JPH059313A - Method for sealing holes of fluororesin film - Google Patents

Method for sealing holes of fluororesin film

Info

Publication number
JPH059313A
JPH059313A JP18952191A JP18952191A JPH059313A JP H059313 A JPH059313 A JP H059313A JP 18952191 A JP18952191 A JP 18952191A JP 18952191 A JP18952191 A JP 18952191A JP H059313 A JPH059313 A JP H059313A
Authority
JP
Japan
Prior art keywords
film
atomic oxygen
ptfe
small holes
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18952191A
Other languages
Japanese (ja)
Inventor
Masaaki Itou
正皓 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP18952191A priority Critical patent/JPH059313A/en
Publication of JPH059313A publication Critical patent/JPH059313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To impart high sealability to a fluororesin film and enable the film to be used as a sealing material even under severe conditions. CONSTITUTION:A tetrafluoroethylene film 13 is irradiated with high speed oxygen atoms 11 generated from an atomic oxygen generator I to seal the small holes of the film 13 by the oxidative reaction of the atomic oxygen 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフッ素樹脂製フィルムを
過酷な条件下での使用に適したシール材とするためのフ
ッ素樹脂製フィルムの封孔処理方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluororesin film sealing method for making a fluororesin film a sealing material suitable for use under severe conditions.

【0002】[0002]

【従来の技術】フッ素樹脂であるPTFE(ポリテトラ
フルオロエチレン)製のフィルムは、耐薬品性、耐熱性
(連続使用260℃)、撥水性、絶縁性などの優れた性
質を有するため、多方面で多用途に使用されている。一
方、上記PTFEは融点327℃の熱可塑性樹脂である
が、溶融粘度が1011〜1012ポイズと高いため、フィ
ルムとする場合、フィルム製法の常法である溶融押出加
工を行うことができない。そのため、PTFEの微粉末
を一度圧縮し、これを融点以上に加熱してPTFE粒子
を融着させた成形品を作り、それを更に切削加工してフ
ィルムとするような製作方法が採用されている。
2. Description of the Related Art A film made of PTFE (polytetrafluoroethylene), which is a fluororesin, has excellent properties such as chemical resistance, heat resistance (continuous use at 260 ° C.), water repellency, and insulation properties, and is therefore widely used. Is used in a variety of ways. On the other hand, although the above-mentioned PTFE is a thermoplastic resin having a melting point of 327 ° C., it has a high melt viscosity of 10 11 to 10 12 poises, so that when it is made into a film, it cannot be melt-extruded, which is a conventional method for producing a film. Therefore, a manufacturing method is adopted in which a fine powder of PTFE is compressed once, heated to a temperature equal to or higher than the melting point to form a molded product in which PTFE particles are fused, and further cut into a film. ..

【0003】[0003]

【発明が解決しようとする課題】ところが、上記製作方
法によって製作されたPTFE製フィルムの場合、上述
した優れた特性から、過酷な条件下でのシール材として
用いることができれば極めて有利であるが、PTFE
微粒子間の凝集強さが弱いこと、微粒子間の空隙のた
めに、フィルム加工したときに、5000倍の倍率で撮
影した図4の写真に示す如き小孔(ボイド)が生じるこ
と、等の問題があり、特に、上記項による小孔のた
め、ガス透過膜として利用することはできるものの、反
面、気密性が悪いので、シール材としての使用には適さ
ないものであった。
However, in the case of the PTFE film produced by the above production method, it is extremely advantageous if it can be used as a sealing material under severe conditions because of the above-mentioned excellent characteristics. PTFE
Problems such as weak cohesive strength between the fine particles, and voids between the fine particles that cause small holes (voids) as shown in the photograph of FIG. 4 taken at a magnification of 5000 times when processed into a film. In particular, although it can be used as a gas permeable film due to the small pores described in the above item, on the other hand, it is not suitable for use as a sealing material because of its poor airtightness.

【0004】そこで、本発明は、上記PTFE製フィル
ムの気密性を高め、過酷な条件下での使用に適したシー
ル材とすることができるようなフッ素樹脂製フィルムの
封孔処理方法を提供しようとするものである。
Therefore, the present invention intends to provide a method of sealing a fluororesin film, which enhances the airtightness of the above-mentioned PTFE film and makes a sealing material suitable for use under severe conditions. It is what

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、ポリテトラフルオロエチレン製フィルム
に、10Km/sec 以下の流速で原子酸素を照射し、上記
フィルムに有する小孔を原子酸素による酸化反応により
封孔させることを特徴とするフッ素樹脂製フィルムの封
孔処理方法とする。
In order to solve the above-mentioned problems, the present invention irradiates a film made of polytetrafluoroethylene with atomic oxygen at a flow rate of 10 Km / sec or less to atomize the small holes in the film. A method for sealing a fluororesin film is characterized in that the pores are sealed by an oxidation reaction with oxygen.

【0006】[0006]

【作用】ポリテトラフルオロエチレン製のフィルムに、
原子酸素を10Km/sec 以下の流速で照射すると、原子
酸素による酸化反応によって上記フィルムの小孔が塞が
れる。
[Function] A film made of polytetrafluoroethylene,
When atomic oxygen is irradiated at a flow rate of 10 Km / sec or less, the small holes in the film are blocked by the oxidation reaction by atomic oxygen.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1は本発明のフッ素樹脂製フィルムの封
孔処理方法の実施に用いる原子酸素発生装置Iの一例を
示すもので、油回転ポンプやメカニカルブースタポンプ
等からなる排気装置1によって真空引きされるようにし
た真空チャンバー2に、直流定電流電源3によって駆動
されるようにしたアークジェット4を設置し、該アーク
ジェット4に、ガス制御器5と開閉弁6を介してアルゴ
ンガスボンベ7を接続すると共にガス制御器8と開閉弁
9を介して酸素ボンベ10を接続し、上記アルゴンガス
ボンベ7からのアルゴンガスをキャリアガスとして直流
定電流電源3によって直流のアークを放電させ、該直流
アークの放電により生成されたアルゴンプラズマ中に、
酸素ボンベ10からの酸素を、上記キャリアガスの流量
に対し約3〜5%の流量で添加することにより、酸素を
解離させてクリーンな状態の原子酸素11をアークジェ
ット4から発生させられるようにし、且つ該原子酸素1
1を、上記真空チャンバー2内の試料ホルダ12にセッ
トされたPTFE製フィルム13に向けて照射させられ
るようにしてある。図1において、14は排ガスを冷却
するためのヒートシンク、15は真空計を示す。
FIG. 1 shows an example of an atomic oxygen generator I used for carrying out the method for sealing a fluororesin film according to the present invention, which is evacuated by an exhaust device 1 comprising an oil rotary pump, a mechanical booster pump or the like. An arc jet 4 adapted to be driven by a DC constant current power source 3 is installed in the vacuum chamber 2 thus configured, and an argon gas cylinder 7 is attached to the arc jet 4 via a gas controller 5 and an opening / closing valve 6. The oxygen cylinder 10 is connected through the gas controller 8 and the on-off valve 9, and the direct current arc is discharged by the direct current constant power source 3 using the argon gas from the argon gas cylinder 7 as a carrier gas. In the argon plasma generated by the discharge,
By adding oxygen from the oxygen cylinder 10 at a flow rate of about 3 to 5% with respect to the flow rate of the carrier gas, the oxygen is dissociated so that atomic oxygen 11 in a clean state can be generated from the arc jet 4. , And the atomic oxygen 1
1 is irradiated toward the PTFE film 13 set on the sample holder 12 in the vacuum chamber 2. In FIG. 1, 14 is a heat sink for cooling exhaust gas, and 15 is a vacuum gauge.

【0009】上記原子酸素発生装置Iを用いてフッ素樹
脂製フィルムにシール材としての機能をもたせるように
改質処理する場合、PTFE製フィルム13を真空チャ
ンバー2内の試料ホルダ12に保持させ、且つ上記真空
チャンバー2内を排気装置1により排気しながら、アー
クジェット4から発生させた原子酸素11のビームを上
記PTFE製フィルム13の表面に10Km/sec 以下の
流速で所要時間照射し、このとき、必要に応じてPTF
E製フィルム13の裏面を冷却させるようにして、PT
FE製フィルム13の小孔を封孔処理する。
When the fluorine resin film is modified using the atomic oxygen generator I so as to have a function as a sealing material, the PTFE film 13 is held in the sample holder 12 in the vacuum chamber 2, and While evacuating the inside of the vacuum chamber 2 by the exhaust device 1, the beam of atomic oxygen 11 generated from the arc jet 4 is irradiated on the surface of the PTFE film 13 at a flow rate of 10 km / sec or less for a required time. PTF as needed
By cooling the back surface of the E-made film 13,
The small holes of the FE film 13 are sealed.

【0010】一例として、アルゴンガス流量を2l/mi
n 、酸素流量を62cc/min 、アークジェット放電電圧
を20V、アークジェット放電電流を45A、雰囲気圧
力(真空度)を0.06Torr 、フィルム冷却水を−2
0℃で0.5l/min とし、このとき、原子酸素11が
PTFE製フィルム13に衝突する速度をアークジェッ
ト4の下流40cmの試料ホルダ12の位置で1Km/sec
の条件で30分間実施したところ、原子酸素11による
酸化反応と、アルゴンプラズマ中のアルゴンイオン及び
電子の衝突との相互作用により、5000倍の倍率で撮
影した図2の写真に示す如く、PTFE製フィルム13
の小孔が封孔された状態となり、又、かかる状態から更
に30分間継続して実施したところ、5000倍の倍率
で撮影した図3の写真に示す如く、上記小孔が完全に消
失した状態となり、PTFE製フィルム13の高気密化
を達成できた。なお、上記において、PTFE製フィル
ム13に対する原子酸素11の照射速度を10Km/sec
以下としたが、これは、アークジェット4から吹き出さ
れた原子酸素11はPTFE製フィルム13の表面に達
するだけの流速があればPTFE製フィルム13の小孔
を酸化反応により封孔できるのであるが、10Km/sec
以上では、小孔が削られることにより逆に拡げられてし
まったり、折角酸化しても酸化したところまで削られて
持って行かれてしまうからである。
As an example, the flow rate of argon gas is 2 l / mi.
n, oxygen flow rate 62 cc / min, arc jet discharge voltage 20 V, arc jet discharge current 45 A, atmospheric pressure (vacuum degree) 0.06 Torr, film cooling water -2
The rate of collision of atomic oxygen 11 with the PTFE film 13 was 1 km / sec at the position of the sample holder 12 40 cm downstream of the arc jet 4 at 0.5 l / min at 0 ° C.
When it was carried out for 30 minutes under the conditions of the above, due to the interaction between the oxidation reaction by atomic oxygen 11 and the collision of argon ions and electrons in the argon plasma, as shown in the photograph of FIG. Film 13
The small holes in the above state were sealed, and when the operation was continued for another 30 minutes from such a state, the small holes were completely disappeared as shown in the photograph of FIG. 3 taken at a magnification of 5000 times. Therefore, the airtightness of the PTFE film 13 could be achieved. In the above, the irradiation rate of atomic oxygen 11 on the PTFE film 13 was 10 km / sec.
Although it is described below, this is because if the flow rate of the atomic oxygen 11 blown out from the arc jet 4 reaches the surface of the PTFE film 13, the small holes of the PTFE film 13 can be sealed by an oxidation reaction. 10 km / sec
In the above, the small holes are expanded to the contrary, and even if they are oxidized at all, even the oxidized places are scraped and taken.

【0011】本発明においては、上述した如く、材料の
物性から製造過程で小孔が生じ、ガス透過性を有してい
るため、耐熱性(−268〜260℃)などの優れた性
質を有しているが高気密性がないPTFE製フィルム1
3に、原子酸素11を照射することにより、小孔を封孔
して高い気密性をもたせることができる。かかる封孔処
理が行われたPTFE製フィルム13は耐熱性、耐薬品
性などのPTFEの優れた性質を維持しているため、た
とえば、高圧、高真空、高温雰囲気下等でのシール材と
して、あるいは、ガス透過のない気密性が要求される部
分のシール材として用いることができる。
In the present invention, as described above, the material has physical properties such that small holes are formed in the manufacturing process and it has gas permeability, so that it has excellent properties such as heat resistance (-268 to 260 ° C.). Film made of PTFE that does not have high airtightness
By irradiating 3 with atomic oxygen 11, a small hole can be sealed and high airtightness can be provided. Since the PTFE film 13 that has been subjected to such a sealing treatment maintains the excellent properties of PTFE such as heat resistance and chemical resistance, for example, as a sealing material under high pressure, high vacuum, high temperature atmosphere, etc., Alternatively, it can be used as a sealing material for a portion where gas tightness is required and airtightness is required.

【0012】なお、本発明は上記実施例のみに限定され
るものではなく、原子酸素発生装置Iとしては、図1に
示したものの他、マイクロ波放電方式を利用した装置や
高周波放電(RF)方式を利用した装置等を採用しても
よいこと、その他本発明の要旨を逸脱しない範囲内にお
いて種々変更を加え得ることは勿論である。
The present invention is not limited to the above embodiment, and the atomic oxygen generator I is not only the one shown in FIG. 1 but also a device utilizing a microwave discharge system and a high frequency discharge (RF). It is needless to say that a device utilizing the system may be adopted, and various changes may be made without departing from the scope of the present invention.

【0013】[0013]

【発明の効果】以上述べた如く、本発明のフッ素樹脂製
フィルムの封孔処理方法によれば、元来、小孔を有する
ポリテトラフルオロエチレン製のフィルムに、原子酸素
を10Km/sec 以下の速度で照射することにより、原子
酸素の酸化反応で上記小孔を封孔処理するようにしたの
で、上記フィルムの物性を維持しつつ気密性を付加する
ことができ、したがって、処理後のフィルムを過酷な条
件下でのシール材として用いることができる、という優
れた効果を発揮する。
As described above, according to the sealing treatment method for a fluororesin film of the present invention, a polytetrafluoroethylene film having small pores originally has an atomic oxygen content of 10 Km / sec or less. By irradiating at a high speed, the small holes are sealed by the oxidation reaction of atomic oxygen, so that the airtightness can be added while maintaining the physical properties of the film, and therefore the film after the treatment can be added. It has an excellent effect that it can be used as a sealing material under severe conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフッ素樹脂製フィルムの封孔処理方法
の実施に用いる原子酸素発生装置の一例を示す概要図で
ある。
FIG. 1 is a schematic view showing an example of an atomic oxygen generator used for carrying out a method for sealing a fluororesin film according to the present invention.

【図2】本発明の封孔処理方法により原子酸素を30分
間照射した後のフィルムの粒子構造を示す写真である。
FIG. 2 is a photograph showing the grain structure of a film after being irradiated with atomic oxygen for 30 minutes by the sealing treatment method of the present invention.

【図3】本発明の封孔処理方法により原子酸素を60分
間照射した後のフィルムの粒子構造を示す写真である。
FIG. 3 is a photograph showing the grain structure of a film after being irradiated with atomic oxygen for 60 minutes by the sealing treatment method of the present invention.

【図4】PTFEの繊維組織を示す写真である。FIG. 4 is a photograph showing the fiber structure of PTFE.

【符号の説明】[Explanation of symbols]

I 原子酸素発生装置 2 真空チャンバー 4 アークジェット 10 酸素ボンベ 11 原子酸素 13 PTFE製フィルム I Atomic oxygen generator 2 Vacuum chamber 4 Arc jet 10 Oxygen cylinder 11 Atomic oxygen 13 PTFE film

Claims (1)

【特許請求の範囲】 【請求項1】 ポリテトラフルオロエチレン製フィルム
に、10Km/sec 以下の流速で原子酸素を照射し、上記
フィルムに有する小孔を原子酸素による酸化反応により
封孔させることを特徴とするフッ素樹脂製フィルムの封
孔処理方法。
Claims: 1. A film made of polytetrafluoroethylene is irradiated with atomic oxygen at a flow rate of 10 Km / sec or less, and the small holes in the film are sealed by an oxidation reaction by atomic oxygen. A method for sealing a fluororesin film, which is characterized.
JP18952191A 1991-07-04 1991-07-04 Method for sealing holes of fluororesin film Pending JPH059313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18952191A JPH059313A (en) 1991-07-04 1991-07-04 Method for sealing holes of fluororesin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18952191A JPH059313A (en) 1991-07-04 1991-07-04 Method for sealing holes of fluororesin film

Publications (1)

Publication Number Publication Date
JPH059313A true JPH059313A (en) 1993-01-19

Family

ID=16242682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18952191A Pending JPH059313A (en) 1991-07-04 1991-07-04 Method for sealing holes of fluororesin film

Country Status (1)

Country Link
JP (1) JPH059313A (en)

Similar Documents

Publication Publication Date Title
US4188426A (en) Cold plasma modification of organic and inorganic surfaces
US4064030A (en) Process for surface treating molded articles of fluorine resins
US3663265A (en) Deposition of polymeric coatings utilizing electrical excitation
US4376740A (en) Process for production fine metal particles
JPH01100265A (en) Apparatus suitable for plasma surface treatment and production of film layer
US4452642A (en) Cleaning of metallic surfaces with hydrogen under vacuum
JP2013049819A (en) Method of producing surface-modified fluororesin film, and surface-modified fluororesin film
JPS6350478A (en) Formation of thin film
WO1999023695A1 (en) Method of plasma processing
JPH059313A (en) Method for sealing holes of fluororesin film
JPH09216960A (en) Surface treatment method for vulcanized rubber and production of rubber composite
JPH07247377A (en) Production of fluororesin with modified surface
EP0590007B1 (en) Applying a fluoropolymer film to a body
CA2000275A1 (en) Process for the production of thin molybdenum sulfide films
US3322577A (en) Method and apparatus for the continuous production of oxide coatings
JPH051166A (en) Production of fluororesin porous film
US5944919A (en) Process for blackening surgical needles
JP2542750B2 (en) Surface energy control method for plastics
WO1994014303A1 (en) Method and apparatus for atmospheric pressure glow discharge plasma treatment
DE19944631A1 (en) Unit for treating hollow body in vacuum recipient is useful for sterilization and/or surface modification, e.g. of plastics or glass bottle for food, cosmetics or pharmaceuticals
EP0647526A2 (en) Deflection electrode
JPS5710629A (en) Plasma treatment of hollow body
JPH0637704B2 (en) High hardness carbon film forming method
US3009828A (en) Method of producing controlled low pressure atmospheres
Lau et al. Hydrophilization and hydrophobic recovery of polymers treated by 50 Hz argon plasma