JPH05171307A - Method for purifying metal - Google Patents

Method for purifying metal

Info

Publication number
JPH05171307A
JPH05171307A JP3353761A JP35376191A JPH05171307A JP H05171307 A JPH05171307 A JP H05171307A JP 3353761 A JP3353761 A JP 3353761A JP 35376191 A JP35376191 A JP 35376191A JP H05171307 A JPH05171307 A JP H05171307A
Authority
JP
Japan
Prior art keywords
chamber
nucleation
molten metal
phase particles
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3353761A
Other languages
Japanese (ja)
Inventor
Hideaki Kudo
秀明 工藤
Koichi Ohara
弘一 尾原
Mitsuhiro Otaki
光弘 大滝
Akira Yamazaki
明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3353761A priority Critical patent/JPH05171307A/en
Publication of JPH05171307A publication Critical patent/JPH05171307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To provide a purifying method of metal, by which high purity molten metal can efficiently be produced. CONSTITUTION:In the purifying method of the metal, the prescribed number of unit furnaces 1 connecting a nucleus generating chamber 2 and a nucleus melting chamber 5 through a lower passage 5 are arranged and the nucleus melting chamber 3 in the previous unit furnace 1 and the nucleus generating chamber in the following unit furnace are connected by arranging a trough 11 at the upper part to form the purifying apparatus. Then, in this purifying apparatus, the molten metal 9 is held and in each nucleus generating chamber 2, the high purity solid phase particles 10 are generated and shifted to the nucleus melting chamber 3 through the lower passage 5 and melted in the nucleus melting chamber 3 and shifted to the nucleus generating chamber 2 in the following unit furnace 1. In the lower passage 5, one pair of hollow porous compressive rolls 6 are arranged and rotated and the solid phase particles 10 in the nucleus generating chamber 2 are compressed between the compressive rolls 6 and shifted into the nucleus melting chamber 3. Further, low purity molten metal around the solid phase particles 10 is extracted into the hollow parts of the hollow porous compressive rolls 6 and removed to prevent the invasion of the low purity molten metal into the nucleus melting chamber 3, and by this method, the purifying efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボンディングワイヤー
やメモリディスク等の電子機器材料等として用いられる
高純度金属を製造する為の金属の純化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal purification method for producing a high-purity metal used as a material for electronic devices such as bonding wires and memory disks.

【0002】[0002]

【従来の技術】近年、電子機器の超小型化、精密化に伴
い、これに使用される金属材料には、導電性、柔軟性、
表面特性等の一層の向上が求められており、これに呼応
して高純度金属をベースとする金属材料の開発が年々活
発になってきている。高純度金属を得る為の金属の純化
方法には、大別して電解法と偏析法とがあるが、微量不
純物を除去するには偏析法が優れている。偏析法とは溶
湯が凝固する時の溶質の分配法則を応用する純化方法
で、帯溶融方式と凝固方式とが知られている。
2. Description of the Related Art In recent years, with the miniaturization and refinement of electronic equipment, the metal materials used for this have been found to be conductive, flexible,
Further improvement in surface characteristics is required, and in response to this, the development of metallic materials based on high-purity metals is becoming active year by year. The metal purification methods for obtaining high-purity metals are roughly classified into an electrolysis method and a segregation method, but the segregation method is superior for removing a trace amount of impurities. The segregation method is a purification method that applies a solute distribution law when a molten metal is solidified, and a zone melting method and a solidification method are known.

【0003】ここで前記の分配法則を状態図を参照して
説明しておく。図3は分配係数K〔K=液相線温度に達
した時の(晶出固相の溶質濃度)/(初期溶質濃度)〕
が1より小さい溶質を含有する金属の状態図を示すもの
であり、不純物元素の大半はK<1である。さて、この
状態図の溶質濃度C0 の溶湯を冷却していって、その温
度が液相線温度T1 に達するとC1 濃度の核(固相粒
子)が最初に晶出する。
The above-mentioned distribution law will now be described with reference to the state diagram. FIG. 3 shows partition coefficient K [K = (solute concentration of crystallized solid phase) / (initial solute concentration) when the liquidus temperature is reached]
Is a phase diagram of a metal containing a solute having a value of less than 1, and most of the impurity elements have K <1. Now, when the melt having the solute concentration C 0 in this state diagram is being cooled and the temperature reaches the liquidus temperature T 1 , nuclei (solid phase particles) having the C 1 concentration crystallize first.

【0004】ところで、前述の凝固方式による純化法
は、従来からバッチ式で行われていて生産性に劣るもの
であり、これを改善する為に、本発明者等は高純度金属
を連続して製造できる金属の純化装置を開発した(特願
昭 61-241037)。この金属の純化装置は、図4に例示し
たように、固相粒子生成用の核生成装置4を配置した核
生成室2と前記固相粒子10を溶解する核溶解室3とから
なるユニット炉1の複数基を、先のユニット炉1の核溶
解室3と図示しない次のユニット炉の核生成室とで樋11
を介して直列に連結し、各ユニット炉1の核生成室2と
核溶解室3とをアンダーフロータイプの隔壁12により仕
切り、核生成室2と核溶解室3との間のアンダーフロー
部の床面には核生成室2から核溶解室3に向けて下り勾
配の傾斜を設け、炉壁に埋設した発熱体13により各室
2,3毎に溶湯温度を制御可能となした構造のものであ
る。而して、この装置による純化方法は、第1のユニッ
ト炉1の核生成室2にて核生成装置4により生成した固
相粒子10を、核生成室2から核溶解室3へアンダーフロ
ー部の床面の傾斜に沿って自然流動させ、核溶解室3に
流動してきた固相粒子10を高温に保持した核溶解室3に
て再溶融して核溶解室内3の溶湯9の純度を高め、次い
でこの溶湯9を樋11を通して、図示しない第2のユニッ
ト炉の核生成室に移送し、ここで又第1のユニット炉1
で行ったのと同じ操作を溶湯の設定温度を幾分上げた状
態で行い、以下最終のユニット炉まで同じ操作を繰り返
して、溶湯9の純度を次第に高めていくものである。
By the way, the above-mentioned purification method by the solidification method has been conventionally performed in a batch method and is inferior in productivity, and in order to improve this, the present inventors have succeeded in continuously producing high-purity metal. We have developed a metal purifier that can be manufactured (Japanese Patent Application No. 61-241037). As shown in FIG. 4, this metal purification device is a unit furnace composed of a nucleation chamber 2 in which a nucleation device 4 for solid phase particle generation is arranged and a nucleation melting chamber 3 for melting the solid phase particles 10. A plurality of the reactors 1 are connected to the nucleation chamber 3 of the previous unit furnace 1 and the nucleation chamber of the next unit furnace (not shown) 11
And the nucleation chamber 2 and the nucleation chamber 3 of each unit furnace 1 are partitioned by an underflow type partition wall 12, and the underflow portion between the nucleation chamber 2 and the nucleation chamber 3 is separated. A structure in which a downward slope is provided from the nucleation chamber 2 to the nuclear melting chamber 3 on the floor surface, and the temperature of the molten metal can be controlled for each chamber 2 and 3 by the heating element 13 embedded in the furnace wall Is. Thus, according to the purification method by this apparatus, the solid-phase particles 10 generated by the nucleation device 4 in the nucleation chamber 2 of the first unit furnace 1 are transferred from the nucleation chamber 2 to the nucleation dissolution chamber 3 underflow part The solid phase particles 10 flowing in the nuclear melting chamber 3 are re-melted in the nuclear melting chamber 3 kept at high temperature to increase the purity of the molten metal 9 in the nuclear melting chamber 3 Then, this molten metal 9 is transferred through a gutter 11 to a nucleation chamber of a second unit furnace (not shown), and here again the first unit furnace 1
The same operation as that carried out in step 1 is carried out with the set temperature of the molten metal raised to some extent, and the same operation is repeated until the final unit furnace, whereby the purity of the molten metal 9 is gradually increased.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この装
置を用いた金属の純化方法では、核生成室内の固相粒子
の核溶解室への移動が重力に頼っていること、固相粒子
周囲の低純度溶湯が固相粒子とともに核溶解室に入り込
むこと、核溶解室の高温溶湯が核生成室内に上昇流を引
き起こして固相粒子の沈降を妨げること等の理由から、
十分な純化効率が得られないという問題があった。
However, in the metal purification method using this apparatus, the movement of the solid phase particles in the nucleation chamber to the nucleation dissolution chamber depends on the gravity, and the low temperature around the solid phase particles is reduced. Because of the fact that the pure molten metal enters the nuclear melting chamber together with the solid phase particles, and the high temperature molten metal in the nuclear melting chamber causes an upward flow in the nucleation chamber to prevent the solid phase particles from settling,
There was a problem that sufficient purification efficiency could not be obtained.

【0006】[0006]

【課題を解決する為の手段】本発明は、このような状況
に鑑み鋭意研究を行った結果なされたもので、その目的
とするところは、高純度金属を効率よく製造できる金属
の純化方法を提供することにある。即ち、本発明は、核
生成室と核溶解室とを下部に通路を設けて連結したユニ
ット炉を所要数、先のユニット炉の核溶解室と次のユニ
ット炉の核生成室とを上部に通路を設けて連結して純化
装置となし、この純化装置に金属溶湯を保持し、各々の
ユニット炉の核生成室にて生成する高純度の固相粒子を
下部通路を通して核溶解室に連続的に移送し、この移送
された固相粒子を核溶解室にて溶解して、次のユニット
炉の核生成室に移送する金属の純化方法において、下部
通路に対をなす中空多孔性圧搾ロールを配置し、前記圧
搾ロールを回転させて固相粒子を核生成室から核溶解室
に移送するとともに、固相粒子周囲の高濃度溶湯を前記
中空多孔性圧搾ロールの中空部内に抽出し除去すること
を特徴とするものである。
The present invention has been made as a result of intensive studies in view of such a situation, and an object thereof is to provide a metal purification method capable of efficiently producing a high-purity metal. To provide. That is, the present invention provides a required number of unit furnaces in which a nucleation chamber and a nucleation chamber are connected to each other with a passage provided in the lower part, and the nucleation chamber of the previous unit furnace and the nucleation chamber of the next unit furnace are located in the upper part A passage is provided and connected to form a purifier, which holds the molten metal and continuously supplies high-purity solid phase particles generated in the nucleation chamber of each unit furnace to the nucleation chamber through the lower passage. In the nucleation chamber of the next unit furnace by melting the transferred solid phase particles in the nucleation chamber, and in the metal purification method of the next unit furnace, a hollow porous pressing roll forming a pair in the lower passage is used. Arranged and rotating the pressing roll to transfer the solid phase particles from the nucleation chamber to the nuclear melting chamber, and extracting and removing the high-concentration molten metal around the solid phase particles into the hollow portion of the hollow porous pressing roll. It is characterized by.

【0007】本発明方法は、核生成室内で生成した固相
粒子を、対をなす中空多孔性圧搾ロールを回転させ、前
記ロール間で圧縮して核溶解室へ移送するとともに、固
相粒子周囲の低純度の溶湯を前記中空多孔性圧搾ロール
の中空部内に抽出し除去して低純度溶湯の核溶解室への
侵入を防止し、更に下部通路を中空多孔性圧搾ロールに
より遮断することにより核溶解室から核生成室への溶湯
の上昇流を抑止して、核生成室内の固相粒子の沈降速度
を高めたものである。以下に、本発明方法を図を参照し
て具体的に説明する。図1は本発明方法にて用いるユニ
ット炉の態様例を示す側面説明図、図2は中空多孔性圧
搾ロールの側面説明図である。ユニット炉1は核生成室
2と核溶解室3からなり、核生成室2には核生成装置4
が配置され、核生成室2と核溶解室3とは下部通路5に
より連結されている。前記下部通路5には1対の中空多
孔性圧搾ロール6が軸を通路方向に対し直角に向けて配
置されている。この中空多孔性圧搾ロール6は、Vベル
ト7を介して駆動モーター8に繋がっており、この圧搾
ロール6の対向面が核溶解室3に移動するように回転す
る。この中空多孔性圧搾ロール6と下部通路壁部との境
界部分は湯漏れしないように十分にシールされている。
In the method of the present invention, the solid phase particles generated in the nucleation chamber are rotated between a pair of hollow porous pressing rolls, compressed between the rolls and transferred to the nucleation dissolution chamber, and the solid phase particles are surrounded by the solid phase particles. The low-purity molten metal is extracted into the hollow portion of the hollow porous compression roll to remove it to prevent the low-purity molten metal from entering the nucleus melting chamber, and the lower passage is blocked by the hollow porous compression roll to form the core. By suppressing the upward flow of the molten metal from the melting chamber to the nucleation chamber, the sedimentation rate of solid phase particles in the nucleation chamber is increased. The method of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a side view showing an example of an embodiment of a unit furnace used in the method of the present invention, and FIG. 2 is a side view showing a hollow porous press roll. The unit furnace 1 comprises a nucleation chamber 2 and a nucleation chamber 3, and the nucleation chamber 2 includes a nucleation device 4
Are arranged, and the nucleation chamber 2 and the nuclear melting chamber 3 are connected by a lower passage 5. A pair of hollow porous pressing rolls 6 are arranged in the lower passage 5 with their axes oriented at right angles to the passage direction. The hollow porous pressing roll 6 is connected to a drive motor 8 via a V-belt 7 and rotates so that the facing surface of the pressing roll 6 moves to the nuclear melting chamber 3. The boundary portion between the hollow porous press roll 6 and the lower passage wall portion is sufficiently sealed so that no molten metal leaks.

【0008】次に前記ユニット炉を用いて、分配係数K
が1未満の溶質を不純物として含有する溶湯を純化する
方法を図1及び図2を参照して具体的に説明する。先
ず、第1のユニット炉1の核生成室2と核溶解室3に純
化しようとする金属の溶湯9を所定量注入し、次に核生
成室2の核生成装置4を稼動させつつ溶湯温度を液相線
温度にまで下げ、そのままその温度に保持する。溶湯9
からは前述の分配法則に従って溶湯9より純度の高い固
相粒子10が生成し、この生成した固相粒子10は核生成室
2の溶湯9内を沈降して下部通路5に到達し、回転する
中空多孔性圧搾ロール6に引き込まれて圧縮され、固相
粒子10のみが核溶解室3に送り込まれる。又固相粒子10
周囲の低純度溶湯は中空多孔性圧搾ロール6の壁を浸透
して前記圧搾ロール6の中空部内に抽出され除去され
る。核溶解室3の溶湯温度を前記固相粒子10が溶融する
温度に保持して前記固相粒子10を再溶解させて核溶解室
3内の溶湯9の純度を高め、この溶湯9を樋11を通して
図示しない第2のユニット炉の核生成室に移送する。第
1のユニット炉1の核生成室2には原料の溶湯9を補充
する。この間、下部通路5は中空多孔性圧搾ロール6に
より遮断されているので、核溶解室3から核生成室2に
向けての溶湯9の上昇流は阻止される。本発明方法で
は、核生成室2で生成した固相粒子10は核溶解室3に中
空多孔性圧搾ロール6を用いて速やかに送り込むので、
核生成装置4には核生成速度の速い、例えば特願平1-27
2228号や特願平1-290720号等で提案した、溶湯9に浸漬
する部分が溶湯9との濡れ性の異なる黒鉛やセラミック
ス材の混合体等で構成された内部水冷回転式の高性能の
核生成装置4を用いるのが好ましい。
Next, using the unit furnace, the distribution coefficient K
A method for purifying a molten metal containing a solute having a value of less than 1 as an impurity will be specifically described with reference to FIGS. 1 and 2. First, a predetermined amount of molten metal 9 to be purified is injected into the nucleation chamber 2 and the nucleation melting chamber 3 of the first unit furnace 1, and then the nucleation apparatus 4 of the nucleation chamber 2 is operated and the molten metal temperature is increased. Is lowered to the liquidus temperature and kept at that temperature. Molten metal 9
Solid phase particles 10 having a higher purity than the molten metal 9 are generated according to the distribution law described above, and the generated solid phase particles 10 settle in the molten metal 9 of the nucleation chamber 2 to reach the lower passage 5 and rotate. It is drawn into the hollow porous pressing roll 6 and compressed, and only the solid phase particles 10 are fed into the nuclear melting chamber 3. Solid phase particles 10
The surrounding low-purity molten metal penetrates the wall of the hollow porous pressing roll 6 and is extracted and removed in the hollow portion of the pressing roll 6. The melt temperature in the nuclear melting chamber 3 is maintained at a temperature at which the solid phase particles 10 are melted, the solid phase particles 10 are redissolved to improve the purity of the molten metal 9 in the nuclear melting chamber 3, and the molten metal 9 is guttered 11 Through the nucleation chamber of the second unit furnace (not shown). The raw material melt 9 is replenished in the nucleation chamber 2 of the first unit furnace 1. During this time, since the lower passage 5 is blocked by the hollow porous pressing roll 6, the upward flow of the molten metal 9 from the nucleus melting chamber 3 toward the nucleation chamber 2 is blocked. In the method of the present invention, the solid phase particles 10 generated in the nucleation chamber 2 are rapidly fed into the nucleation dissolution chamber 3 using the hollow porous pressing roll 6,
The nucleation device 4 has a high nucleation speed, for example, Japanese Patent Application No. 1-27.
No. 2228 and Japanese Patent Application No. 1-290720, which have a high performance of an internal water-cooled rotary type, in which the part to be immersed in the molten metal 9 is composed of a mixture of graphite and ceramics materials having different wettability with the molten metal 9, It is preferable to use the nucleation device 4.

【0009】[0009]

【作用】本発明方法では、ユニット炉の核生成室で生成
した固相粒子を対をなす中空多孔性圧搾ロールを回転さ
せ圧縮して移送するので、固相粒子は核溶解室に速やか
に送り込まれる。又固相粒子周囲の低純度溶湯は前記中
空多孔性圧搾ロールの中空部内に排出されるので、核溶
解室の溶湯は高純度に保たれる。又核生成室と核溶解室
を連結する下部通路が中空多孔性圧搾ロールにより遮断
されるので、核溶解室から核生成室への溶湯の上昇流が
なくなり、核生成室内の固相粒子は速やかに沈降する。
依って、高純度溶湯が効率よく製出される。
In the method of the present invention, the solid phase particles generated in the nucleation chamber of the unit furnace are transferred by compressing them by rotating the pair of hollow porous pressing rolls, so that the solid phase particles are promptly sent to the nucleation chamber. Be done. Further, since the low-purity molten metal around the solid phase particles is discharged into the hollow portion of the hollow porous pressing roll, the molten metal in the nuclear melting chamber is kept in high purity. Further, since the lower passage connecting the nucleation chamber and the nucleation chamber is blocked by the hollow porous pressing roll, the rising flow of the molten metal from the nucleation chamber to the nucleation chamber is eliminated, and the solid phase particles in the nucleation chamber are quickly Settles.
Therefore, the high-purity molten metal is efficiently produced.

【0010】[0010]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 Al溶湯の純化実験を、図1に示したユニット炉5基を
樋で直列に連結した純化装置を用いて行った。各ユニッ
ト炉の内部形状と寸法は、核生成室が、深さ 400mm
で、上方開口部から深さ 200mmまでは内平面の縦横が
60×60mmで、深さ 200mmのところから床面上20mm
の高さのところまでは左右壁の内面を約3度の勾配で直
線的に狭め、このあと床面までは直径40mmの横断面半
円状とした。核溶解室は、深さを400mm、内平面の縦
横を60×60mmとした。核生成室と核溶解室との間の下
部通路は、核溶解室に向けて30度の下り勾配を付けた内
径40mmφの断面円形状のものとした。各ユニット炉の
下部通路の中央部には、図2に示した如き構造の対をな
す中空多孔性圧搾ロールを1対、軸が通路方向に対し直
角に向くように配置した。このロールにはポーラスなア
ルミナ製の外径25mmφ, 内径15mmφの円筒状のもの
を用いた。ポーラスアルミナには孔径50〜 100μm,空
孔率20%のものを用い、ロール間隔は 0.3mmに設定し
た。炉壁にはSiCの発熱体を埋め込んだ。又樋には断
面コの字状に成形したSiCの発熱体を通電加熱して用
いた。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 An Al molten metal purification experiment was conducted using a purification apparatus in which five unit furnaces shown in FIG. 1 were connected in series with a gutter. The internal shape and dimensions of each unit furnace are 400 mm deep in the nucleation chamber.
Then, from the upper opening to a depth of 200 mm,
60x60mm, 20mm above the floor from a depth of 200mm
The inner surfaces of the left and right walls were linearly narrowed up to a height of about 3 degrees with a gradient of about 3 degrees, and then the floor surface had a semicircular cross section with a diameter of 40 mm. The depth of the nuclear melting chamber was 400 mm, and the length and width of the inner plane were 60 × 60 mm. The lower passage between the nucleation chamber and the nucleation chamber had a circular cross section with an inner diameter of 40 mmφ with a downward slope of 30 degrees toward the nucleation chamber. At the center of the lower passage of each unit furnace, a pair of hollow porous squeezing rolls having a structure as shown in FIG. 2 were arranged so that the shaft thereof was oriented at right angles to the passage direction. As the roll, a cylindrical alumina roll having an outer diameter of 25 mmφ and an inner diameter of 15 mmφ was used. Porous alumina having a pore size of 50 to 100 μm and a porosity of 20% was used, and the roll interval was set to 0.3 mm. A SiC heating element was embedded in the furnace wall. Further, a SiC heating element formed in a U-shaped cross section was used for the gutter after being electrically heated.

【0011】核生成装置には、アルミナを5%混合した
黒鉛の焼結体製の内部水冷式・交流電動型核生成装置を
用いた。この核生成装置を核生成室の溶湯上部に先端を
30mm浸漬し、核生成装置内部に15℃の水を流し、これ
に50Hzの交流を通電して振動を付与した。核生成装置
により生成する固相粒子の生成速度は、核生成装置内に
流す水量によって種々変え、それに合わせて中空多孔性
圧搾ロールの回転速度を最適値に設定した。原料溶湯に
は純度が99.7%のAl溶湯を用いた。このAl溶湯には
Cu,Fe,Mg,Mn,Ni,Si,Znの元素が不
純物として含まれ、これらの元素はいずれも分配係数K
が1未満のものである。前記原料溶湯を前記の純化装置
内に充満させ、第1ユニット炉の核生成室の溶湯温度を
665℃に、核溶解室の溶湯温度を 675℃にそれぞれ設定
して、核生成装置から固相粒子を生成させ、これを下部
通路に配置した中空多孔性圧搾ロールを通して核溶解室
に移送して純化実験を開始した。第1ユニット炉の核溶
解室から製出する溶湯は樋を通して連続的に第2のユニ
ット炉の核生成室に移送し、第2ユニット炉でも同様の
操作を繰り返した。第2ユニット炉以降の溶湯温度は、
溶湯純度に合わせて順次高めに設定した。第1ユニット
炉の核生成室には固相粒子の生成量と中空多孔性圧搾ロ
ールから排出される溶湯量を合計した溶湯量を連続的に
補給した。固相粒子生成量は種々に変化させた。
As the nucleation device, an internal water-cooled AC electric nucleation device made of a sintered body of graphite mixed with 5% alumina was used. Attach this nucleation device to the top of the melt in the nucleation chamber.
It was immersed for 30 mm, and water at 15 ° C. was flown inside the nucleation apparatus, and an alternating current of 50 Hz was applied to this to give vibration. The production rate of the solid phase particles produced by the nucleation device was variously changed depending on the amount of water flowing in the nucleation device, and the rotation speed of the hollow porous pressing roll was set to an optimum value accordingly. As the raw material molten metal, an Al molten metal having a purity of 99.7% was used. Elements of Cu, Fe, Mg, Mn, Ni, Si, and Zn are contained as impurities in this molten Al, and all of these elements have a distribution coefficient K.
Is less than 1. The raw material melt is filled in the purifying device, and the temperature of the melt in the nucleation chamber of the first unit furnace is adjusted.
Set the melt temperature in the nucleation chamber to 665 ° C and 675 ° C, respectively, to generate solid-phase particles from the nucleation device, and transfer these to the nucleation chamber through the hollow porous press roll placed in the lower passage. The purification experiment was started. The molten metal produced from the nuclear melting chamber of the first unit furnace was continuously transferred to the nucleation chamber of the second unit furnace through the gutter, and the same operation was repeated in the second unit furnace. The molten metal temperature after the second unit furnace is
It was set higher in sequence according to the purity of the molten metal. The nucleation chamber of the first unit furnace was continuously replenished with the total amount of the solid phase particles and the molten metal discharged from the hollow porous press roll. The amount of solid phase particles produced was variously changed.

【0012】比較例1 実施例1において、下部通路に中空多孔性圧搾ロールを
配置しなかった他は、実施例1と同じ方法によりAl溶
湯の純化実験を行った。このようにして高純化実験を連
続10時間行った時点で、第4及び第5ユニット炉の核溶
解室から製出する溶湯をサンプリングして不純物の定量
分析を行った。結果は、固相粒子生成量、中空多孔性圧
搾ロールの回転数、中空多孔性圧搾ロールから排出され
る溶湯量を併記して表1に示した。
Comparative Example 1 In Example 1, a refining experiment of molten Al was carried out by the same method as in Example 1 except that the hollow porous pressing roll was not arranged in the lower passage. In this way, when the high-purification experiment was continuously performed for 10 hours, the molten metal produced from the nuclear melting chambers of the fourth and fifth unit furnaces was sampled and the quantitative analysis of impurities was performed. The results are shown in Table 1 together with the amount of solid phase particles produced, the number of revolutions of the hollow porous press roll, and the amount of molten metal discharged from the hollow porous press roll.

【0013】[0013]

【表1】 [Table 1]

【0014】表1より明らかなように、本発明方法品
(No.1〜6)の製出溶湯はいずれも純度が高く、しか
も固相粒子の生成速度が増加しても純度は高度に維持さ
れた。このように高純度溶湯が効率よく製出された理由
は、下部通路に到達した固相粒子が中空多孔性圧搾ロー
ルにより核溶解室へ強制的に送り込まれ、且つ固相粒子
近傍の低純度溶湯が中空多孔性圧搾ロールを通過して外
部へ排出され、更に中空多孔性圧搾ロールにより核溶解
室から核生成室への溶湯の上昇流が遮断された為であ
る。これに対し、比較例品はいずれも生成する溶湯の純
度が低く、しかも純度は固相粒子の生成速度の増加に伴
って急激に低下している。これは、下部通路内の固相粒
子の移動速度が遅いこと、固相粒子と一緒に固相粒子周
囲の低純度溶湯が核溶解室に移動したこと、核溶解室か
ら核生成室に向けて溶湯の上昇流があったこと等が原因
している。又、本発明方法品の純化状態は第4ユニット
炉出口において、既に比較例品の第5ユニット炉のそれ
を上回っていることから、本発明方法によれば、比較例
の方法よりユニット炉を1基減らすことができることが
実証された。以上分配係数Kが1未満の溶質を不純物と
して含有する溶湯の純化実験について説明したが、Kが
1を超える溶質を不純物として含有する溶湯について
も、特願昭61-241036 で提案した装置に中空多孔性圧搾
ロールを配置することにより純化効率を向上させること
ができる。又用いる原料溶湯もAl溶湯に限らず、銅等
の他の金属溶湯に適用しても同様の効果が得られること
は言うまでもない。中空多孔性圧搾ロールは複数対用い
てもよく、又中空多孔性圧搾ロールの材質及び形状等は
ユニット炉の構造や金属溶湯の種類に応じて任意に設計
することができる。
As is clear from Table 1, all the melts produced by the method products of the present invention (Nos. 1 to 6) have a high purity, and the purity is maintained at a high level even if the production rate of solid phase particles increases. Was done. The reason why the high-purity molten metal was efficiently produced in this way is that the solid-phase particles reaching the lower passage are forcibly sent to the nuclear melting chamber by the hollow porous pressing roll, and the low-purity molten metal near the solid-phase particles is Is discharged to the outside through the hollow porous press roll, and the hollow porous press roll blocks the upward flow of the molten metal from the nucleation chamber to the nucleation chamber. On the other hand, in each of the comparative example products, the purity of the molten metal produced is low, and the purity sharply decreases as the production rate of solid phase particles increases. This is because the moving speed of the solid phase particles in the lower passage was slow, that the low-purity molten metal around the solid phase particles moved to the nuclear melting chamber together with the solid phase particles, and from the nuclear melting chamber to the nucleation chamber. The cause is that there was an upward flow of molten metal. Further, since the purified state of the product of the present invention is already higher than that of the fifth unit furnace of the comparative product at the outlet of the fourth unit, according to the method of the present invention, the unit furnace is It was proved that one can be reduced. So far, the purification experiment of a melt containing a solute with a distribution coefficient K of less than 1 as an impurity has been described. However, a melt containing a solute with a distribution coefficient K of more than 1 as an impurity can also be hollow in the apparatus proposed in Japanese Patent Application No. Purification efficiency can be improved by arranging a porous pressing roll. Needless to say, the same effect can be obtained even if the raw material melt used is not limited to the Al melt, but is applied to other metal melts such as copper. A plurality of pairs of hollow porous press rolls may be used, and the material and shape of the hollow porous press rolls can be arbitrarily designed according to the structure of the unit furnace and the type of molten metal.

【0015】[0015]

【効果】以上述べたように、本発明方法によれば、金属
溶湯を効率よく純化することができ、工業上顕著な効果
を奏する。
[Effect] As described above, according to the method of the present invention, the molten metal can be efficiently purified, and a remarkable effect is industrially achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の金属の純化方法の態様例を示す側面説
明図である。
FIG. 1 is an explanatory side view showing an example of a metal purification method of the present invention.

【図2】本発明の金属の純化方法にて用いる中空多孔性
圧搾ロールの態様例を示す側面説明図である。
FIG. 2 is a side view showing an embodiment of a hollow porous pressing roll used in the metal purification method of the present invention.

【図3】溶質元素の分配法則を説明する為の金属状態図
である。
FIG. 3 is a metal state diagram for explaining a distribution law of solute elements.

【図4】従来の金属の純化方法の側面説明図である。FIG. 4 is a side view for explaining a conventional metal purification method.

【符号の説明】[Explanation of symbols]

1 ユニット炉 2 核生成室 3 核溶解室 4 核生成装置 5 下部通路 6 中空多孔性圧搾ロール 7 Vベルト 8 駆動モーター 9 溶湯 10 固相粒子 11 樋 12 隔壁 13 発熱体 1 unit furnace 2 nucleation chamber 3 nucleation chamber 4 nucleation device 5 lower passage 6 hollow porous pressing roll 7 V-belt 8 drive motor 9 melt 10 solid phase particles 11 gutter 12 partition wall 13 heating element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 明 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Yamazaki 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 核生成室と核溶解室とを下部に通路を設
けて連結したユニット炉を所要数、先のユニット炉の核
溶解室と次のユニット炉の核生成室とを上部に通路を設
けて連結して純化装置となし、この純化装置に金属溶湯
を保持し、各々のユニット炉の核生成室にて生成する高
純度の固相粒子を下部通路を通して核溶解室に連続的に
移送し、この移送された固相粒子を核溶解室にて溶解し
て、次のユニット炉の核生成室に移送する金属の純化方
法において、下部通路に対をなす中空多孔性圧搾ロール
を配置し、前記圧搾ロールを回転させて固相粒子を核生
成室から核溶解室に移送するとともに、固相粒子周囲の
低純度溶湯を前記中空多孔性圧搾ロールの中空部内に抽
出し除去することを特徴とする金属の純化方法。
1. A required number of unit furnaces in which a nucleation chamber and a nucleation chamber are connected to each other with a passage provided in the lower part, and a nucleation chamber of the preceding unit furnace and a nucleation chamber of the next unit furnace are connected to the upper passage. Is connected to form a purifier, which holds the molten metal in the purifier and continuously supplies high-purity solid phase particles generated in the nucleation chamber of each unit furnace to the nucleation chamber through the lower passage. In the metal purification method of transferring, melting the transferred solid-phase particles in the nucleation chamber and transferring to the nucleation chamber of the next unit furnace, a pair of hollow porous pressing rolls is arranged in the lower passage. Then, by rotating the pressing roll to transfer the solid phase particles from the nucleation chamber to the nuclear melting chamber, the low-purity molten metal around the solid phase particles is extracted and removed in the hollow portion of the hollow porous pressing roll. Characteristic metal purification method.
JP3353761A 1991-12-17 1991-12-17 Method for purifying metal Pending JPH05171307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3353761A JPH05171307A (en) 1991-12-17 1991-12-17 Method for purifying metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3353761A JPH05171307A (en) 1991-12-17 1991-12-17 Method for purifying metal

Publications (1)

Publication Number Publication Date
JPH05171307A true JPH05171307A (en) 1993-07-09

Family

ID=18433042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3353761A Pending JPH05171307A (en) 1991-12-17 1991-12-17 Method for purifying metal

Country Status (1)

Country Link
JP (1) JPH05171307A (en)

Similar Documents

Publication Publication Date Title
KR101247666B1 (en) Method for processing silicon powder to obtain silicon crystals
US3671229A (en) Process for purification of metals
US4312849A (en) Phosphorous removal in silicon purification
US4456480A (en) Process for purifying metals by segregation
US4256717A (en) Silicon purification method
US4822585A (en) Silicon purification method using copper or copper-aluminum solvent metal
US4312848A (en) Boron removal in silicon purification
US4312847A (en) Silicon purification system
JPH07206420A (en) Production of high-purity silicon
US3239899A (en) Separating metals from alloys
JPH09165212A (en) Production of silicone raw material powder for solar cell and silicone ingot for solar cell
JP4397714B2 (en) Raw material for aluminum purification
JPH05171307A (en) Method for purifying metal
JP5069728B2 (en) Aluminum purification method, high-purity aluminum material, method for producing aluminum material for electrolytic capacitor electrode, and aluminum material for electrolytic capacitor electrode
JP2916645B2 (en) Metal purification method
JP2553082B2 (en) Copper refining method
JP2004043972A (en) Method for refining aluminum or aluminum alloy
JP3263104B2 (en) Purification method of metallic silicon
JPH0543955A (en) Device for purifying metal
JPH0543954A (en) Device for purifying metal
JP2785908B2 (en) Method of manufacturing copper tube for superconductivity
JPH07107181B2 (en) Copper material for superconductivity
JPH0723513B2 (en) Metal purification equipment
JPH0723514B2 (en) Metal purification equipment
JPH0566088A (en) Purifying device for metal