する。
FIG. 9 shows a circuit diagram during a refrigeration cycle operation of general cooling. In this case, switchgear 10a, 13a, 14a is closed, switchgear 10b, 10c, 12a is opened, refrigerant circulation pump
When the compressor 1 is operated with 15 and the heat storage medium circulation pump 8 stopped, the high-pressure high-pressure gas refrigerant from the compressor 1 radiates heat in the heat source side heat exchanger 2 and condenses itself into the second throttle. It is sent to the first expansion device 3 through the device bypass passage 12, where it is adiabatically expanded into a low-temperature liquid-gas two-phase fluid and enters the usage-side exchanger 4, where heat is taken from the surroundings and cooled. , Itself evaporates and gasifies, then passes through the accumulator 5 and the compressor 1
Return to. The cooling capacity of this system is larger than that in the refrigeration cycle operation of general cooling in the liquid supercooling / cooling operation by the amount of heat of supercooling, as in the conventional embodiment. Therefore, the capacity of the equipment is determined by the performance during liquid subcooling cooling operation, and the general operation of the system is to perform heat storage operation at night, and when the load is small, cool it by the cool storage condensation cooling operation, and the load is large. At this time, cooling by liquid subcooling cooling operation,
When there is no heat storage, or when it is necessary to save the amount of heat storage before entering the heat storage utilization operation time zone, cooling is performed by the refrigeration cycle operation of general cooling.

【0022】上記のような各々運転制御により、図1に
示す一実施例の運転制御方法では、前記蓄熱式冷凍サイ
クル装置によって、冷房運転を開始し、先ず10分間位、
前記液過冷却冷房運転を行う。そして、マイコン等の電
気制御手段により、初期設定された所定期間内(カレン
ダー上、設定した盛夏期間「例えば6/16日〜8/30日の期
間内」)か否かで盛夏か否かを判断し、盛夏であれば前
記液過冷却冷房回路によって液過冷却冷房運転を行うと
共に、深夜電力時間帯に前記蓄熱回路による蓄熱運転に
よって蓄熱媒体に蓄熱された蓄熱量の残熱量が所定量有
るか否かを前記電気制御手段によって判断し、残熱量が
所定量有れば引き続き前記液過冷却冷房運転を続行し、
残熱量が所定量無ければ前記冷却回路による一般冷房冷
却運転に切り替え、一般冷房冷却運転を行うようにす
る。
According to the operation control method of the embodiment shown in FIG. 1 by each operation control as described above, the cooling operation is started by the heat storage type refrigeration cycle apparatus, and first, for about 10 minutes,
The liquid subcooling cooling operation is performed. Then, whether or not it is the midsummer is determined by whether or not it is within an initially set predetermined period (on the calendar, the set midsummer period "for example, from 6/16 days to 8/30 days") by an electric control means such as a microcomputer. If it is a midsummer, the liquid subcooling cooling circuit performs the liquid subcooling cooling operation, and the residual heat amount of the heat storage amount stored in the heat storage medium by the heat storage operation by the heat storage circuit during the midnight power time period has a predetermined amount. Whether or not it is determined by the electric control means, if the residual heat amount is a predetermined amount, continue the liquid subcooling cooling operation,
If the residual heat amount is not a predetermined amount, the cooling circuit is switched to the general cooling / cooling operation to perform the general cooling / cooling operation.

【0023】一方、前記盛夏でないと判定した場合、前
記蓄冷凝縮回路によって蓄冷凝縮冷房運転を行うと共
に、前記蓄熱残量が所定量有るか否かを前記電気制御手
段によって判断し、蓄熱残量が所定量有れば引き続き上
記蓄冷凝縮冷房運転を続行し、蓄熱残量が所定量無けれ
ば前記一般冷房冷却運転を行い、所定時間経過後に任意
に一般冷房冷却運転を停止する。
On the other hand, when it is determined that it is not the midsummer, the cold storage condensation circuit performs the cold storage condensation cooling operation, and the electric control means determines whether or not the heat storage residual amount is a predetermined amount. If there is a predetermined amount, the above-mentioned cold storage condensation cooling operation is continued. If there is no predetermined amount of heat storage, the above general cooling operation is performed, and after a lapse of a predetermined time, the general cooling operation is arbitrarily stopped.

【0024】また、図2に示す他の実施例の運転制御方
法では、前記蓄熱式冷凍サイクル装置によって冷房運転
を開始し、前記実施例同様に先ず10分間位、前記液過冷
却冷房運転を行う。そして、マイコン等の電気制御手段
により、室温の冷却速度が10分間に5deg℃以上
か、または10分以内に設定室温以下になったか否かを判
断し、室温の冷却速度が10分間に5deg℃以上または10分
以内に設定室温以下になったとき以外であれば盛夏と判
定して、前記液過冷却冷房回路によって液過冷却冷房運
転を行うと共に、冷房能力が過剰か否かを、前記圧縮機
1の容量制御が働いてインバータの出力周波数がMax
値の1/2以下になったか否かによって判断し、インバ
ータの出力周波数がMax値の1/2以下になったとき
は冷房能力過剰と判定して、上記液過冷却冷房運転から
前記蓄冷凝縮回路による蓄冷凝縮冷房運転に切り替え
る。
In the operation control method of another embodiment shown in FIG. 2, the cooling operation is started by the heat storage type refrigeration cycle apparatus, and the liquid subcooling cooling operation is first performed for about 10 minutes as in the embodiment. .. Then, the electric control means such as a microcomputer determines whether the cooling rate of the room temperature is 5 deg ° C. or higher in 10 minutes or becomes the set room temperature or lower within 10 minutes, and the cooling rate of the room temperature is 5 deg ° C. in 10 minutes. It is determined that it is midsummer except when the temperature falls below the set room temperature within the above or within 10 minutes, and while performing liquid subcooling cooling operation by the liquid subcooling cooling circuit, whether or not the cooling capacity is excessive, the compression is performed. The output frequency of the inverter is Max due to the capacity control of the machine 1.
If the output frequency of the inverter becomes 1/2 or less of the Max value, it is determined that the cooling capacity is excessive, and the cooling supercooling operation is performed from the liquid subcooling cooling operation. Switch to cold storage condensation cooling operation by circuit.

【0025】この蓄熱凝縮冷房運転中に冷房負荷過剰か
否かを冷媒の蒸発温度が上昇したか否かによって判断
し、冷媒の蒸発温度が上昇しはじめたら冷房負荷過剰と
判定して再び前記液過冷却冷房運転に切り替え、冷房負
荷過剰でないと判定した時は、前記蓄熱回路による蓄熱
運転によって蓄熱媒体に蓄熱された蓄熱量の残熱量が所
定量有るか否かを前記電気制御手段によって判断し、残
熱量が所定量有れば引き続き前記蓄冷凝縮冷房運転を続
行する。
During this heat storage condensation cooling operation, whether or not the cooling load is excessive is judged by whether or not the evaporation temperature of the refrigerant has risen, and when the evaporation temperature of the refrigerant begins to rise, it is judged that the cooling load is excessive and the liquid is again returned. When it is determined that the cooling load is not excessive by switching to the supercooling cooling operation, it is determined by the electrical control means whether or not the residual heat amount of the heat storage amount stored in the heat storage medium by the heat storage operation by the heat storage circuit has a predetermined amount. If the residual heat amount is a predetermined amount, the cold storage condensation cooling operation is continued.

【0026】また、上記残熱量が所定量無ければ前記冷
却回路による一般冷房冷却運転に切り替え、一般冷却冷
房運転を行うようにし、また、前記冷房能力が過剰でな
いと判定した場合、前記蓄熱媒体に蓄熱された蓄熱量の
残熱量が所定量有るか否かを前記電気制御手段によって
判断し、残熱量が所定量有れば引き続き前記液過冷却冷
房運転を続行し、残熱量が所定量無いと判断した場合
は、前記一般冷房冷却運転に切り替え、一般冷却冷房運
転を行うようにする。
Further, if the residual heat amount is not a predetermined amount, the cooling circuit is switched to the general cooling / cooling operation to perform the general cooling / cooling operation, and when it is determined that the cooling capacity is not excessive, the heat storage medium is stored in the heat storage medium. It is judged by the electric control means whether or not the remaining heat amount of the stored heat storage amount is a predetermined amount, and if the remaining heat amount is a predetermined amount, the liquid subcooling cooling operation is continued, and if the remaining heat amount is not the predetermined amount. If determined, the general cooling / cooling operation is switched to and the general cooling / cooling operation is performed.

【0027】一方、前記盛夏でないと判定した場合は、
前記蓄冷凝縮冷房運転を行い、この蓄熱凝縮冷房運転中
に前記した冷房負荷過剰か否かを判断し、冷房負荷過剰
と判定した場合は前記液過冷却冷房運転に切り替え、ま
た、冷房負荷過剰でないと判定した場合、前記した残熱
量が所定量有るか否かを前記電気制御手段によって判断
し、残熱量が所定量有れば引き続き前記蓄冷凝縮運転を
続行し、残熱量が所定量無ければ前記冷却回路による一
般冷房冷却運転に切り替え、一般冷却冷房運転を行い、
所定時間経過後に任意に一般冷房冷却運転を停止する。
なお上記各実施例は空調用として使用した場合について
述べたが、その他の冷凍冷蔵などの用途へも活用でき
る。
On the other hand, when it is determined that it is not the midsummer,
Performs the cold storage condensation cooling operation, determines whether the cooling load is excessive during the heat storage condensation cooling operation, and switches to the liquid subcooling cooling operation when it is determined that the cooling load is excessive, and the cooling load is not excessive. If it is determined that the residual heat amount is a predetermined amount by the electrical control means, if the residual heat amount is a predetermined amount, the cold storage condensation operation is continued, if the residual heat amount is not a predetermined amount, Switch to general cooling and cooling operation by the cooling circuit, perform general cooling and cooling operation,
After the lapse of a predetermined time, the general cooling and cooling operation is arbitrarily stopped.
Although each of the above embodiments has been described as being used for air conditioning, it can be used for other purposes such as freezing and refrigeration.

【0028】[0028]

【発明の効果】以上、叙述のように本発明の蓄熱式冷凍
サイクル装置による運転制御方法では、電力使用の夜間
移行率が高くなり、ユーザにとっては安価な夜間電力料
金で冷房冷却をすることができ、より経済的利益を受け
ることができる。また上記のように電力使用の夜間移行
率が高くなるため、昼間の電力利用率を軽減でき、電力
需要のシフトの観点から社会的にも貢献することができ
る。また、電気制御手段により、初期設定された所定期
間内か否かで盛夏か否かを判断する運転制御方法の場合
は、電気制御手段を安価に製作でき、また初期設定値を
手動で容易に現場対応することができる。また、電気制
御手段によって、室温の冷却速度が所定値以上、または
所定時間内に設定室温以下になったか否かを判断し、室
温の冷却速度が所定値以上または所定時間内に設定室温
以下になったとき以外であれば盛夏と判定する運転制御
方法の場合は、よりきめ細かい冷房冷却制御をすること
ができ、より快適な室内空間を提供できることになる。
更に冷房運転開始時に所定時間、液過冷却冷房運転を行
うことによって、以降の電気的・機械的運転制御をより
スムーズに行うことができる。
As described above, according to the operation control method by the heat storage type refrigeration cycle device of the present invention as described above, the night shift rate of power use becomes high, and the user can perform cooling and cooling at a low night power charge. Yes, you can get more financial benefits. In addition, since the night shift rate of power usage is high as described above, it is possible to reduce the power usage rate in the daytime and contribute to society from the viewpoint of shifting the power demand. Further, in the case of the operation control method in which the electric control means determines whether it is a midsummer or not depending on whether it is within a preset predetermined period, the electric control means can be manufactured at low cost, and the initial setting value can be easily manually set. Can be used on site. Further, the electric control means determines whether the cooling rate of the room temperature is equal to or higher than a predetermined value or is equal to or lower than the set room temperature within a predetermined time, and the cooling rate of the room temperature is equal to or higher than the predetermined value or equal to or lower than the set room temperature within the predetermined time. In the case of the operation control method which determines that it is midsummer except when it is not, finer cooling and cooling control can be performed, and a more comfortable indoor space can be provided.
Further, by performing the liquid subcooling cooling operation for a predetermined time at the start of the cooling operation, the subsequent electric / mechanical operation control can be performed more smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の運転制御方法の流れ図
である。
FIG. 1 is a flow chart of an operation control method according to an embodiment of the present invention.

【図2】本発明に係る他の実施例の運転制御方法の流れ
図である。
FIG. 2 is a flow chart of an operation control method according to another embodiment of the present invention.

【図3】この発明の一実施例による蓄熱式冷凍サイクル
装置のサイクル図である。
FIG. 3 is a cycle diagram of a heat storage type refrigeration cycle apparatus according to an embodiment of the present invention.

【図4】蓄熱運転時の動作図である。FIG. 4 is an operation diagram during heat storage operation.

【図5】蓄冷凝縮冷房運転時の動作図である。[Fig. 5] Fig. 5 is an operation diagram during a cool storage condensation cooling operation.

【図6】蓄冷凝縮冷房運転時のモリエル線図である。FIG. 6 is a Mollier diagram during the cold storage condensation cooling operation.

【図7】液過冷却冷房運転時の動作図である。FIG. 7 is an operation diagram during liquid subcooling cooling operation.

【図8】液過冷却冷房運転時のモリエル線図である。FIG. 8 is a Mollier diagram during liquid subcooling cooling operation.

【図9】一般冷房の冷凍サイクル運転時の動作図であ
る。
FIG. 9 is an operation diagram during the refrigeration cycle operation of general cooling.

【図10】従来の一実施例の運転制御方法の流れ図であ
る。
FIG. 10 is a flowchart of a conventional operation control method according to an embodiment.

【図11】従来の蓄熱式冷凍サイクル装置のサイクル図
である。
FIG. 11 is a cycle diagram of a conventional heat storage type refrigeration cycle apparatus.

【図12】従来の蓄熱運転時の動作図である。FIG. 12 is an operation diagram of a conventional heat storage operation.

【図13】従来の液過冷却冷房運転時の動作図である。FIG. 13 is an operation diagram during a conventional liquid subcooling cooling operation.

【図14】従来の液過冷却冷房運転時のモリエル線図で
ある。
FIG. 14 is a Mollier diagram during a conventional liquid subcooling cooling operation.

【図15】従来の一般冷房の冷凍サイクル運転時の動作
図である。
FIG. 15 is an operation diagram during a refrigeration cycle operation of a conventional general cooling system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 熱源側交換器 3 第1の絞り装置 4 利用側熱交換器 6 蓄熱槽 7 蓄熱媒体 9 蓄熱用熱交換器 10 蓄熱用バイパス路 11 第2の絞り装置 12 第2の絞り装置用バイパス路 13 第1の蓄熱利用用バイパス路 14 第2の蓄熱利用バイパス路 15 冷媒循環ポンプ 1 Compressor 2 Heat source side exchanger 3 First expansion device 4 Utilization side heat exchanger 6 Heat storage tank 7 Heat storage medium 9 Heat storage heat exchanger 10 Heat storage bypass passage 11 Second expansion device 12 Second expansion device Bypass path 13 First heat storage bypass path 14 Second heat storage bypass path 15 Refrigerant circulation pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中曽 暁尚 大阪市西区阿波座1丁目3番15号 鹿島建 設株式会社大阪支店内 (72)発明者 浜 宏明 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihisa Nakaso 1-3-15 Awaza, Nishi-ku, Osaka City Kashima Construction Co., Ltd. Osaka branch (72) Inventor Hiroaki Hama 6-5-6 Tehira, Wakayama City No. Mitsubishi Electric Co., Ltd. Wakayama Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源側熱交換器、第1の絞り装
置、及び利用側熱交換器を順次接続して形成された冷凍
サイクルと、蓄熱用熱交換器を有し上記圧縮機の吸入側
と上記熱源側熱交換器の出口側とを接続する蓄熱用バイ
パス路と、上記熱源側熱交換器の出口側と上記蓄熱用熱
交換器の入口側との間に設けられた第2の絞り装置と、
この第2の絞り装置の入口側と出口側とを接続する第2
の絞り装置用バイパス路と、内部に蓄熱媒体を収容し上
記蓄熱用熱交換器と熱交換可能に設けられた蓄熱槽と、
上記蓄熱用熱交換器の出口側と上記第1の絞り装置の入
口側とを接続する第1の蓄熱利用用バイパス路と、冷媒
循環ポンプを有し上記蓄熱用熱交換器の入口側と上記第
1の絞り装置の入口側とを接続する第2の蓄熱利用用バ
イパス路とを備えた蓄熱式冷凍サイクル装置によって、
冷房運転を開始し、電気制御手段により、初期設定され
た所定期間内か否かで盛夏か否かを判断し、盛夏であれ
ば前記圧縮機から熱源側熱交換器、第2の絞り装置用バ
イパス路、蓄熱用熱交換器、第1の蓄熱利用用バイパス
路、第1の絞り装置、及び利用側熱交換器を介して上記
圧縮機へ至る液過冷却冷房回路によって液過冷却冷房運
転を行うと共に、深夜電力時間帯に前記圧縮機から熱源
側熱交換器、第2の絞り装置、及び蓄熱用熱交換器を介
して上記圧縮機へ至る蓄熱回路による蓄熱運転によって
蓄熱媒体に蓄熱された蓄熱量の残熱量が所定量有るか否
かを前記電気制御手段によって判断し、残熱量が所定量
有れば引き続き前記液過冷却冷房運転を続行し、残熱量
が所定量無ければ前記冷凍サイクルを形成する冷却回路
による一般冷房冷却運転に切り替え、一般冷房冷却運転
を行うようにし、一方、前記盛夏でないと判定した場
合、前記第2の蓄熱利用用バイパス路、第1の絞り装
置、利用側熱交換器、及び蓄熱用熱交換器を介して冷媒
循環ポンプへ至る蓄冷凝縮回路によって蓄冷凝縮冷房運
転を行うと共に、前記蓄熱残量が所定量有るか否かを前
記電気制御手段によって判断し、蓄熱残量が所定量有れ
ば引き続き上記蓄冷凝縮冷房運転を続行し、蓄熱残量が
所定量無ければ前記一般冷房冷却運転を行うようにした
ことを特徴とする蓄熱式冷凍サイクル装置における運転
制御方法。
1. A refrigeration cycle formed by sequentially connecting a compressor, a heat source side heat exchanger, a first expansion device, and a utilization side heat exchanger, and a heat storage heat exchanger. A heat storage bypass path that connects the suction side and the outlet side of the heat source side heat exchanger, and a second provided between the outlet side of the heat source side heat exchanger and the inlet side of the heat storage side heat exchanger. Diaphragm device,
A second connecting the inlet side and the outlet side of this second expansion device
A bypass passage for the expansion device, and a heat storage tank that accommodates a heat storage medium inside and is provided to be capable of exchanging heat with the heat exchanger for heat storage,
A first heat storage utilization bypass line connecting the outlet side of the heat storage heat exchanger and the inlet side of the first expansion device, and a refrigerant circulation pump, and the inlet side of the heat storage heat exchanger and the above. With the heat storage type refrigeration cycle device including the second heat storage utilization bypass path that connects the inlet side of the first expansion device,
The cooling operation is started, and whether or not it is the high summer is judged by whether or not it is within the initially set predetermined period by the electric control means. If it is the high summer, the compressor, the heat source side heat exchanger, and the second expansion device are used. A liquid subcooling cooling operation is performed by a liquid subcooling cooling circuit that reaches the compressor through the bypass passage, the heat storage heat exchanger, the first heat storage utilization bypass passage, the first expansion device, and the utilization side heat exchanger. The heat was stored in the heat storage medium by the heat storage operation by the heat storage circuit from the compressor to the compressor via the heat source side heat exchanger, the second expansion device, and the heat storage heat exchanger during the midnight power time period. The electric control means determines whether or not the residual heat amount of the stored heat amount is a predetermined amount, and if the residual heat amount is a predetermined amount, continues the liquid subcooling cooling operation, and if the residual heat amount is not the predetermined amount, the refrigeration cycle. Cooling by the cooling circuit that forms the When it is determined that it is not the midsummer, the second heat storage utilization bypass path, the first expansion device, the use side heat exchanger, and the heat storage heat exchange are switched to the operation and the general cooling operation is performed. While performing the cold storage condensation cooling operation by the cold storage condensation circuit to the refrigerant circulation pump through the device, the electric control means determines whether or not the heat storage residual amount is a predetermined amount, and if the heat storage residual amount is a predetermined amount. An operation control method in a heat storage type refrigeration cycle apparatus, characterized in that the cold storage condensation cooling operation is continuously continued, and the general cooling operation is performed if the remaining heat storage amount is not a predetermined amount.
【請求項2】 前記蓄熱式冷凍サイクル装置により、冷
房運転を開始し、電気制御手段によって、室温の冷却速
度が所定値以上、または所定時間内に設定室温以下にな
ったか否かを判断し、室温の冷却速度が所定値以上また
は所定時間内に設定室温以下になったとき以外であれば
盛夏と判定して、前記液過冷却冷房回路によって液過冷
却冷房運転を行うと共に、冷房能力が過剰か否かを、前
記圧縮機の容量制御が働いてインバータの出力周波数が
所定値以下になったか否かによって判断し、インバータ
の出力周波数が所定値以下になったときは冷房能力過剰
と判定して、上記液過冷却冷房運転から前記蓄冷凝縮回
路による蓄冷凝縮冷房運転に切り替え、この蓄熱凝縮冷
房運転中に冷房負荷過剰か否かを冷媒の蒸発温度が上昇
したか否かによって判断し、冷媒の蒸発温度が上昇しは
じめたら冷房負荷過剰と判定して再び前記液過冷却冷房
運転に切り替え、冷房負荷過剰でないと判定した時は、
前記蓄熱回路による蓄熱運転によって蓄熱媒体に蓄熱さ
れた蓄熱量の残熱量が所定量有るか否かを前記電気制御
手段によって判断し、残熱量が所定量有れば引き続き前
記蓄冷凝縮冷房運転を続行し、残熱量が所定量無ければ
前記冷却回路による一般冷房冷却運転に切り替え、一般
冷却冷房運転を行うようにし、また、前記冷房能力が過
剰でないと判定した場合、前記蓄熱媒体に蓄熱された蓄
熱量の残熱量が所定量有るか否かを前記電気制御手段に
よって判断し、残熱量が所定量有れば引き続き前記液過
冷却冷房運転を続行し、残熱量が所定量無いと判断した
場合は、前記一般冷房冷却運転に切り替え、一般冷却冷
房運転を行うようにし、一方、前記盛夏でないと判定し
た場合は、前記蓄冷凝縮冷房運転を行い、この蓄熱凝縮
冷房運転中に前記した冷房負荷過剰か否かを判断し、冷
房負荷過剰と判定した場合は前記液過冷却冷房運転に切
り替え、また、冷房負荷過剰でないと判定した場合、前
記した残熱量が所定量有るか否かを前記電気制御手段に
よって判断し、残熱量が所定量有れば引き続き前記蓄冷
凝縮運転を続行し、残熱量が所定量無ければ前記冷却回
路による一般冷房冷却運転に切り替え、一般冷却冷房運
転を行うようにしたことを特徴とする蓄熱式冷凍サイク
ル装置における運転制御方法。
2. The heat storage type refrigeration cycle apparatus starts a cooling operation, and the electric control means determines whether or not the room temperature cooling rate is equal to or higher than a predetermined value or is equal to or lower than a set room temperature within a predetermined time, Except when the cooling rate of the room temperature is equal to or higher than a predetermined value or becomes lower than the set room temperature within a predetermined time, it is determined that it is midsummer, and the liquid subcooling cooling circuit performs the liquid subcooling cooling operation, and the cooling capacity is excessive. It is determined whether or not the output frequency of the inverter is below a predetermined value due to the capacity control of the compressor, and it is determined that the cooling capacity is excessive when the output frequency of the inverter is below a predetermined value. The liquid supercooling cooling operation is switched to the cold storage condensation cooling operation by the cold storage condensation circuit, and whether the cooling load is excessive during this heat storage condensation cooling operation depends on whether the evaporation temperature of the refrigerant has risen. Judgment, when the evaporation temperature of the refrigerant begins to rise, it is determined that the cooling load is excessive and switched to the liquid subcooling cooling operation again, and when it is determined that the cooling load is not excessive,
The electric control means determines whether or not the remaining heat amount of the heat storage amount stored in the heat storage medium by the heat storage operation by the heat storage circuit is a predetermined amount, and if the remaining heat amount is the predetermined amount, the cold storage condensation cooling operation is continued. However, if the residual heat amount is not a predetermined amount, the cooling circuit is switched to the general cooling / cooling operation so that the general cooling / cooling operation is performed, and when it is determined that the cooling capacity is not excessive, the heat stored in the heat storage medium is stored. If the amount of residual heat is a predetermined amount is determined by the electric control means, if the residual heat amount is a predetermined amount, the liquid subcooling cooling operation is continued, and if it is determined that the residual heat amount is not the predetermined amount. , Switching to the general cooling and cooling operation, so as to perform the general cooling and cooling operation, on the other hand, when it is determined not to be the midsummer, perform the cold storage condensation cooling operation, during the heat storage condensation cooling operation If it is determined that the cooling load is excessive, it is switched to the liquid subcooling cooling operation when it is determined that the cooling load is excessive, and when it is determined that the cooling load is not excessive, whether the residual heat amount described above is a predetermined amount or not. Is determined by the electric control means, and if the residual heat amount is a predetermined amount, the cold storage condensation operation is continued, and if the residual heat amount is not the predetermined amount, the cooling circuit is switched to the general cooling / cooling operation to perform the general cooling / cooling operation. An operation control method in a heat storage type refrigeration cycle apparatus characterized by the above.
【請求項3】 冷房運転開始時に所定時間、前記液過冷
却冷房運転を行うようにした請求項1または請求項2に
記載の蓄熱式冷凍サイクル装置における運転制御方法。
3. The operation control method in the heat storage refrigeration cycle apparatus according to claim 1, wherein the liquid subcooling cooling operation is performed for a predetermined time when the cooling operation starts.
JP3253251A 1991-10-01 1991-10-01 Operation control method in regenerative refrigerating cycle device Expired - Fee Related JP2710883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253251A JP2710883B2 (en) 1991-10-01 1991-10-01 Operation control method in regenerative refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253251A JP2710883B2 (en) 1991-10-01 1991-10-01 Operation control method in regenerative refrigerating cycle device

Publications (2)

Publication Number Publication Date
JPH0593541A true JPH0593541A (en) 1993-04-16
JP2710883B2 JP2710883B2 (en) 1998-02-10

Family

ID=17248673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253251A Expired - Fee Related JP2710883B2 (en) 1991-10-01 1991-10-01 Operation control method in regenerative refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2710883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303440A (en) * 2001-03-30 2002-10-18 Sanyo Electric Co Ltd Ice storage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302953A (en) * 1991-03-29 1992-10-26 Mitsubishi Electric Corp Heat storage freezing cycle device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302953A (en) * 1991-03-29 1992-10-26 Mitsubishi Electric Corp Heat storage freezing cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303440A (en) * 2001-03-30 2002-10-18 Sanyo Electric Co Ltd Ice storage system

Also Published As

Publication number Publication date
JP2710883B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
EP2584285B1 (en) Refrigerating air-conditioning device
KR20180082724A (en) temperature compensated cooling system high efficiency
JP2003185287A (en) Manufacturing system for supercooled water and hot water
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP3814877B2 (en) Thermal storage air conditioner
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device
JP2757660B2 (en) Thermal storage type air conditioner
JP3370501B2 (en) Cooling system
JP2500979B2 (en) Thermal storage refrigeration cycle device
JP2855954B2 (en) Thermal storage type air conditioner
JP3783153B2 (en) Air conditioner
US20230392829A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
JPH05157297A (en) Heat accumulating type cooling device
JP2751695B2 (en) Heat storage type cooling device
JP2661313B2 (en) Thermal storage refrigeration cycle device
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JPH0413050A (en) Heat storage type freezing cycle device
JPH102595A (en) Thermal storage type air conditioner
JP3197107B2 (en) Thermal storage type air conditioner
CN111928338A (en) Air conditioner waste heat recovery system and air conditioner system
JP2705270B2 (en) Thermal storage refrigeration cycle device
JP2001074331A (en) Outdoor unit of air conditioner, and air conditioning system using the same
JP2536219B2 (en) Thermal storage refrigeration cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees