JPH0593229A - Method for purifying metal - Google Patents

Method for purifying metal

Info

Publication number
JPH0593229A
JPH0593229A JP3280504A JP28050491A JPH0593229A JP H0593229 A JPH0593229 A JP H0593229A JP 3280504 A JP3280504 A JP 3280504A JP 28050491 A JP28050491 A JP 28050491A JP H0593229 A JPH0593229 A JP H0593229A
Authority
JP
Japan
Prior art keywords
chamber
molten metal
temperature
nucleation
phase particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280504A
Other languages
Japanese (ja)
Inventor
Hideaki Kudo
秀明 工藤
Koichi Ohara
弘一 尾原
Mitsuhiro Otaki
光弘 大滝
Akira Yamazaki
明 山崎
Yoshihiro Yama
善裕 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3280504A priority Critical patent/JPH0593229A/en
Publication of JPH0593229A publication Critical patent/JPH0593229A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To efficiently purify metal. CONSTITUTION:A nucleus forming chamber 2 and a nucleus melting chamber 3 are connected through a passage 4 furnished at the lower part of a unit furnace 1. A molten metal 7 is held in the furnace, the high-purity solid grain 9 formed in the chamber 2 is passed through the passage 4 and continuously transferred into the chamber 3 to purify the molten metal. In this case, the molten metal close to the outlet of the passage 4 in the chamber 3 is kept below the melting temp. of the solid grain 9, and the molten metal above the passage 4 is kept above the melting temp. of the solid grain 9. Since the molten metal close to the passage 4 in the chamber 3 is kept at a temp. where the solid grain 9 is not melted, the heat flow in the chamber 3 does not affect the molten metal 7 in the chamber 2 and passage 4, the solid grain 9 is transferred into the chamber 3 in good yield, and the purification efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏析法による金属の純
化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a metal by a segregation method.

【0002】[0002]

【従来の技術】近年、電子機器の超小型化、精密化に伴
い、これに使用される金属材料には、導電性、柔軟性、
表面特性等の一層の向上が求められており、これに呼応
して高純度金属をベースとする金属材料の開発が年々活
発になされてきている。高純度金属を得る為の金属の純
化方法には、大別して電解法と偏析法とがあるが、微量
不純物を除去するには偏析法の方が優れている。偏析法
とは溶湯が凝固する時の溶質の分配法則を応用する純化
方法で、帯溶融方式と凝固方式とが知られている。ここ
で前記の分配法則を状態図を参照して説明する。図3は
分配係数K〔K=液相線温度に達した時の(晶出固相の
溶質濃度)/(初期溶質濃度)〕が1より小さい溶質を
含有する金属の状態図で、不純物元素の大半はK<1で
ある。さて、この状態図の溶質濃度C0 の溶湯を冷却し
ていって、その温度が液相線温度T1 に達すると純度の
高い濃度C1 の核(固相粒子)が晶出する。
2. Description of the Related Art In recent years, with the miniaturization and refinement of electronic equipment, the metal materials used for this have been found to be conductive, flexible,
Further improvement in surface properties is required, and in response to this, the development of metal materials based on high-purity metals has been actively conducted year by year. The metal purification methods for obtaining high-purity metals are roughly classified into an electrolysis method and a segregation method, but the segregation method is superior in removing trace impurities. The segregation method is a purification method that applies a solute distribution law when a molten metal is solidified, and a zone melting method and a solidification method are known. Here, the distribution law will be described with reference to a state diagram. FIG. 3 is a phase diagram of a metal containing a solute having a partition coefficient K [K = (solute concentration of crystallized solid phase) / (initial solute concentration when the liquidus temperature is reached)] less than 1, which is an impurity element. The majority of K <1. Now, when the melt having the solute concentration C 0 in this state diagram is cooled and the temperature reaches the liquidus temperature T 1 , nuclei (solid phase particles) having a high concentration C 1 are crystallized.

【0003】ところで、前述の凝固方式による純化法
は、従来からバッチ式で行われていて生産性に劣るもの
であり、これを改善する為に、本発明者等は高純度金属
を連続して製造できる金属の純化装置を開発した(特願
昭61-241037)。この純化装置は図2に示したような構造
のもので、この装置を用いて分配係数Kが1未満の溶質
つまり不純物を含有する金属溶湯を純化する方法は次の
通りである。即ち、前記の金属の純化装置は、固相粒子
9を生成する為の核生成装置5を配置した核生成室2と
前記固相粒子9を溶解する為の核溶解室3とを下部に通
路4を設けて連結したユニット炉1を所要数、先の核溶
解室3と次の核生成室2との上部に樋10を配置して連結
したもので、前記ユニット炉1の核生成室2と核溶解室
3とに純化しようとする金属溶湯7を充満し、核生成室
2内にて生成した純度の高い固相粒子9を下部通路4を
通して核溶解室3内に重力移送し、移送された固相粒子
9を核溶解室3内にて溶解して核溶解室3内の溶湯17を
核生成室2内の溶湯7と分離して純化するものである。
By the way, the above-mentioned purification method by the solidification method has been conventionally performed in a batch method and is inferior in productivity, and in order to improve this, the present inventors have succeeded in continuously producing high-purity metal. We have developed a metal purifier that can be manufactured (Japanese Patent Application No. 61-241037). This purifying device has a structure as shown in FIG. 2, and the method for purifying a solute having a distribution coefficient K of less than 1, that is, a metal melt containing impurities using this device is as follows. That is, the metal purifying device has a nucleation chamber 2 in which a nucleation device 5 for generating the solid phase particles 9 is arranged and a nucleation dissolution chamber 3 for melting the solid phase particles 9 in a lower passage. The required number of unit furnaces 1 provided with 4 and connected to each other are gutters 10 arranged above the above-mentioned nucleation chamber 3 and the next nucleation chamber 2 and connected. And the nuclei melting chamber 3 are filled with the metal melt 7 to be purified, and the solid phase particles 9 having high purity generated in the nucleation chamber 2 are gravity-transferred into the nucleation chamber 3 through the lower passage 4 and transferred. The solid phase particles 9 thus prepared are melted in the nuclear melting chamber 3 to separate the molten metal 17 in the nuclear melting chamber 3 from the molten metal 7 in the nucleation chamber 2 for purification.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな純化方法では、ユニット炉毎の純化効率が低く、従
ってユニット炉を多数設置する必要があり、設備費が嵩
むという問題があった。
However, such a purification method has a problem that the purification efficiency of each unit furnace is low, and therefore it is necessary to install a large number of unit furnaces, and the equipment cost increases.

【0005】[0005]

【課題を解決する為の手段】本発明はこのような状況に
鑑み鋭意研究を行った結果、ユニット炉の純化効率が低
い原因は、固相粒子を溶解する核溶解室の溶湯温度は、
固相粒子を生成する核生成室の溶湯温度より高い温度に
設定されており、その結果高温度の溶湯が核溶解室から
核生成室に向けて対流し、この高温度の溶湯流が核生成
室から移動してくる固相粒子を核生成室に押し戻し、更
には固相粒子を核生成室又は下部通路内で溶解させて、
固相粒子の核溶解室への移送歩留りが低下する為である
ことを解明し、更に研究を進めて本発明を完成するに至
ったものである。即ち、本発明は、核生成室と核溶解室
とを下部に通路を設けて連結したユニット炉に金属溶湯
を保持し、核生成室にて生成する高純度の固相粒子を下
部通路を通して核溶解室に連続的に移送し、この移送さ
れた固相粒子を核溶解室にて溶解する金属の純化方法に
おいて、核溶解室の下部通路出口近傍の溶湯温度を固相
粒子の溶解温度未満の温度に制御し、又下部通路出口近
傍より上方の溶湯温度を固相粒子の溶解温度以上の温度
に制御することを特徴とするものである。
In the present invention, as a result of intensive studies in view of such a situation, the reason why the purification efficiency of the unit furnace is low is that the melt temperature of the nuclear melting chamber for melting the solid phase particles is
The temperature is set higher than the temperature of the melt in the nucleation chamber that produces solid particles, and as a result, the high-temperature melt convects from the nucleation chamber toward the nucleation chamber, and this high-temperature melt flow nucleates. The solid phase particles moving from the chamber are pushed back into the nucleation chamber, and further the solid phase particles are dissolved in the nucleation chamber or the lower passage,
It was clarified that the yield of transfer of solid phase particles to the nuclear melting chamber was lowered, and further research was conducted to complete the present invention. That is, the present invention holds a molten metal in a unit furnace in which a nucleation chamber and a nucleation melting chamber are connected to each other with a passage provided in the lower portion, and high-purity solid-phase particles generated in the nucleation chamber are nucleated through a lower passage. In the metal purification method of continuously transferring to the melting chamber and melting the transferred solid phase particles in the nuclear melting chamber, the temperature of the molten metal near the outlet of the lower passage of the nuclear melting chamber is less than the melting temperature of the solid particles. The temperature is controlled, and the temperature of the molten metal above the vicinity of the outlet of the lower passage is controlled to a temperature equal to or higher than the melting temperature of the solid phase particles.

【0006】本発明方法は、核溶解室内の下部通路出口
近傍の溶湯温度を固相粒子の溶解温度未満の低い温度に
抑え、移送された固相粒子の溶解は下部通路出口近傍よ
り上方にて行うようにして、核溶解室内の高温度溶湯が
核生成室又は下部通路内の溶湯中を上昇して、固相粒子
を押戻したり、固相粒子を核生成室や下部通路内で溶解
させたりするのを阻止するようにしたものである。以下
に本発明を図を参照して具体的に説明する。図1は本発
明にて使用するユニット炉の態様例を示す要部説明図で
ある。ユニット炉1は核生成室2と核溶解室3とからな
り、核生成室2と核溶解室3とは、核生成室2から核溶
解室3に向けて下り勾配の下部通路4を介して連結され
ている。又核生成室2上部には核生成装置5が配置され
ている。核生成室2の壁部と核溶解室3の下部通路出口
近傍より上方の壁部には発熱体6が等間隔に埋込まれて
いる。しかし核溶解室3の下部通路出口近傍の壁部には
発熱体が埋込まれていない。これは前記出口近傍の溶湯
17が必要以上の高温度に上昇して、核生成室2や下部通
路4内の溶湯7に熱流の影響が及ぶのを防止する為であ
る。核溶解室3下方の壁部に埋込んだ発熱体16は大電流
を流して固相粒子9を急速に溶解し得るよう配線が別系
統にしてある。この発熱体16が埋込まれた領域は以後、
溶湯強熱域8と称した。かくして、核溶解室3内の溶湯
17はその熱流の向きを矢印で示したように、核溶解室3
の上方でのみ流動し、核生成室2内や下部通路4内の溶
湯7にその影響を及ぼすようなことがない。
According to the method of the present invention, the temperature of the molten metal in the vicinity of the outlet of the lower passage in the nuclear melting chamber is suppressed to a low temperature below the melting temperature of the solid phase particles, and the transferred solid phase particles are dissolved above the vicinity of the outlet of the lower passage. As a result, the high-temperature molten metal in the nucleation chamber rises in the nucleation chamber or the molten metal in the lower passage to push back the solid-phase particles or melt the solid-phase particles in the nucleation chamber or the lower passage. It is designed so as to prevent it. The present invention will be specifically described below with reference to the drawings. FIG. 1 is a principal part explanatory view showing an example of a mode of a unit furnace used in the present invention. The unit furnace 1 is composed of a nucleation chamber 2 and a nucleation chamber 3, and the nucleation chamber 2 and the nucleation chamber 3 pass from the nucleation chamber 2 toward the nucleation chamber 3 via a lower passage 4 having a downward slope. It is connected. A nucleation device 5 is arranged above the nucleation chamber 2. Heating elements 6 are embedded at equal intervals in the wall portion of the nucleation chamber 2 and the wall portion above the vicinity of the outlet of the lower passage of the nucleus melting chamber 3. However, the heating element is not embedded in the wall portion near the outlet of the lower passage of the nuclear melting chamber 3. This is the molten metal near the outlet
This is to prevent the temperature of 17 from rising to an unnecessarily high temperature and the influence of the heat flow on the molten metal 7 in the nucleation chamber 2 and the lower passage 4. The heating element 16 embedded in the wall below the nuclear melting chamber 3 has a separate wiring so that a large current can be passed to rapidly dissolve the solid phase particles 9. The area where the heating element 16 is embedded is
It was called the molten metal ignition zone 8. Thus, the molten metal in the nuclear melting chamber 3
17 indicates the direction of the heat flow, as indicated by the arrow
Flows only in the upper part of the above, and does not affect the molten metal 7 in the nucleation chamber 2 or the lower passage 4.

【0007】次に、この装置を用いて分配係数Kが1未
満の溶質を不純物として含有するAl溶湯を純化する方
法を図1を参照して具体的に説明する。ユニット炉1の
核生成室2と核溶解室3に純化しようとする金属の溶湯
7を充満させ、次に核生成室2の核生成装置5を稼動さ
せつつ溶湯温度を液相線温度にまで下げて、そのままそ
の温度に保持する。核生成装置5の溶湯7と接する面に
は、前述の分配法則に従って純度の高い固相粒子9が生
成し、この固相粒子9は核生成室2内を下降し、下部通
路4を経て核溶解室3に移動する。核溶解室3に移動し
た固相粒子9は核溶解室3内下方に堆積する。固相粒子
9は堆積量が増えると上方のものが浮遊して、溶湯強熱
域8に達し、溶解する。このように高純度の固相粒子9
は核溶解室3へ熱流の影響を受けずに歩留りよく移送さ
れ、しかも核溶解室に移送されたあと溶解するので、純
化効率が向上する。ユニット炉1の核生成室2には原料
のAl溶湯7を、固相粒子9の生成速度に合わせて補給
する。核溶解室3からは高純化された溶湯17がオーバー
フローして製出される。又このユニット炉を複数基、先
のユニット炉の核溶解室と次のユニット炉の核生成室と
の上部を樋等で連結して純化装置として用いることによ
り、更に純度の高い溶湯が連続して製出される。本発明
方法において、核溶解室3内の溶湯強熱域8の溶湯温度
は、固相粒子9の溶解温度より十分高く保持しておくと
純化速度が向上して好ましい。
Next, a method for purifying an Al melt containing a solute having a distribution coefficient K of less than 1 as an impurity using this apparatus will be specifically described with reference to FIG. The nucleation chamber 2 and the nucleation melting chamber 3 of the unit furnace 1 are filled with the molten metal 7 to be purified, and then the nucleation apparatus 5 of the nucleation chamber 2 is operated to bring the molten metal temperature to the liquidus temperature. Lower and hold at that temperature. High-purity solid phase particles 9 are generated on the surface of the nucleation apparatus 5 in contact with the molten metal 7 according to the above-mentioned distribution law, and the solid phase particles 9 descend in the nucleation chamber 2 and pass through the lower passage 4 to generate nuclei. Move to melting chamber 3. The solid phase particles 9 that have moved to the nuclear melting chamber 3 are deposited below the nuclear melting chamber 3. When the deposition amount increases, the solid phase particles 9 float above and reach the molten metal ignition region 8 and melt. Thus, high-purity solid-phase particles 9
Is transferred to the nuclear melting chamber 3 with a good yield without being affected by the heat flow, and is further melted after being transferred to the nuclear melting chamber, so that the purification efficiency is improved. A raw material Al melt 7 is supplied to the nucleation chamber 2 of the unit furnace 1 according to the generation rate of the solid phase particles 9. A highly purified molten metal 17 overflows from the nuclear melting chamber 3 and is produced. By using multiple unit furnaces and connecting the upper part of the nuclear melting chamber of the previous unit furnace and the nucleation chamber of the next unit furnace with a gutter, etc., and using it as a purifier, a molten metal of higher purity can be continuously produced. Produced. In the method of the present invention, it is preferable that the molten metal temperature of the molten metal ignition zone 8 in the nuclear melting chamber 3 is kept sufficiently higher than the melting temperature of the solid phase particles 9 because the purification rate is improved.

【0008】[0008]

【作用】本発明方法では、核溶解室内の下部通路出口近
傍の溶湯温度を固相粒子の溶解温度未満の低い温度に抑
え、核生成室から移送された固相粒子の溶解は下部通路
出口近傍より上方にて行うようにしたので、核溶解室内
の高温度溶湯が核生成室又は下部通路内の溶湯中を上昇
して、固相粒子を押戻したり、固相粒子を核生成室や下
部通路内で溶解させたりすることがなく、純化効率が向
上する。又核溶解室に移送された固相粒子は核溶解室内
の上方で溶解するので、溶湯強熱域の溶湯温度を高く設
定でき、固相粒子の溶解速度を高めることができる。
In the method of the present invention, the temperature of the molten metal in the vicinity of the outlet of the lower passage in the nuclear melting chamber is suppressed to a temperature lower than the melting temperature of the solid phase particles, and the solid phase particles transferred from the nucleation chamber are dissolved in the vicinity of the outlet of the lower passage. Since it is performed above, the high-temperature molten metal in the nucleation chamber rises in the nucleation chamber or the molten metal in the lower passage to push back the solid-phase particles, or to move the solid-phase particles to the nucleation chamber or the lower part. Purification efficiency is improved without melting in the passage. Further, since the solid phase particles transferred to the nuclear melting chamber are melted above the nuclear melting chamber, the temperature of the molten metal in the molten metal ignition zone can be set high and the melting rate of the solid phase particles can be increased.

【0009】[0009]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 図1に示したユニット炉を5基、先のユニット炉の核溶
解室と次のユニット炉の核生成室との上部を樋で連結し
て純化装置となし、この純化装置を用いてAl溶湯の純
化実験を行った。ユニット炉の核生成室は下部通路入口
までの深さが400mm、断面内径が200×110m
m、核溶解室は深さが500mm,断面内径が60×1
10mm、下部通路は長さが200mm,断面内径が2
5×110mmのそれぞれ黒鉛製角型筒を用いた。核生
成室及び核溶解室の壁部にはシリコニット製の発熱体を
埋込んだ。Al溶湯には、分配係数が1より小さいC
u,Fe,Mg,Ni,Si,Mn,Zn等の不純物元
素をそれぞれ1500,300,300,200,400,200,500ppm 含有す
る99.7%純度のものを用いた。第1ユニット炉の核
生成室下方の溶湯温度T1 は663℃に、又核溶解室の
溶湯温度は、下部通路出口近傍の溶湯温度T2 を670
℃に、又溶湯強熱域の溶湯温度T3 を685℃に、又前
記溶湯強熱域より上方の溶湯温度T4 は690℃にそれ
ぞれ制御した。前記の溶湯強熱域は核溶解室底部より1
50〜250mmの範囲とした。T1 ,T2 ,T3 ,T
4 の測温位置は、図中にそれぞれ,,,の記号
で示した。核生成室の溶湯上部に浸漬させる核生成装置
には内部水冷式交流振動型のものを用いた。この核生成
装置の溶湯浸漬部の表面材質にはAl溶湯との濡れ性の
異なる黒鉛とアルミナを混合焼結したもの用いて、固相
粒子が微細に生成するようにした。前記核生成装置の振
動数は50Hz、冷却水量は毎分30mlとし、毎分4
0gの固相粒子を生成させた。従って第一ユニット炉の
核生成室には、毎分40gの原料溶湯を補給した。第2
ユニット炉以降の溶湯温度は、純度が上がった分だけ、
先のユニット炉の溶湯温度より幾分高めに設定した。核
溶解室内の溶湯温度分布は、第1ユニット炉のそれと同
様の分布になるように制御した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Five unit furnaces shown in FIG. 1 were used, and the upper parts of the nuclear melting chamber of the previous unit furnace and the nucleation chamber of the next unit furnace were connected by a gutter to form a purifying device. A refining experiment of the molten Al was performed. The nucleation chamber of the unit furnace has a depth to the entrance of the lower passage of 400 mm and a cross-sectional inner diameter of 200 x 110 m.
m, depth of the nuclear melting chamber is 500 mm, inner diameter of cross section is 60 × 1
10 mm, the lower passage has a length of 200 mm, and the inner diameter of the cross section is 2
A graphite rectangular cylinder of 5 × 110 mm was used. A heating element made of silicon knit was embedded in the walls of the nucleation chamber and the nucleation chamber. Al molten metal has a distribution coefficient of less than 1 C
A 99.7% pure impurity element containing 1500, 300, 300, 200, 400, 200 and 500 ppm of impurity elements such as u, Fe, Mg, Ni, Si, Mn and Zn was used. The melt temperature T 1 of the 663 ° C. nucleation chamber below the first unit furnace, molten metal temperature of Matakaku lysis chamber is in the vicinity of the lower passage outlet the melt temperature T 2 670
° C., the addition of the molten metal temperature T 3 of the molten metal Ignition zone to 685 ° C., above the melt temperature T 4 from the melt Ignition region also was controlled to 690 ° C.. The molten metal ignition zone is 1 from the bottom of the nuclear melting chamber.
The range was 50 to 250 mm. T 1 , T 2 , T 3 , T
The temperature measurement positions of 4 are indicated by the symbols ,,, in the figure. An internal water-cooled AC oscillation type was used as the nucleation device immersed in the upper part of the molten metal in the nucleation chamber. As the surface material of the molten metal immersion portion of this nucleation apparatus, graphite and alumina having different wettability with Al molten metal were mixed and sintered, and fine solid phase particles were generated. The frequency of the nucleation device is 50 Hz, the amount of cooling water is 30 ml / min, and 4 / min.
0 g of solid phase particles were produced. Therefore, 40 g of the raw material molten metal was supplied to the nucleation chamber of the first unit furnace per minute. Second
The molten metal temperature after the unit furnace is as much as the purity increases,
The temperature was set slightly higher than the molten metal temperature of the unit furnace. The molten metal temperature distribution in the nuclear melting chamber was controlled so as to be similar to that of the first unit furnace.

【0010】実施例2 実施例1において、溶湯温度T1 を663℃に、T2
670℃に、T3 を溶湯強熱域は設けずに680℃に、
4 を690℃に設定した他は、実施例1と同じ方法に
より純化実験を行った。 比較例1 図2に示した従来のユニット炉を用い、溶湯温度T1
663℃に、T2 を675℃に、T3 を680℃に、T
4 を690℃に設定した他は、実施例1と同じ方法によ
り純化実験を行った。このようにして純化実験を連続1
0時間行った時点で、各々の核溶解室からオーバーフロ
ーする溶湯をサンプリングして不純物を定量分析した。
結果は表1に示した。
Example 2 In Example 1, the molten metal temperature T 1 was 663 ° C., T 2 was 670 ° C., T 3 was 680 ° C. without the molten metal ignition zone.
A purification experiment was conducted by the same method as in Example 1 except that T 4 was set at 690 ° C. Comparative Example 1 Using the conventional unit furnace shown in FIG. 2, the molten metal temperature T 1 was 663 ° C., T 2 was 675 ° C., T 3 was 680 ° C., and T
A purification experiment was performed by the same method as in Example 1 except that 4 was set to 690 ° C. In this way, one purification experiment
At 0 hours, the melt overflowing from each nuclear melting chamber was sampled and the impurities were quantitatively analyzed.
The results are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】表1より明らかなように、本発明例(No.
1,2)では、比較例(No.3)よりいずれも不純物量
が少なかった。中でも、溶湯強熱域を設けたNo.1は、
純化効率が特に優れ、第4ユニット炉出口で、比較例
(No.3)の第5ユニット炉出口の純度を上回った。こ
のことから、本発明方法によれば、ユニット炉の基数を
節減できることが実証された。比較例(No.3)の純化
効率が低い原因は、核溶解室の下部通路出口近傍の溶湯
温度が固相粒子の溶解温度を超え、又核生成室下方の溶
湯温度T1 と核溶解室の下部通路出口近傍の溶湯温度T
2 との差が12℃と大きかった為、この部分の高温溶湯
が核生成室と下部通路内を上昇して、下降中の固相粒子
を押し戻し、又固相粒子を核生成室内や下部通路内で溶
解したことに起因している。尚、上記実施例1,2にお
いて、核生成室下方の溶湯温度T1 と核溶解室の下部通
路出口近傍の溶湯温度T2 との差は7℃あったが、この
程度の温度差なら、核溶解室から核生成室へ向けての溶
湯の上昇流は無視できる程度であり、従って固相粒子が
押戻されることもないと考えられる。以上Al溶湯を純
化する場合について説明したが、本発明方法は、銅等の
他の金属溶湯を純化する場合に適用しても同様の効果が
得られるものである。又本発明方法は、本発明者等が先
に特願昭61-241036 で提案した分配係数Kが1より大き
い不純物を含有する金属の純化方法に応用しても、その
純化効率を高めることが可能である。
As is clear from Table 1, the invention examples (No.
In Nos. 1 and 2, the amount of impurities was smaller than that in Comparative Example (No. 3). Among them, the No. 1 which has a molten metal ignition zone. 1 is
The purification efficiency was particularly excellent, and the purity of the fourth unit furnace outlet was higher than that of the fifth unit furnace outlet of the comparative example (No. 3). From this, it was demonstrated that the number of unit furnaces can be reduced by the method of the present invention. The reason why the purification efficiency of the comparative example (No. 3) is low is that the temperature of the molten metal near the outlet of the lower passage of the nuclear melting chamber exceeds the melting temperature of the solid phase particles, and the molten metal temperature T 1 below the nucleation chamber and the nuclear melting chamber Temperature T near the outlet of the lower passage of
Since the difference between the temperature and the value of 2 was as large as 12 ° C, the high temperature molten metal in this part rose in the nucleation chamber and the lower passage to push back the solid phase particles that were descending, and also to transfer the solid particles to the nucleation chamber and the lower passage. It is due to the fact that it melted inside. In Examples 1 and 2 , the difference between the melt temperature T 1 below the nucleation chamber and the melt temperature T 2 near the outlet of the lower passage of the nucleation chamber was 7 ° C. The upward flow of the molten metal from the nucleation chamber to the nucleation chamber is negligible, and it is considered that solid-phase particles are not pushed back. Although the case of purifying an Al molten metal has been described above, the method of the present invention can be applied to the case of purifying another molten metal such as copper, and the same effect can be obtained. Further, the method of the present invention can enhance the purification efficiency even when applied to the method for purifying a metal containing an impurity having a distribution coefficient K of more than 1 which was previously proposed by the present inventors in Japanese Patent Application No. 61-241036. It is possible.

【0013】[0013]

【効果】以上述べたように、本発明方法によれば、ユニ
ット炉の核溶解室内の溶湯温度を所定の温度分布に制御
するという簡単な操作により金属の純化効率を高めるこ
とができ、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, the metal purification efficiency can be increased by a simple operation of controlling the temperature of the molten metal in the nuclear melting chamber of the unit furnace to a predetermined temperature distribution. Has a remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法にて用いるユニット炉の態様例を示
す要部説明図である。
FIG. 1 is an explanatory view of essential parts showing an example of a mode of a unit furnace used in a method of the present invention.

【図2】従来法で用いる金属のユニット炉の要部説明図
である。
FIG. 2 is an explanatory view of a main part of a metal unit furnace used in a conventional method.

【図3】溶質元素の分配法則を説明する為の金属状態図
である。
FIG. 3 is a metal state diagram for explaining a distribution law of solute elements.

【符号の説明】[Explanation of symbols]

1 ユニット炉 2 核生成室 3 核溶解室 4 下部通路 5 核生成装置 6,16 発熱体 7,17 溶湯 8 溶湯強熱域 9 固相粒子 10 樋 1 unit furnace 2 nucleation chamber 3 nucleation chamber 4 lower passage 5 nucleation device 6,16 heating element 7,17 molten metal 8 molten metal ignition zone 9 solid phase particles 10 gutter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 明 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 山 善裕 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Yamazaki 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Yoshihiro Yama Yamada 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 核生成室と核溶解室とを下部に通路を設
けて連結したユニット炉に金属溶湯を保持し、核生成室
にて生成する高純度の固相粒子を下部通路を通して核溶
解室に連続的に移送し、この移送された固相粒子を核溶
解室にて溶解する金属の純化方法において、核溶解室の
下部通路出口近傍の溶湯温度を固相粒子の溶解温度未満
の温度に制御し、又下部通路出口近傍より上方の溶湯温
度を固相粒子の溶解温度以上の温度に制御することを特
徴とする金属の純化方法。
1. A molten metal is held in a unit furnace in which a nucleation chamber and a nucleation melting chamber are connected to each other with a passage provided in the lower portion, and high-purity solid-phase particles generated in the nucleation chamber are nucleated through the lower passage. In the metal purification method in which the solid phase particles are continuously transferred to the chamber, and the transferred solid phase particles are melted in the nuclear melting chamber, the temperature of the molten metal near the outlet of the lower passage of the nuclear melting chamber is lower than the melting temperature of the solid phase particles. And the temperature of the molten metal above the vicinity of the outlet of the lower passage to a temperature above the melting temperature of the solid phase particles.
JP3280504A 1991-09-30 1991-09-30 Method for purifying metal Pending JPH0593229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280504A JPH0593229A (en) 1991-09-30 1991-09-30 Method for purifying metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280504A JPH0593229A (en) 1991-09-30 1991-09-30 Method for purifying metal

Publications (1)

Publication Number Publication Date
JPH0593229A true JPH0593229A (en) 1993-04-16

Family

ID=17626015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280504A Pending JPH0593229A (en) 1991-09-30 1991-09-30 Method for purifying metal

Country Status (1)

Country Link
JP (1) JPH0593229A (en)

Similar Documents

Publication Publication Date Title
US8562932B2 (en) Method of purifying silicon utilizing cascading process
US5961944A (en) Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
EP1922437B1 (en) Method and apparatus for refining a molten material
KR101406055B1 (en) Use of acid washing to provide purified silicon crystals
KR101247666B1 (en) Method for processing silicon powder to obtain silicon crystals
KR20100061510A (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
NZ203682A (en) Purifying metals by segregation
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
KR20100022516A (en) Method of solidifying metallic silicon
JPH07206420A (en) Production of high-purity silicon
JP2011525168A (en) Melt refining and transportation system
JPH0593229A (en) Method for purifying metal
JP2553082B2 (en) Copper refining method
JPH10139415A (en) Solidification and purification of molten silicon
JPH0565550A (en) Apparatus for purifying metal
JPH0565549A (en) Method for purifying metal
JPH0543955A (en) Device for purifying metal
JPH0566088A (en) Purifying device for metal
JPH05147918A (en) Refining method for metal silicon
JPH0723513B2 (en) Metal purification equipment
JP3250256B2 (en) Aluminum refining method and apparatus
JPH0723514B2 (en) Metal purification equipment
JPH0543954A (en) Device for purifying metal
JPH0557341B2 (en)
JPH05171307A (en) Method for purifying metal