JPH0543954A - Device for purifying metal - Google Patents

Device for purifying metal

Info

Publication number
JPH0543954A
JPH0543954A JP22510791A JP22510791A JPH0543954A JP H0543954 A JPH0543954 A JP H0543954A JP 22510791 A JP22510791 A JP 22510791A JP 22510791 A JP22510791 A JP 22510791A JP H0543954 A JPH0543954 A JP H0543954A
Authority
JP
Japan
Prior art keywords
chamber
nucleation
molten metal
solid phase
phase particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22510791A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
明 山崎
Hideaki Kudo
秀明 工藤
Koichi Ohara
弘一 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22510791A priority Critical patent/JPH0543954A/en
Publication of JPH0543954A publication Critical patent/JPH0543954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To provide a purifying device for a metal by which a molten metal can be purified at a high speed. CONSTITUTION:Plural sets of unit furnaces 1 composed of a nucleus generating chamber 2 arranged with a nucleus generating device 4 for generating solid phase particles 10 and a nucleus melting chamber 3 for melting the solid phase particles 10 are connected with the nucleus melting chamber 3 in the unit furnace 1 and the nucleus generating chamber 2 in the following unit furnace 1 through a trough 11 in series. The nucleus generating chamber 2 and the nucleus melting chamber 3 in the unit furnace 1 are partitioned with a parting wall 6 provided with a passage 5 at a lower part and molten metal temps. in respective chambers 2, 3 can individually be controlled with a heating body 8 embedded in the furnace wall, and a pair of discharging rolls 7 exposing the roll surfaces rotating downward at the lower part of the nucleus generating chamber 2 are provided. By this method, since the solid phase particles 10 generated in the nucleus generating chamber 2 are forcedly shifted into the nucleus melting chamber 3 by being concentrated with the discharging roll 7, the purifying speed in the molten metal 9 is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボンディングワイヤー
やメモリディスク等の電子機器材料等として用いられる
高純度金属を製造する為の金属の純化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal purifying apparatus for producing high-purity metal used as a material for electronic devices such as bonding wires and memory disks.

【0002】[0002]

【従来の技術】近年、電子機器の超小型化、精密化に伴
い、これに使用される金属材料には、導電性、柔軟性、
表面特性等の一層の向上が求められており、これに呼応
して高純度金属をベースとする金属材料の開発が年々活
発になってきている。高純度金属を得る為の金属の純化
方法には、大別して電解法と偏析法とがあるが、微量不
純物を除去するには偏析法が優れている。偏析法とは溶
湯が凝固する時の溶質の分配法則を応用する純化方法
で、帯溶融方式と凝固方式とが知られている。
2. Description of the Related Art In recent years, with the miniaturization and refinement of electronic equipment, the metal materials used for this have been found to be conductive, flexible,
Further improvement in surface properties is required, and in response to this, the development of metal materials based on high-purity metals is becoming active year by year. The metal purification methods for obtaining high-purity metals are roughly classified into an electrolysis method and a segregation method, but the segregation method is superior for removing a trace amount of impurities. The segregation method is a purification method that applies a solute distribution law when a molten metal is solidified, and a zone melting method and a solidification method are known.

【0003】ここで前記の分配法則を状態図を参照して
説明しておく。図2は分配係数K〔K=液相線温度に達
した時の(晶出固相の溶質濃度)/(初期溶質濃度)〕
が1より小さい溶質を含有する金属の状態図を示すもの
であり、不純物元素の大半はK<1である。さて、この
状態図の溶質濃度C0 の溶湯を冷却していって、その温
度が液相線温度T1 に達するとC1 濃度の核(固相粒
子)が最初に晶出する。更に温度を下げていくと晶出す
る固相の溶質濃度は次第に高くなるが、温度をT1 に保
持する間は溶質濃度C1 の固相粒子が晶出する。
The above-mentioned distribution law will now be described with reference to the state diagram. FIG. 2 shows partition coefficient K [K = (solute concentration of crystallized solid phase) / (initial solute concentration) when the liquidus temperature is reached]
Is a phase diagram of a metal containing a solute having a value of less than 1, and most of the impurity elements have K <1. Now, when the melt having the solute concentration C 0 in this state diagram is being cooled and the temperature reaches the liquidus temperature T 1 , nuclei (solid phase particles) having the C 1 concentration crystallize first. When the temperature is further lowered, the solute concentration of the solid phase that crystallizes gradually increases, but while the temperature is kept at T 1 , solid phase particles having the solute concentration C 1 crystallize out.

【0004】ところで、前述の凝固方式による純化法
は、従来からバッチ式で行われていて生産性に劣るもの
であり、これを改善する為に、本発明者等は高純度金属
を連続して製造できる金属の純化装置を開発した(特願
昭61-241037)。この金属の純化装置は、図3に例示した
ように、固相粒子生成用の核生成装置4を配置した核生
成室2と前記核生成室2で生成した固相粒子10を溶解す
る核溶解室3とからなるユニット炉1の複数基を、先の
ユニット炉1の核溶解室3と図示しない次のユニット炉
の核生成室とで樋11を介して直列に連結し、各ユニット
炉1の核生成室2と核溶解室3とをアンダーフロータイ
プの隔壁6により仕切り、核生成室2と核溶解室3との
間のアンダーフロー部の床面には核生成室2から核溶解
室3に向けて下り勾配の傾斜を設け、炉壁に埋設した発
熱体8により各室2,3毎に溶湯温度を制御可能となし
た構造のものである。
By the way, the above-mentioned purification method by the solidification method has been conventionally performed in a batch method and is inferior in productivity, and in order to improve this, the present inventors have succeeded in continuously producing high-purity metal. We have developed a metal purifier that can be manufactured (Japanese Patent Application No. 61-241037). As shown in FIG. 3, this metal purifying apparatus is a nuclear melting chamber that dissolves the nucleation chamber 2 in which the nucleation device 4 for solid phase particle generation is arranged and the solid phase particles 10 generated in the nucleation chamber 2. A plurality of unit furnaces 1 each consisting of a chamber 3 are connected in series via a trough 11 to a nuclear melting chamber 3 of the previous unit furnace 1 and a nucleation chamber of the next unit furnace (not shown). The nucleation chamber 2 and the nucleation chamber 3 are separated by an underflow type partition wall 6, and the floor of the underflow portion between the nucleation chamber 2 and the nucleation chamber 3 is separated from the nucleation chamber 2 to the nucleation chamber. 3 has a structure in which the molten metal temperature can be controlled for each of the chambers 2 and 3 by providing a downwardly sloping slope to the chamber 3 and by using the heating element 8 embedded in the furnace wall.

【0005】次にこの装置を用いて分配係数Kが1未満
の溶質を含有する溶湯を純化する方法を説明する。第1
のユニット炉1の核生成室2にて核生成装置4により生
成した固相粒子10を、核生成室2から核溶解室3へアン
ダーフロー部の床面の傾斜に沿って自然流動させ、核溶
解室3に流動してきた固相粒子10を核溶解室3にて再溶
融して核溶解室内3の溶湯9の純度を高め、次いでこの
溶湯9を樋11を通して、図示しない第2のユニット炉の
核生成室に移送し、ここで又第1のユニット炉1で行っ
たのと同じ操作を溶湯の設定温度を幾分下げた状態で行
い、以下最終のユニット炉まで同じ操作を繰り返して、
溶湯9の純度を次第に高めていくものである。
Next, a method for purifying a molten metal containing a solute having a distribution coefficient K of less than 1 using this apparatus will be described. First
Solid-phase particles 10 generated by the nucleation apparatus 4 in the nucleation chamber 2 of the unit furnace 1 are allowed to flow naturally from the nucleation chamber 2 to the nucleation dissolution chamber 3 along the slope of the floor of the underflow portion, The solid phase particles 10 flowing into the melting chamber 3 are remelted in the nuclear melting chamber 3 to enhance the purity of the molten metal 9 in the nuclear melting chamber 3, and then the molten metal 9 is passed through a trough 11 to produce a second unit furnace (not shown). The same operation as that performed in the first unit furnace 1 is performed again with the set temperature of the molten metal lowered somewhat, and the same operation is repeated until the final unit furnace,
The purity of the molten metal 9 is gradually increased.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな金属の純化装置では、核生成室で多量の固相粒子を
生成させても、固相粒子の核溶解室への移動を重力によ
る自然流動にのみ頼っていること又核溶解室の高温溶湯
の影響により核生成室の溶湯に上昇流が発生して固相粒
子が沈降し難いこと等が原因して、生成した固相粒子が
核溶解室へなかなか移動せず、固相粒子の生成速度を高
めても、高純度金属の製出速度は飽和してしまって、所
要の製出速度が得られないという問題があった。
However, in such a metal purifying apparatus, even if a large amount of solid phase particles are generated in the nucleation chamber, the movement of the solid phase particles to the nucleation melting chamber is caused by gravity flow. Due to the fact that an upward flow occurs in the molten metal in the nucleation chamber due to the effect of the high temperature molten metal in the nuclear melting chamber, and the solid-phase particles are difficult to settle, the generated solid-phase particles undergo nuclear fusion. Even if the solid phase particles do not easily move to the chamber and the production rate of the solid phase particles is increased, the production rate of the high-purity metal is saturated and there is a problem that the required production rate cannot be obtained.

【0007】[0007]

【課題を解決する為の手段】本発明は、このような状況
に鑑み鋭意研究を行った結果なされたもので、その目的
とするところは、高純度金属を高速度で製造できる金属
の純化装置を提供することにある。即ち、本発明は、固
相粒子生成用の核生成装置を配置した核生成室と前記核
生成室で生成した固相粒子を溶解する核溶解室とからな
るユニット炉の複数基を、先のユニット炉の核溶解室と
次のユニット炉の核生成室とで樋を介して直列に連結
し、ユニット炉の核生成室と核溶解室とを下部に通路を
設けた隔壁により仕切り、各室の溶湯温度を炉壁に埋設
した発熱体により個別に制御可能となした金属の純化装
置において、核生成室の下部に、下向きに回転するロー
ル面を溶湯に露出した一対の排出ロールを具設したこと
を特徴とするものである。
The present invention has been made as a result of intensive studies in view of such a situation, and an object thereof is to provide a metal purifying apparatus capable of producing high-purity metal at high speed. To provide. That is, the present invention, a plurality of units of a unit furnace consisting of a nucleation chamber in which a nucleation apparatus for solid phase particle generation is arranged and a nuclear melting chamber for melting solid phase particles generated in the nucleation chamber, The nucleation chamber of the unit furnace and the nucleation chamber of the next unit furnace are connected in series via a gutter, and the nucleation chamber and the nucleation chamber of the unit furnace are partitioned by a partition wall provided with a passage at the bottom, and each chamber In the metal purification device, the temperature of the molten metal was controlled individually by the heating elements embedded in the furnace wall.In the lower part of the nucleation chamber, a pair of discharge rolls with downwardly rotating roll surfaces exposed to the molten metal were installed. It is characterized by having done.

【0008】本発明装置は、核生成室で生成した固相粒
子を、核生成室の下部に具設した下向きに回転するロー
ル面を溶湯に露出した一対の固相粒子排出ロール(以
下、排出ロールと略記する。)を用いて濃縮し、強制的
に隔壁下部通路を通して核溶解室に移送するようにした
金属の純化装置である。この核生成室にて生成する固相
粒子とは、核生成装置により生成した核をもとにして成
長した粒子状の微小な晶出物又はその集合体を言い、組
成的には、溶質つまり不純物の濃度が溶湯の濃度より薄
いものである。
The apparatus of the present invention comprises a pair of solid phase particle discharge rolls (hereinafter referred to as discharges) for solid phase particles generated in the nucleation chamber, the downwardly rotating roll surface of which is exposed to the melt and which is provided in the lower part of the nucleation chamber. This is a metal purifying device in which the metal is concentrated by using a roll) and is forcibly transferred to the nuclear melting chamber through a partition lower passage. Solid phase particles generated in this nucleation chamber refers to particulate crystallized substances or aggregates thereof grown based on nuclei generated by a nucleation device, and in terms of composition, solutes, that is, The concentration of impurities is lower than that of the molten metal.

【0009】次に本発明装置を図を参照して具体的に説
明する。図1は本発明装置のユニット炉の態様例を示す
側断面図である。ユニット炉1は核生成室2と核溶解室
3からなり、核生成室2には核生成装置4を配置し、核
生成室2と核溶解室3とを下部に通路5を有するアンダ
ーフロータイプの隔壁6により仕切り、核生成室2の下
部に、下向きに回転するロール面を溶湯に露出した一対
の排出ロール7を具設してある。又核生成室2,下部通
路5,核溶解室3にそれぞれ配置した熱電対12と炉壁に
埋設した発熱体8により核生成室2と下部通路5と核溶
解室3の溶湯9の温度が各々別々に制御できる。核生成
室2の下部には、一対の排出ロール7が、下向きに回転
するロール面を溶湯9に露出した状態で具設されてい
る。この排出ロール7の温度は、内部の中空部に熱風を
通して制御できるようになっている。又この排出ロール
7の表面に例えば螺旋状の溝を彫る(ローレット加工)
等して、固相粒子とロール表面とのスリップを防止した
り、或いは溶湯の下方への流れを強めたりすることも可
能である。
Next, the device of the present invention will be specifically described with reference to the drawings. FIG. 1 is a side sectional view showing an example of a mode of a unit furnace of the device of the present invention. The unit furnace 1 is composed of a nucleation chamber 2 and a nucleation chamber 3, a nucleation device 4 is arranged in the nucleation chamber 2, and an underflow type in which the nucleation chamber 2 and the nucleation chamber 3 are provided with a passage 5 in the lower part. A partition wall 6 is provided, and a pair of discharge rolls 7 whose downwardly rotating roll surfaces are exposed to the molten metal are provided in the lower part of the nucleation chamber 2. Further, the temperature of the melt 9 in the nucleation chamber 2, the lower passage 5 and the nucleation chamber 3 is controlled by the thermocouples 12 respectively arranged in the nucleation chamber 2, the lower passage 5 and the nucleation chamber 3 and the heating element 8 embedded in the furnace wall. Each can be controlled separately. In the lower part of the nucleation chamber 2, a pair of discharge rolls 7 is provided with the roll surface rotating downward exposed to the molten metal 9. The temperature of the discharge roll 7 can be controlled by passing hot air through the hollow portion inside. Also, for example, engrave a spiral groove on the surface of the discharge roll 7 (knurling)
For example, it is possible to prevent the solid-phase particles from slipping on the roll surface, or to strengthen the downward flow of the molten metal.

【0010】次にこの金属の純化装置を用いて、分配係
数Kが1未満の溶質を不純物として含有するAl溶湯を
純化する方法を図1を参照して具体的に説明する。先
ず、第1ユニット炉1の核生成室2と核溶解室3に純化
しようとする金属の溶湯9を所定量注入し、次に核生成
室2の核生成装置4を稼動させつつ溶湯温度を液相線温
度にまで下げ、そのままその温度に保持する。この間核
生成室2下部の排出ロール7は核生成室2内の溶湯9の
温度と同じ温度に保持する。このような状態の核生成室
内の溶湯9からは、前述の分配法則に従って溶湯9より
純度の高い固相粒子10が生成し、この生成した固相粒子
10は核生成室2の溶湯9内を沈降して、核生成室2の下
部に具設した、一対の排出ロール7上に堆積し、堆積し
た固相粒子は排出ロールの回転に伴って濃縮され、高密
度化して核生成室2の下方の下部通路5に押出される。
下部通路5及び核溶解室3内の溶湯9は固相粒子10が溶
解する温度に保持しておいて、ここで前記固相粒子10を
再溶解して核溶解室3内の溶湯9の純度を高め、この溶
湯9を樋11を通して図示しない第2のユニット炉の核生
成室に移送する。第1のユニット炉1の核生成室2には
原料のAl溶湯9を固相粒子10の生成速度に合わせて補
充する。排出ロール7のロール回転により核生成室2内
の溶湯が下向きに流れるので、下部通路5及び核溶解室
3内の高温溶湯9が、核生成室2に逆流するようなこと
はなく、従って核生成室2内の固相粒子10の沈降が妨げ
られることがない。
Next, a method for purifying an Al molten metal containing a solute having a distribution coefficient K of less than 1 as an impurity by using this metal purifying device will be specifically described with reference to FIG. First, a predetermined amount of a molten metal 9 to be purified is injected into the nucleation chamber 2 and the nucleation melting chamber 3 of the first unit furnace 1, and then the nucleation apparatus 4 of the nucleation chamber 2 is operated to control the molten metal temperature. The liquidus temperature is lowered to and kept at that temperature. During this time, the discharge roll 7 below the nucleation chamber 2 is maintained at the same temperature as the temperature of the molten metal 9 in the nucleation chamber 2. From the molten metal 9 in the nucleation chamber in such a state, solid phase particles 10 having a higher purity than the molten metal 9 are generated according to the above-mentioned distribution law.
Numeral 10 settles in the melt 9 of the nucleation chamber 2 and deposits on a pair of discharge rolls 7 provided in the lower part of the nucleation chamber 2, and the solid-phase particles deposited are concentrated as the discharge roll rotates. Then, it is densified and extruded into the lower passage 5 below the nucleation chamber 2.
The melt 9 in the lower passage 5 and the nuclear melting chamber 3 is kept at a temperature at which the solid-phase particles 10 are melted, and the solid-phase particles 10 are redissolved in the molten metal 9 in the nuclear-melting chamber 3 to obtain the purity of the melt 9. And the molten metal 9 is transferred to the nucleation chamber of the second unit furnace (not shown) through the gutter 11. The nucleation chamber 2 of the first unit furnace 1 is replenished with the raw material Al melt 9 in accordance with the generation rate of the solid phase particles 10. Since the molten metal in the nucleation chamber 2 flows downward due to the rotation of the discharge roll 7, the high-temperature molten metal 9 in the lower passage 5 and the nucleation chamber 3 does not flow back into the nucleation chamber 2, and therefore The solid phase particles 10 in the generation chamber 2 are not prevented from settling.

【0011】本発明装置において、核生成装置に前述の
内部水冷式の核生成装置を用いる場合は、生成する固相
粒子量S(g/min.)と内部に流す冷却水量W(ml/
min.)との間には、S=1.75Wの実験式が成り立
つ。又前記固相粒子を核生成室から核溶解室に排出ロー
ルにより移送する場合、ロールの周速と移送される固相
粒子量とは比例する。従って、排出ロールの回転を必要
以上に速めると核生成室の純度の低い溶湯を核溶解室に
多量に流出することになり、又遅すぎると固相粒子が核
生成室に大量に溜まって固相粒子の生成効率が低下する
ので、排出ロールの回転速度は、予備実験を行って、核
生成装置の核生成能力に応じた最適速度を求めておく必
要がある。本発明方法では、核生成室で生成した固相粒
子は核溶解室に排出ロールを用いて強制的に送り込むの
で、核生成装置には核生成速度の速い、例えば特願平1-
272228号や特願平1-290720号等で提案した、溶湯に浸漬
する部分が溶湯との濡れ性の異なる黒鉛やセラミックス
材の混合体等で構成された内部水冷回転式の高性能の核
生成装置を用いるのが好ましい。
In the apparatus of the present invention, when the internal water-cooled nucleation apparatus is used as the nucleation apparatus, the amount of solid phase particles S (g / min.) To be produced and the amount of cooling water W (ml /
min.), the empirical formula of S = 1.75 W is established. When the solid phase particles are transferred from the nucleation chamber to the nucleation dissolution chamber by a discharge roll, the peripheral speed of the roll is proportional to the amount of the solid phase particles transferred. Therefore, if the rotation of the discharge roll is sped up more than necessary, a large amount of molten metal with low purity in the nucleation chamber will flow into the nucleation chamber, and if it is too late, a large amount of solid phase particles will accumulate in the nucleation chamber and solidify. Since the generation efficiency of the phase particles decreases, it is necessary to perform a preliminary experiment to determine the optimum rotation speed of the discharge roll in accordance with the nucleation capacity of the nucleation device. In the method of the present invention, the solid-phase particles generated in the nucleation chamber are forcibly fed into the nucleation dissolution chamber by using the discharge roll, so the nucleation device has a high nucleation rate, for example, Japanese Patent Application No. 1-
Proposed in 272228 and Japanese Patent Application No. 1-290720, an internal water-cooled rotary high-performance nucleation method in which the part to be immersed in the molten metal is composed of a mixture of graphite and ceramic materials with different wettability with the molten metal It is preferable to use a device.

【0012】[0012]

【作用】本発明装置では、ユニット炉の核生成室下部
に、下向きに回転するロール面を溶湯に露出した一対の
排出ロールを具設し、この排出ロールのロールを回転し
て、核生成室内にて生成した固相粒子を濃縮し、核溶解
室に強制的に移送するので、高純度金属の製出速度が向
上する。又排出ロールのロールの回転により溶湯に核生
成室から核溶解室に向けて溶湯流が生じるので、核溶解
室の高温度溶湯の影響で起きる核生成室内の溶湯の上昇
流が抑えられ、その結果核生成装置により生成した固相
粒子は核生成室内を速やかに沈降して核溶解室への固相
粒子の移送が効率よくなされる。又下部通路の溶湯温度
を核溶解室と同程度に高めておいて、排出ロールにより
押出される固相粒子を直ちに再溶融するようにすれば、
下部通路の床に固相粒子を移送する為の傾斜を付けたり
する必要がない。
In the apparatus of the present invention, a pair of discharge rolls having downwardly rotating roll surfaces exposed to the molten metal are provided at the lower part of the nucleation chamber of the unit furnace, and the rolls of the discharge rolls are rotated to move the nucleation chamber. Since the solid-phase particles generated in step 1 are concentrated and are forcibly transferred to the nuclear melting chamber, the production rate of high-purity metal is improved. Further, since the molten metal flows from the nucleation chamber toward the nucleation chamber by the rotation of the roll of the discharge roll, the rising flow of the molten metal in the nucleation chamber caused by the influence of the high temperature molten metal in the nucleation chamber is suppressed. As a result, the solid phase particles generated by the nucleation apparatus rapidly settle in the nucleation chamber and the solid phase particles are efficiently transferred to the nucleation dissolution chamber. If the temperature of the molten metal in the lower passage is raised to the same level as that of the nuclear melting chamber and the solid phase particles extruded by the discharge roll are immediately remelted,
There is no need to provide an inclination for transferring solid phase particles to the floor of the lower passage.

【0013】[0013]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 Al溶湯の純化実験を、図1に示したユニット炉5基を
樋で直列に連結した純化装置を用いて行った。各ユニッ
ト炉の核生成室と核溶解室は、共に、深さ400mm,
内平面の縦横断面が60×60mmで、核生成室と核溶
解室との間を仕切る隔壁は、厚さを50mmとし、下部
通路の高さを60mmとした。核生成室の下部に具設す
る排出ロールには、直径100mm、面長60mmのア
ルミナ製の排出ロールを用いた。又排出ロールにはロー
ル面が平滑なものと、ロール表面に深さ0.1mm,幅
0.1mm,ピッチ0.2mmの溝をロール全長にわた
ってローレット加工したものとの2種類の排出ロールを
用いた。ロール間隔は5mmに設定した。ローレット加
工を施した排出ロールを用いて、ロール周速V(cm/
min.) と固相粒子の排出量N(g/min.)との関係を求
めたところ、N=7.6Vの実験式が得られた。原料溶
湯には純度が99.7%のAl溶湯を用いた。このAl
溶湯にはCu,Fe,Mg,Mn,Ni,Si,Znの
元素が不純物として含まれ、これらの元素はいずれも分
配係数Kが1未満のものであった。この原料溶湯を第1
のユニット炉に5.4kg入れて、溶湯温度を核生成室
で665℃に、核溶解室で675℃に設定した。核生成
装置には、アルミナを5%混合した黒鉛の焼結体製の内
部水冷式・交流電動型核生成装置を用いた。この核生成
装置を核生成室の溶湯上部に先端を30mm浸漬し、核
生成装置内部に15℃の水を流し、これに50Hzの交
流を通電して振動を付与した。排出ロールのロール周速
は、固相粒子の排出速度Nが核生成装置により生成する
固相粒子の生成速度Wと一致するように設定した。排出
ロールは、内部の中空部に熱風を送って溶湯温度と同じ
温度に制御した。炉壁にはSiCの発熱体を埋め込ん
だ。又樋には断面コの字状に成形したSiCの発熱体を
通電加熱して用いた。このようにして第1ユニット炉の
核溶解室から純化した溶湯を樋を通して連続的に第2ユ
ニット炉の核生成室に移送し、第2ユニット炉でも同様
の操作を、溶湯温度を第1ユニット炉より幾分低く設定
した状態で行い、順次第5ユニット炉まで同じ操作を行
って、第5ユニット炉の核溶解室から高純度のAl溶湯
を製出させた。核生成室には、前述のAl溶湯を、核生
成装置の核生成速度と同じ速度で補給した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 An Al molten metal purification experiment was conducted using a purification apparatus in which five unit furnaces shown in FIG. 1 were connected in series with a gutter. Both the nucleation chamber and the nuclear melting chamber of each unit furnace have a depth of 400 mm,
The vertical and horizontal cross-sections of the inner plane were 60 × 60 mm, the partition wall separating the nucleation chamber and the nucleation chamber was 50 mm in thickness, and the height of the lower passage was 60 mm. A discharge roll made of alumina having a diameter of 100 mm and a face length of 60 mm was used as a discharge roll provided below the nucleation chamber. Two types of discharge rolls are used: one with a smooth roll surface and one with knurled grooves with a depth of 0.1 mm, a width of 0.1 mm and a pitch of 0.2 mm on the entire roll surface. I was there. The roll interval was set to 5 mm. Using a knurled discharge roll, roll peripheral speed V (cm /
min.) and the discharge amount N (g / min.) of solid phase particles were obtained, and an empirical formula of N = 7.6V was obtained. As the raw material molten metal, an Al molten metal having a purity of 99.7% was used. This Al
The molten metal contained elements of Cu, Fe, Mg, Mn, Ni, Si, and Zn as impurities, and all of these elements had a distribution coefficient K of less than 1. This raw material melt is the first
5.4 kg was put in the unit furnace of No. 1 and the melt temperature was set to 665 ° C. in the nucleation chamber and 675 ° C. in the nucleation chamber. An internal water-cooled AC electric nucleation device made of a sintered body of graphite mixed with 5% alumina was used as the nucleation device. The tip of this nucleation device was immersed in the molten metal in the nucleation chamber for 30 mm, and water at 15 ° C. was flown inside the nucleation device. An alternating current of 50 Hz was applied to this to give vibration. The roll peripheral speed of the discharge roll was set so that the discharge speed N of the solid phase particles coincided with the generation speed W of the solid phase particles generated by the nucleation device. The discharge roll controlled the temperature to be the same as the molten metal temperature by sending hot air to the inner hollow portion. A SiC heating element was embedded in the furnace wall. In addition, a SiC heating element formed in a U-shaped cross section was used for the gutter after being electrically heated. The molten metal thus purified from the nuclear melting chamber of the first unit furnace is continuously transferred to the nucleation chamber of the second unit furnace through the gutter, and the same operation is performed in the second unit furnace by changing the molten metal temperature to the first unit. The furnace was set at a temperature slightly lower than that of the furnace, and the same operation was sequentially performed up to the fifth unit furnace to produce a high-purity Al melt from the nuclear melting chamber of the fifth unit furnace. The above-mentioned molten aluminum was supplied to the nucleation chamber at the same rate as the nucleation rate of the nucleation apparatus.

【0014】比較例1 図3に示した純化装置を用いて実施例1と同じ方法によ
りAl溶湯の純化実験を行った。ユニット炉の寸法は実
施例1で用いたユニット炉と同じ寸法とし、床面には核
生成室から核溶解室へ向けて30度の下り勾配を形成し
た。このようにして純化実験を連続10時間行ない、第
4及び第5ユニット炉の核溶解室から製出する溶湯をサ
ンプリングして不純物の定量分析を行った。又第5ユニ
ット炉の核溶解室から製出する高純化溶湯の製出量を計
量した。結果は、予備実験で求めた固相粒子の生成速度
を併記して表1に示した。
Comparative Example 1 An Al molten metal purification experiment was conducted by the same method as in Example 1 using the purification apparatus shown in FIG. The unit furnace had the same dimensions as the unit furnace used in Example 1, and a downward gradient of 30 degrees was formed on the floor surface from the nucleation chamber to the nuclear melting chamber. In this way, the purification experiment was carried out continuously for 10 hours, and the molten metal produced from the nuclear melting chambers of the fourth and fifth unit furnaces was sampled for quantitative analysis of impurities. Further, the production amount of the highly purified molten metal produced from the nuclear melting chamber of the fifth unit furnace was measured. The results are shown in Table 1 together with the solid phase particle generation rate obtained in the preliminary experiment.

【0015】[0015]

【表1】 [Table 1]

【0016】表1より明らかなように、本発明例品(N
o.1〜7)の製出溶湯はいずれも純度が高く、又高純
度Alの製出速度も固相粒子の生成速度に応じて増加し
た。No2がNo1より不純物量が少なく、又高純度Alの
製出速度が高いのは、ロール表面にローレット加工を施
した効果によるものである。他方、比較例品のNo.8
は、製出速度が遅く、固相粒子の生成速度を速めても
(No.9)高純化Alの製出速度は変わらなかった。こ
のことは、核生成室から核溶解室への固相粒子の移動速
度が35g/min.以下で飽和したことを物語る。又、不
純物量も第5ユニット炉を出たもので37〜39ppm と
多かった。この値は本発明例品の第4ユニット炉の不純
物量を上回るもので、本発明装置によれば、比較例の装
置よりユニット炉を1基減らすことができる。このよう
に比較例品に不純物量が多い理由は、比較例装置には下
部通路を介して核生成室と核溶解室との間で溶湯の交流
があった為である。
As is clear from Table 1, the product of the present invention (N
o. The produced melts 1 to 7) were all high in purity, and the production rate of high-purity Al increased with the production rate of solid phase particles. The fact that No2 has less impurities than No1 and the production rate of high-purity Al is higher is due to the effect of knurling the roll surface. On the other hand, the No. 8
Has a low production rate, and the production rate of highly purified Al did not change even if the solid phase particle production rate was increased (No. 9). This indicates that the moving speed of the solid phase particles from the nucleation chamber to the nucleation chamber was saturated at 35 g / min. Or less. In addition, the amount of impurities was as high as 37 to 39 ppm after leaving the fifth unit furnace. This value exceeds the amount of impurities in the fourth unit furnace of the product of the present invention, and the device of the present invention can reduce the number of unit furnaces by one compared with the device of the comparative example. The reason why the comparative example product has a large amount of impurities is that the comparative example apparatus has an alternating current of the molten metal between the nucleation chamber and the nuclear melting chamber via the lower passage.

【0017】更に、表1のNo.1,2,8の純化実験で
は、各ユニット炉間の樋中からも溶湯をサンプリング
し、各々の不純物元素を分析した。結果は表2に示し
た。
Further, in Table 1, No. In the purification experiments of Nos. 1, 2, and 8, the molten metal was sampled also from the trough between the unit furnaces, and each impurity element was analyzed. The results are shown in Table 2.

【表2】 [Table 2]

【0018】表2より明らかなように不純物元素量は第
1ユニット炉を出たところから常にNo.2,1,8の順
序で少なくなっていて、本発明装置の優位性が実証され
た。以上、分配係数Kが1未満の溶質を不純物として含
有する溶湯の純化実験について説明したが、Kが1を超
える溶質を不純物として含有する溶湯についても、特願
昭61-241036 で提案した装置に排出ロールを具設するこ
とにより純化速度を向上させることができる。又用いる
原料溶湯もAl溶湯に限らず、銅等の他の金属溶湯に適
用しても同様の効果が得られることは言うまでもない。
又排出ロールは複数本用いてもよく、排出ロールの材
質、形状等はユニット炉の構造や金属溶湯の種類に合わ
せて任意に設計することができる。又ユニット炉は1基
のみ用いて純化を行っても差し支えない。
As is clear from Table 2, the amount of the impurity element was always No. from the point where it left the first unit furnace. The number was decreased in the order of 2, 1, 8 and the superiority of the device of the present invention was demonstrated. So far, the purification experiment of a melt containing a solute with a distribution coefficient K of less than 1 as an impurity has been described. However, for a melt containing a solute with a K of more than 1 as an impurity, the apparatus proposed in Japanese Patent Application No. 61-241036 can be used. The purification speed can be improved by providing the discharge roll. Needless to say, the same effect can be obtained even if the raw material melt used is not limited to the Al melt, but is applied to other metal melts such as copper.
A plurality of discharge rolls may be used, and the material, shape, etc. of the discharge rolls can be arbitrarily designed according to the structure of the unit furnace and the kind of molten metal. Further, it is possible to carry out purification using only one unit furnace.

【0019】[0019]

【効果】以上述べたように、本発明装置によれば、金属
溶湯を高速度で純化することができ、工業上顕著な効果
を奏する。
As described above, according to the apparatus of the present invention, the molten metal can be purified at a high speed, and the industrially remarkable effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の態様例を示す側断面図である。FIG. 1 is a side sectional view showing an example of an embodiment of the device of the present invention.

【図2】溶質元素の分配法則を説明する為の金属状態図
である。
FIG. 2 is a metal state diagram for explaining a distribution law of solute elements.

【図3】従来装置の正面及び平面のそれぞれ断面図であ
る。
3A and 3B are front and plan sectional views of a conventional device, respectively.

【符号の説明】[Explanation of symbols]

1 ユニット炉 2 核生成室 3 核溶解室 4 核生成装置 5 下部通路 6 隔壁 7 排出ロール 8 発熱体 9 溶湯 10 固相粒子 11 樋 12 熱電対 1 Unit Furnace 2 Nucleation Chamber 3 Nuclear Melting Chamber 4 Nucleation Device 5 Lower Passage 6 Partition 7 Discharge Roll 8 Heating Element 9 Molten Metal 10 Solid Particle 11 Gutter 12 Thermocouple

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固相粒子生成用の核生成装置を配置した
核生成室と前記核生成室で生成した固相粒子を溶解する
核溶解室とからなるユニット炉の複数基を、先のユニッ
ト炉の核溶解室と次のユニット炉の核生成室とで樋を介
して直列に連結し、ユニット炉の核生成室と核溶解室と
を下部に通路を設けた隔壁により仕切り、各室の溶湯温
度を炉壁に埋設した発熱体により個別に制御可能となし
た金属の純化装置において、核生成室の下部に、下向き
に回転するロール面を溶湯に露出した一対の排出ロール
を具設したことを特徴とする金属の純化装置。
1. A plurality of units of a unit furnace comprising a nucleation chamber in which a nucleation device for producing solid phase particles is arranged and a nucleation chamber in which solid phase particles produced in the nucleation chamber are dissolved, The nucleation chamber of the furnace and the nucleation chamber of the next unit furnace are connected in series via a gutter, and the nucleation chamber and the nucleation chamber of the unit furnace are partitioned by a partition wall provided with a passage at the bottom, In the metal purification device, the temperature of the molten metal can be controlled individually by the heating elements embedded in the furnace wall.In the lower part of the nucleation chamber, a pair of discharge rolls with downwardly rotating roll surfaces exposed to the molten metal were installed. A metal purifying device characterized in that
JP22510791A 1991-08-09 1991-08-09 Device for purifying metal Pending JPH0543954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22510791A JPH0543954A (en) 1991-08-09 1991-08-09 Device for purifying metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22510791A JPH0543954A (en) 1991-08-09 1991-08-09 Device for purifying metal

Publications (1)

Publication Number Publication Date
JPH0543954A true JPH0543954A (en) 1993-02-23

Family

ID=16824094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22510791A Pending JPH0543954A (en) 1991-08-09 1991-08-09 Device for purifying metal

Country Status (1)

Country Link
JP (1) JPH0543954A (en)

Similar Documents

Publication Publication Date Title
NZ203682A (en) Purifying metals by segregation
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
CN101484596B (en) Method and device for metal purification and separation of purified metal from a metal mother liquid such as aluminium
US4581062A (en) Process for the continuous purification of metals by fractional crystallization on a rotary drum
JPH07206420A (en) Production of high-purity silicon
CN102112638A (en) Method for refining metal
JPH0543954A (en) Device for purifying metal
CN110819823A (en) Method for preparing high-purity aluminum and prepared 5N high-purity aluminum
JPH0543955A (en) Device for purifying metal
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
TW201406656A (en) Addition of alkali magnesium halide to a solvent metal
JP3263104B2 (en) Purification method of metallic silicon
JPH0566088A (en) Purifying device for metal
JP2553082B2 (en) Copper refining method
JPH05156376A (en) Method for purifying metal
JPH05171307A (en) Method for purifying metal
JPH07107181B2 (en) Copper material for superconductivity
JPH0565549A (en) Method for purifying metal
JPH0723513B2 (en) Metal purification equipment
JPH0723514B2 (en) Metal purification equipment
JPH0593229A (en) Method for purifying metal
JPH06192756A (en) Apparatus for purifying metal
JPH0565550A (en) Apparatus for purifying metal
JP3721804B2 (en) Aluminum purification method and use thereof
JPH05295461A (en) Method and apparatus for purifying aluminum