JPH0637704B2 - High hardness carbon film forming method - Google Patents

High hardness carbon film forming method

Info

Publication number
JPH0637704B2
JPH0637704B2 JP59258038A JP25803884A JPH0637704B2 JP H0637704 B2 JPH0637704 B2 JP H0637704B2 JP 59258038 A JP59258038 A JP 59258038A JP 25803884 A JP25803884 A JP 25803884A JP H0637704 B2 JPH0637704 B2 JP H0637704B2
Authority
JP
Japan
Prior art keywords
gas
plasma
carbon film
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59258038A
Other languages
Japanese (ja)
Other versions
JPS61136678A (en
Inventor
力 三谷
英雄 黒川
武敏 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59258038A priority Critical patent/JPH0637704B2/en
Priority to EP19850115085 priority patent/EP0183254B1/en
Priority to DE19853587881 priority patent/DE3587881T2/en
Priority to US06/803,001 priority patent/US4645977A/en
Publication of JPS61136678A publication Critical patent/JPS61136678A/en
Publication of JPH0637704B2 publication Critical patent/JPH0637704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は炭化水素ガスとアルゴンガスを含有する混合ガ
スをプラズマ化し基体に吹付けるCVD法によって、従
来の技術では基体を室温より高温にしなければ得れなか
った高硬度炭素膜を、室温で、しかも、従来に比べ高成
膜速度で形成する方法に関するものである。
Description: TECHNICAL FIELD The present invention uses a CVD method in which a mixed gas containing a hydrocarbon gas and an argon gas is plasmatized and sprayed onto a substrate. The present invention relates to a method of forming a high-hardness carbon film that has not been formed at room temperature and at a higher film-forming rate than ever before.

従来の技術 高硬度炭素膜はダイヤモンドに近い硬度,摩擦係数,熱
伝導率,光透過率,比抵抗などの諸特性を有し、産業上
の用途として、固体潤滑膜,半導体のパッシベーション
膜,光学部品の硬質保護膜,など多種多様なものが挙げ
られる。しかし、未だ研究室の試作レベルで形成されて
いるに過ぎない。
Conventional technology High hardness carbon film has various characteristics such as hardness, friction coefficient, thermal conductivity, light transmittance and specific resistance similar to those of diamond, and is used in industrial applications as solid lubricant film, semiconductor passivation film, optical film. There are various types of hard protective films for parts. However, it is still formed at the trial production level in the laboratory.

従来の高硬度炭素膜形成方法には大別してCVD法とPV
D法がある。第4図にCVD法の一つの方法であるプラ
ズマCVD法による高硬度炭素膜形成方法の代表的−従
来例を示す。
Conventional high-hardness carbon film forming methods are roughly classified into CVD method and PV method.
There is D method. FIG. 4 shows a typical-conventional example of a method of forming a high hardness carbon film by a plasma CVD method, which is one of the CVD methods.

(手塚他「第45回応用物理学会学術講演会予稿集」,
(1984),P214) 上記従来例の高硬度炭素膜形成方法では、炭化水素ガス
としてアセチレンガス1を真空容器であるガラス管2内
に導入し、負電極3と正電極5との間に直流電圧電源7
により直流電圧を印加し直流グロー放電プラズマを発生
させる。また、フィラメント4によるアセチレンガスの
熱分解、および、前記フィラメント4から放出される熱
電子とによってプラズマ化を促進している。このように
プラズマを発生させ基体6上に高硬度炭素膜を形成す
る。本従来例では基体上の形成膜中に含有される炭化水
素の炭素水素結合を切断し、形成膜中の炭素含有率を増
大させ形成膜の特性を向上させるため、基体6を基体加
熱用電源8により直接通電加熱し500〜1000℃に昇温
している。また、本従来例での成膜速度は約400Å/m
in である。第5図に従来の高硬度炭素膜形成方法の中
で、一般的に成膜速度が大きいPVD法の一例として、
イオン化蒸着法による高硬度炭素膜形成方法の代表的な
一例を示す。(熊田忠真他;(「イオン化蒸着法による
硬質カーボン薄膜」)「第43回応用物理学会学術講演
会予稿集」(1983)305ページ) 上記従来例による高硬度炭素膜形成方法では、メタンガ
ス9を、フィラメント6の熱による熱分解とフィラメン
ト6からの熱電子によりイオン化し、さらに外部コイル
7による磁界で前記熱電子をら線運動させメタンガスの
イオン化を促進させる。このようにイオン化された粒子
は、網状電極4に負電位を印加することによって基体3
方向へ加速され、基体3に高硬度炭素膜が形成される。
本従来例の成膜速度は900〜1200Å/minであり、従来
の高硬度炭素膜形成方法の中では最も大きいものの一例
である。しかし、PVD法では基体は電気的に中性なプ
ラズマにさらされにくく、前記のようにイオン種のみが
基体方向へ加速され形成膜に到達する。高硬度炭素膜の
比抵抗が1010Ω・cm程度の高絶縁膜であるため、成膜
上に正電荷をもつ前記イオン種が蓄積される。この正電
荷蓄積により前記イオン種の加速が弱まり、成膜速度が
低下するのを防止する手段として、PVD法では一般
に、例えば電子照射装置を付加し、形成膜上へ電子を照
射し電気的に中和している。また、本従来例において
も、基体上の形成膜中に含有される炭化水素の炭素水素
結合を切断し、形成膜中の炭素含有率を増大させ形成膜
の特性を向上させるため、基体3をヒーター1により加
熱する。また、前記のように高速度に加速されたイオン
種が形成膜を衝撃することによっても基体3の温度が上
昇し、400〜700℃にも達する。かつ、一般的にP
VD法による膜の結合力は物理的なものであり、CVD
法、特に、プラズマCVD法による化学的な結合力より
も小さい。
(Tezuka et al. "Proceedings of the 45th Academic Meeting of the Applied Physics Society of Japan",
(1984), P214) In the conventional high hardness carbon film forming method, an acetylene gas 1 is introduced as a hydrocarbon gas into a glass tube 2 which is a vacuum container, and a direct current is applied between the negative electrode 3 and the positive electrode 5. Voltage power supply 7
DC voltage is applied to generate DC glow discharge plasma. Further, the thermal decomposition of acetylene gas by the filament 4 and the thermoelectrons emitted from the filament 4 promote plasma formation. In this way, plasma is generated to form a high hardness carbon film on the substrate 6. In this conventional example, in order to cut the carbon-hydrogen bond of the hydrocarbon contained in the forming film on the base, increase the carbon content in the forming film and improve the characteristics of the forming film, the base 6 is used as a power source for heating the base. Direct heating was conducted by means of No. 8 and the temperature was raised to 500 to 1000 ° C. In addition, the film forming rate in this conventional example is about 400 Å / m.
is in. Among the conventional high hardness carbon film forming methods, FIG.
A typical example of a method for forming a high hardness carbon film by the ionization deposition method will be shown. (Tadamasa Kumada et al .; “Hard carbon thin film by ionization vapor deposition”) “Proceedings of the 43rd Japan Society of Applied Physics Academic Lectures” (1983) p. 305) The thermal decomposition of the filament 6 by heat and ionization by the thermoelectrons from the filament 6 further cause the thermoelectrons to perform a linear motion in the magnetic field of the external coil 7 to promote ionization of methane gas. The particles ionized in this way are applied to the substrate 3 by applying a negative potential to the mesh electrode 4.
Direction is accelerated, and a high hardness carbon film is formed on the substrate 3.
The film forming rate in this conventional example is 900 to 1200 Å / min, which is one of the largest conventional high hardness carbon film forming methods. However, in the PVD method, the substrate is unlikely to be exposed to electrically neutral plasma, and as described above, only ionic species are accelerated toward the substrate and reach the formed film. Since the high hardness carbon film is a high insulating film having a specific resistance of about 10 10 Ω · cm, the ionic species having a positive charge are accumulated on the film formation. As a means for preventing the acceleration of the ionic species from being weakened by the accumulation of this positive charge and reducing the film formation rate, generally, for example, an electron irradiation device is added in the PVD method to electrically emit electrons onto the formed film. Neutralize. Also in this conventional example, in order to improve the characteristics of the formed film by breaking the carbon-hydrogen bond of the hydrocarbon contained in the formed film on the substrate and increasing the carbon content in the formed film, the substrate 3 is formed. Heat with heater 1. Further, as described above, the temperature of the substrate 3 rises even when the ion species accelerated at a high speed impacts the formed film, reaching 400 to 700 ° C. And generally P
The bonding force of the film by the VD method is physical, and the CVD
Method, in particular, less than the chemical bonding force by the plasma CVD method.

発明が解決しようとする問題点 従来の高硬度炭素膜形成方法の中の数例ではダイヤモン
ドに極めて近い特性,構造を有する高硬度炭素膜を形成
し得ている。しかし、前記従来例に示したように従来の
高硬度炭素膜形成方法の共通の問題点の一つとして、基
体の温度上昇がある。この基体温度上昇の一原因とし
て、高硬度炭素膜を形成するため、従来の高硬度炭素膜
形成方法の多くは、例えば前記従来例に示したような直
接通電加熱、あるいは、加熱炉,フィラメントなどによ
って基体を加熱昇温させていることがある。基体温度を
上昇させる目的は、形成膜中に含有される炭化水素の炭
素水素結合を熱で切断し、形成膜中の含有炭素率を増加
させ、高硬度炭素膜の特性を向上させるためである。基
体温度上昇の2つめの原因として、高硬度炭素膜を形成
するため、従来の高硬度炭素膜形成方法の多くは、例え
ば前記従来例に示したように、基体に負電圧を印加しプ
ラズマ中のイオン種を基体方向へ加速させ、形成膜を衝
撃することがある。前記のような加熱手段を用いずに高
硬度炭素膜を形成する従来例もあるが、(例えば、L.
P.ANDERSSON共著「Thin Solid Film」,63(197
9),P155〜160)この場合も前記イオン種など
の衝撃により基体温度が上昇し、かつ、高硬度炭素膜の
成膜速度も小さい。
Problems to be Solved by the Invention In some of the conventional methods for forming a high-hardness carbon film, a high-hardness carbon film having characteristics and a structure extremely close to those of diamond can be formed. However, as shown in the conventional example, one of the common problems of the conventional high hardness carbon film forming method is the temperature rise of the substrate. Since a high hardness carbon film is formed as one cause of this increase in the substrate temperature, most of the conventional high hardness carbon film forming methods are, for example, direct current heating as shown in the conventional example, or a heating furnace, a filament, etc. In some cases, the substrate is heated and heated. The purpose of raising the substrate temperature is to cut the carbon-hydrogen bonds of the hydrocarbon contained in the formed film by heat, increase the carbon content in the formed film, and improve the characteristics of the high hardness carbon film. . Since a high hardness carbon film is formed as the second cause of the temperature rise of the substrate, most of the conventional methods of forming a high hardness carbon film are subjected to a negative voltage applied to the substrate during plasma treatment as shown in the conventional example. In some cases, the ionic species of (3) are accelerated toward the substrate to impact the formed film. There is a conventional example in which a high hardness carbon film is formed without using the heating means as described above (for example, L.
P. ANDERSSON, "Thin Solid Film", 63 (197
9), P155-160) In this case as well, the substrate temperature rises due to the impact of the ionic species and the film forming rate of the high hardness carbon film is small.

従来の高硬度炭素膜形成方法では以上のように基体温度
が上昇してしまうため、高硬度炭素膜を形成せんとする
基体の性質が著るしく限定され、機械的,電気的,光学
的,熱的,化学的に極めて優れた特性を有する高硬度炭
素膜の応用範囲が著るしく限定される。
Since the substrate temperature rises as described above in the conventional high hardness carbon film forming method, the properties of the substrate on which the high hardness carbon film is formed are markedly limited, and mechanical, electrical, optical, The application range of high hardness carbon film, which has extremely excellent thermal and chemical properties, is markedly limited.

2つめの従来の高硬度炭素膜形成方法の問題点として成
膜速度が小さいということがある。従来の高硬度炭素膜
形成方法では成膜速度がたかだか数10〜数100Å/m
in,あるいは最大のものでも1200Å/min程度である。従
来例において成膜速度を増大させる手段として、例えば
炭化水素ガスに水素ガスを混合させることがある。この
場合、水素ガスは、水素ガスを用いない場合に比べ低い
温度においてプラズマ化した炭化水素ガスの活性種との
反応を促進させること、および、ダイヤモンドの成長と
同時に進行する黒鉛状炭素の析出を抑制する効果をも
つ。しかし、水素ガスの使用は、形成装置内に存在する
酸素ガスとの反応による爆発、あるいは水素ガスは形成
装置から漏れやすいため、前記漏れた水素ガスと大気中
酸素ガスとの反応による爆発の危険性という問題点を新
たに発生させる。この危険性は、少なくとも水素ガスを
用いれた従来の高硬度炭素膜形成方法を工業化する場合
には解決されなければならない。また、前記成膜速度を
増大させる他の手段として、例えば、炭化水素ガス,水
素ガスの少なくとも一方の流量を増大させること、基体
に印加する直流電圧を増加させること、基体温度をさら
に上昇させることなどがあるが、いずれの手段も従来の
高硬度炭素膜形成方法における低成膜速度という問題点
を根本的に解決するものではない。従来の高硬度炭素膜
形成方法の中でも比較的成膜速度が大きいものとして、
PVD法があるが、この方法でも例えば前記従来例に示
したように成膜速度は、たかだか1200Å/min膜の
結合力は、CVD法、特にプラズマCVD法によるもの
より小さい。さらにまた、前記のようにPVD法では形
成膜上で蓄積される正電荷を中和するために、例えば電
子照射装置などが付加されるため、高硬度炭素膜形成コ
ストが増加し、工業化には不利である。
The second problem of the conventional high hardness carbon film forming method is that the film forming rate is low. In the conventional high hardness carbon film forming method, the film forming speed is at most several tens to several hundreds Å / m.
in, or even the maximum is about 1200Å / min. As a means for increasing the film formation rate in the conventional example, for example, there is a method of mixing hydrogen gas with hydrocarbon gas. In this case, the hydrogen gas promotes the reaction with the active species of the hydrocarbon gas that has been turned into plasma at a lower temperature as compared with the case where the hydrogen gas is not used, and the precipitation of graphitic carbon that proceeds at the same time as the diamond growth. It has a suppressing effect. However, the use of hydrogen gas may cause an explosion due to a reaction with oxygen gas existing in the forming apparatus, or a risk of explosion due to a reaction between the leaked hydrogen gas and atmospheric oxygen gas because hydrogen gas easily leaks from the forming apparatus. A new problem of sex arises. This risk must be solved at least when industrializing the conventional high hardness carbon film forming method using hydrogen gas. Further, as other means for increasing the film formation rate, for example, increasing the flow rate of at least one of hydrocarbon gas and hydrogen gas, increasing the DC voltage applied to the substrate, and further increasing the substrate temperature. However, none of these methods fundamentally solve the problem of low film forming rate in the conventional high hardness carbon film forming method. Among the conventional high-hardness carbon film forming methods, the film forming rate is relatively high,
Although there is a PVD method, in this method as well, for example, as shown in the above-mentioned conventional example, the film forming speed is at most 1200 Å / min, and the bonding force of the film is smaller than that by the CVD method, particularly the plasma CVD method. Furthermore, as described above, in the PVD method, for example, an electron irradiation device is added to neutralize the positive charges accumulated on the formed film, so that the cost of forming the high hardness carbon film is increased and the industrialization is difficult. It is a disadvantage.

問題点を解決するための手段 本発明は、高硬度炭素膜を形成する上で従来の高硬度炭
素膜形成方法にあった前記諸問題点を解決するために、
炭化水素ガス(分圧:PCHTorr)とアルゴンガス(分
圧:PATorr)を含有する圧力比(PA/PCH)が0.1〜1
0、総圧力(PCH+PA)が0.1〜10Torrの混合ガスを
吹出し口を有するプラズマ発生容器に導入し、前記混合
ガスを炭素,水素,アルゴンのイオン種,ラジカル種,
中性種と炭化水素のイオン種,ラジカル種,中性種と電
子からなるプラズマ状気体に励起し、そのプラズマ状気
体を前記吹出し口の下流に設けられた−0.1〜−5k
Vの直流電位の基体に吹付ける。
Means for Solving the Problems In order to solve the above-mentioned problems in the conventional high hardness carbon film forming method in forming the high hardness carbon film, the present invention provides
The pressure ratio (P A / P CH ) containing hydrocarbon gas (partial pressure: P CH Torr) and argon gas (partial pressure: P A Torr) is 0.1 to 1
0, a mixed gas having a total pressure (P CH + P A ) of 0.1 to 10 Torr was introduced into a plasma generating vessel having a blowout port, and the mixed gas was charged with carbon, hydrogen, argon ion species, radical species,
A plasma-like gas composed of neutral species and hydrocarbon ionic species, radical species, and neutral species and electrons is excited, and the plasma-like gas is provided at -0.1 to -5k provided downstream of the outlet.
Spray on a substrate of V DC potential.

作 用 発明者らは、研究の結果、炭素,水素,アルゴン各元素
単体のイオン種,ラジカル種,中性種と、炭化水素のイ
オン種,ラジカル種,中性種,および電子を含むプラズ
マを基体に吹付けるプラズマCVD法によって、機械
的,電気的,光学的,熱的,化学的に極めて優れた特性
を有し応用分野が極めて広範囲な高硬度炭素膜を形成し
得た。
As a result of the research, the inventors of the present invention have developed a plasma containing ionic species, radical species, and neutral species of carbon, hydrogen, and argon element simple substance and hydrocarbon ionic species, radical species, neutral species, and electrons. By the plasma CVD method of spraying on a substrate, a high hardness carbon film having excellent mechanical, electrical, optical, thermal and chemical properties and a very wide range of application fields could be formed.

本発明では前記プラズマ中に含まれる各種は、例えば以
下のように基体へ吹付けられる。本発明でのプラズマ
は、例えば圧力がO.数Torrの弱電離プラズマであり粘
性流体としてふるまい、例えば圧力差によっても流動す
るため、基体をプラズマ発生部より低圧力側に設置すれ
ば、前記イオン種,ラジカル種,中性種、および、電子
をふくむプラズマは基体に吹付けられる。さらに、一部
のイオン種は例えばプラズマ電位に対し基体側が負電位
になるよう直流電界を設定することで基体方向へ加速さ
れ基体に吹付けられる。このとき、電子は前記直流電界
を発生する電極に、プラズマの圧力により決まるシース
長より大きい孔を1つ以上設け、前記直流電界をある範
囲内に設定することによって、電極に捕捉されずに、か
つ、基体側の負電位により斥力を受け減速されつつ基体
に吹付けられる。
In the present invention, various kinds contained in the plasma are sprayed onto the substrate as follows, for example. The plasma in the present invention is, for example, a weakly ionized plasma having a pressure of O.s. Torr and behaves as a viscous fluid. For example, the plasma flows due to a pressure difference. Plasma containing species, radical species, neutral species, and electrons is sprayed onto the substrate. Further, some ion species are accelerated toward the substrate and sprayed onto the substrate by setting a direct current electric field so that the substrate side has a negative potential with respect to the plasma potential. At this time, electrons are not trapped by the electrode by providing at least one hole longer than the sheath length determined by the pressure of plasma in the electrode generating the DC electric field and setting the DC electric field within a certain range. Further, the repulsive force is received by the negative potential on the base body side, and the base body is sprayed onto the base body while being decelerated.

本発明では以上のように、プラズマ中の少なくともイオ
ン種を基体方向へ加速しつつ、ラジカル種、中性種、電
子を含むプラズマを基体へ吹付けるプラズマCVD法に
よって高硬度炭素膜を形成する。このとき、前記炭素ラ
ジカル種は基体へ到達し、例えば炭素ラジカル種相互の
化学的結合により膜形成が行なわれる。PVD法では、
例えば前記のようにイオン種を高直流電圧により加速し
形成膜を衝撃し物理的結合状態の形成膜の結合力を増大
させているが、本発明の形成膜は物理的結合より強力な
化学的結合であるため、より小さい直流電圧でさえも強
力な結合力の高硬度炭素膜を形成し得る。また、炭化水
素ガスはプラズマ状態になることによって分解され、水
素ラジカル種,水素イオン種などを発生する。これらの
種は、形成膜において黒鉛状炭素の析出を抑制しダイヤ
モンドの析出を促進させる作用をもつため、優れた高硬
度炭素膜を形成し得る。アルゴンガスはプラズマ化さ
れ、アルゴンイオン種を発生する。このアルゴン種は、
前記のように例えば直流電界によって基体方向へ加速さ
れ、形成膜を衝撃する。この衝撃によって形成膜中に含
まれる炭化水素の炭素水素結合を切断し、形成膜中の炭
素含有率を増大するとともに、形成膜の一部黒鉛状構造
をダイヤモンド構造に変換させる作用をもつ。また、前
記アルゴンは形成膜に吸着され、形成膜中に含有される
可能性も考えられるが、アルゴンは不活性であるため、
何ら問題とはならず、優れた高硬度炭素膜を形成し得
る。アルゴンガスの準安定電圧は11.53eVであり、一
方、メタンガス,アセチレンガス,エチレンガス,エタ
ンガス,ブタンガスなどの炭化水素ガスの準安定電圧は
8〜10eVであるため、ペニング効果によりプラズマの
放電を促進、かつ、安定化する。この結果、成膜速度
が、アルゴンガスを用いない場合に比べ極めて増大す
る。またアルゴンガスは不活性ガスであるため、爆発,
毒性の危険性がなく、その上、安価であるため、本発明
による高硬度炭素膜形成方法は工業化には非常に有利で
ある。また、本発明では、前記のようにイオンとともに
電子も基体へ吹付けられる。従って前記従来例のような
形成膜上での正電荷蓄積を中和する付加手段を用いなく
ても、イオン種が反発されることなく前記のような粘性
流体としてのプラズマが基体に吹付けられ、高成膜速度
で高硬度炭素膜を形成し得る。また、プラズマ発生部で
は数万℃もの高エネルギー電子は、例えば前記のように
イオン種を加速するために基体側が負電位となるように
設定された直流電界中では、基体へ接近するに従い斥力
を受け減速されて、基体へ吹付けられる際に低エネルギ
ー電子となる。この結果、本発明では、基体温度は常に
室温のまま高硬度炭素膜を形成し得た。
In the present invention, as described above, the high hardness carbon film is formed by the plasma CVD method in which at least the ionic species in the plasma are accelerated toward the substrate and the plasma containing the radical species, the neutral species and the electrons is sprayed onto the substrate. At this time, the carbon radical species reach the substrate, and a film is formed by, for example, chemical bonding between the carbon radical species. In the PVD method,
For example, as described above, the ion species are accelerated by a high DC voltage to impact the formed film to increase the binding force of the physically formed film, but the formed film of the present invention has a stronger chemical force than the physical bond. Since it is a bond, a hard carbon film having a strong bond can be formed even with a smaller DC voltage. Further, the hydrocarbon gas is decomposed when it is in a plasma state, and hydrogen radical species, hydrogen ion species, etc. are generated. Since these seeds have the function of suppressing the precipitation of graphitic carbon in the formed film and promoting the precipitation of diamond, an excellent high hardness carbon film can be formed. The argon gas is turned into plasma and generates argon ion species. This argon species is
As described above, the formed film is impacted by being accelerated toward the substrate by, for example, a DC electric field. This impact cuts the carbon-hydrogen bonds of the hydrocarbons contained in the formed film, increases the carbon content in the formed film, and has the effect of partially converting the graphitic structure of the formed film into a diamond structure. Further, the argon may be adsorbed to the formed film and contained in the formed film, but since argon is inactive,
There is no problem and an excellent high hardness carbon film can be formed. The metastable voltage of argon gas is 11.53 eV, while the metastable voltage of hydrocarbon gases such as methane gas, acetylene gas, ethylene gas, ethane gas, butane gas is 8-10 eV, so the plasma discharge is promoted by the Penning effect. , And stabilize. As a result, the film formation rate is significantly increased as compared with the case where argon gas is not used. Also, since argon gas is an inert gas,
The method of forming a high hardness carbon film according to the present invention is very advantageous for industrialization because it has no risk of toxicity and is inexpensive. Further, in the present invention, electrons are also sprayed onto the substrate together with the ions as described above. Therefore, the plasma as a viscous fluid as described above is sprayed onto the substrate without repulsion of the ionic species without using any additional means for neutralizing the positive charge accumulation on the formed film as in the conventional example. A high hardness carbon film can be formed at a high film formation rate. In the plasma generation part, high-energy electrons of tens of thousands of degrees Celsius generate repulsive force as they approach the substrate in a DC electric field set so that the substrate side has a negative potential for accelerating ion species as described above. When they are received and slowed down, they become low-energy electrons when they are sprayed onto the substrate. As a result, in the present invention, a high hardness carbon film could be formed while the substrate temperature was always room temperature.

以上のように本発明の高硬度成形方法によれば基体温度
は室温のまま、形成膜上での正電荷蓄積を中和する手段
を用いずとも、高成膜速度で、結合力が大きい高硬度炭
素膜を、安全、かつ容易に形成し得る。従って、本発明
は高硬度炭素膜を形成する産業分野において極めて重要
な技術である。
As described above, according to the high-hardness molding method of the present invention, the substrate temperature is kept at room temperature, and a high film-forming rate and a high bonding force are obtained without using a means for neutralizing the positive charge accumulation on the formed film. A hard carbon film can be formed safely and easily. Therefore, the present invention is a very important technique in the industrial field of forming a high hardness carbon film.

実施例 本発明は、例えば以下のように実施されることによって
高硬度炭素膜を基体上に形成し得る高硬度炭素膜形成方
法である。
Examples The present invention is a high hardness carbon film forming method capable of forming a high hardness carbon film on a substrate by carrying out, for example, as follows.

炭化水素ガスとアルゴンガスを含有する混合ガスで、例
えば予め真空排気されている吹出し口を有するプラズマ
発生容器(以下、Aと記す)内を所定の圧力に満す。前
記Aは炭化水素ガス,およびアルゴンガスをA内へ導入
するための導入口を1つ以上有し、かつ、プラズマを基
体に吹付けるための吹出し口を1つ以上有する。炭化水
素ガスとしては、例えばメタンガス,アセチレンガス,
エチレンガス,エタンガス,ブタンガスなどを使用して
もよい。炭化水素ガスとアルゴンガスはA内へ導入され
る以前に混合されていてもよく、また、A内へ別々に導
入され混合されてもかまわない。Aは、A内圧力より低
圧力の真空容器(以下、Bと記す)と前記混合ガスが流
動し得るように連結されており、A内の混合ガスはB
へ、両者の圧力差のみによっても流動し得る。A内を所
定の圧力に制定,安定化した御、A内の混合ガスがプラ
ズマ化されるが、炭化水素ガスとアルゴンガスが別々に
Aへ導入される場合には、別々にプラズマ化されてもか
まわない。前記プラズマ化の手段としては、高周波放
電、マイクロ波放電などがあるが、基体温度を上昇させ
にくい高周波放電が望ましい。前記プラズマは例えば炭
素,水素,アルゴン各元素単体のイオン種,ラジカル
種,中性種と、炭化水素のイオン種,ラジカル種,中性
種,および電子を含んでいる。このプラズマはAの吹出
し口から、プラズマの下流方向に設置された基体に吹付
けられる。プラズマを基体に吹付けるには、A内圧力と
B内圧力との圧力差,および、プラズマに例えば電気的
などを併用させる方法がある。例えば、プラズマの下流
方向が負の電位となるように直流電界を設定すれば、プ
ラズマ中の少なくともイオン種はプラズマ下流方向、す
なわち、基体方向に加速され基体へ到達する。また、少
なくとも正電極に、電子が電気力で捕捉されない大きさ
の孔を1つ以上設けることで、前記プラズマ中の電子も
基体へ到達する。前記孔の大きさは、少くともプラズマ
の圧力によって決まるシース長より大きく設定される。
また電気力の作用を受けない前記ラジカル種,中性種な
どは、本発明でのプラズマが例えばO.数Torr弱電離状
態であり、プラズマは一般気体の粘性流のようにふるま
うため前記孔を通過し吹出し口から気体へ吹付けられ
る。本発明ではこのようにしてプラズマが気体に吹付け
られて高硬度炭素膜が形成される。
With a mixed gas containing a hydrocarbon gas and an argon gas, for example, a predetermined pressure is filled in a plasma generation container (hereinafter referred to as A) having a blowout port that has been evacuated in advance. The A has one or more inlets for introducing a hydrocarbon gas and an argon gas into the A, and also has one or more outlets for blowing plasma onto the substrate. Examples of the hydrocarbon gas include methane gas, acetylene gas,
Ethylene gas, ethane gas, butane gas, etc. may be used. The hydrocarbon gas and the argon gas may be mixed before being introduced into A, or may be separately introduced and mixed into A. A is connected to a vacuum container (hereinafter, referred to as B) having a pressure lower than the internal pressure of A so that the mixed gas can flow, and the mixed gas in A is B
However, the fluid can flow only by the pressure difference between the two. When the pressure inside A is set to a predetermined pressure and stabilized, the mixed gas in A is turned into plasma, but when hydrocarbon gas and argon gas are introduced into A separately, they are turned into plasma separately. I don't care. High frequency discharge, microwave discharge, etc. may be used as the means for forming the plasma, but high frequency discharge that does not easily raise the substrate temperature is desirable. The plasma contains, for example, ionic species, radical species, and neutral species of carbon, hydrogen, and argon elements alone, and hydrocarbon ionic species, radical species, neutral species, and electrons. This plasma is sprayed from the outlet of A onto the substrate installed in the downstream direction of the plasma. In order to spray the plasma onto the substrate, there is a method in which the pressure difference between the internal pressure of A and the internal pressure of B is used, and the plasma is electrically combined. For example, if the DC electric field is set so that the downstream direction of the plasma has a negative potential, at least the ion species in the plasma are accelerated in the downstream direction of the plasma, that is, toward the substrate and reach the substrate. Further, at least the positive electrode is provided with at least one hole having a size such that electrons are not captured by electric force, so that the electrons in the plasma also reach the substrate. The size of the hole is set to be at least larger than the sheath length determined by the plasma pressure.
The radical species, neutral species, etc. which are not affected by electric force have a plasma of the present invention in a weakly ionized state of, for example, O. It passes and is blown into the gas from the outlet. In the present invention, the plasma is thus blown to the gas to form a high hardness carbon film.

さらに具体的な本発明に基づく実施例を第1図〜第3図
を用いて説明する。
A more specific embodiment according to the present invention will be described with reference to FIGS.

高硬度炭素膜形成に先んじて、気体表面を洗浄し高硬度
炭素膜と気体との密接力を増加させるため前グロー処理
を行なう。前グロー処理に使用するガスとしては気体の
変質,および、ガスの取扱いやすさなどの点で不活性ガ
スを用い、本実施例では高硬度炭素膜形成時においてア
ルゴンガスを使用するため、前グロー処理にもアルゴン
ガスを使用した。
Prior to forming the high hardness carbon film, a pre-glow treatment is performed to clean the gas surface and increase the contact force between the high hardness carbon film and the gas. As a gas used for the pre-glow treatment, an inert gas is used in terms of gas degeneration and handling of the gas. In this embodiment, since the argon gas is used at the time of forming the high hardness carbon film, the pre-glow process is performed. Argon gas was also used for the treatment.

前記前グロー処理に引続いて高硬度炭素膜を基体8に形
成する操作が行なわれる。前記前グロー処理が終了した
後、ガラス管からなるプラズマ発生容器13、および、
真空容器14は、真空計12の読みが、例えば、10-4To
rrの圧力になるまで真空ポンプ15で排気される。次に
炭化水素ガス2、および、アルゴンガス9のガラス管1
3内での圧力が、所定の圧力になるように真空計12と
流量調整弁3、および流量調整弁10により設定され
る。プラズマ発生容器13内に炭化水素ガス2とアルゴ
ンガス9とを含有する混合ガスは、例えば第1図に示す
ように高周波電源1と励起コイル11とによりプラズマ
化される。このようにプラズマ化された前記混合ガスは
プラズマ発生容器13内圧力と真空容器14内圧力との
圧力差、および、プラズマ中の少なくともイオン種は、
例えば第1図に示す直流電源6により基体8が正電極5
に対し負電位となるように設定された直流電界によって
電気的に加速され基体8に吹付けられる。本実施例では
前記のようにプラズマ中のイオン種を加速し基体に到達
させるとともに、電子も基体に到達させるため、少なく
とも正電極に前記シース長程度以上の大きさの孔を1つ
以上設ける。本実施例では、正電極5として例えば第2
図に示すような、一端面が開放された格子状物体で構成
される円筒物体を用いた。また、負電極7としては例え
ば第3図に示すような円板物体を用いた。前記正電極の
開き目が2mmのものを用いた結果、形成膜上での正電極
蓄積は問題とならなかった。以上の操作によって、基体
8上に高硬度炭素膜が形成されるが、プラズマ発生容器
13,真空容器14は、前記操作中、常に真空ポンプ1
5によってプラズマ発生容器13,真空容器14内圧力
が一定に保たれるように排気される。本操作は所定の膜
厚が基体8上に形成された後に、高周波電源1による電
力供給、および炭化水素ガス2,アルゴンガス9の供給
が止められて終了する。
Subsequent to the pre-glow treatment, an operation of forming a high hardness carbon film on the substrate 8 is performed. After the pre-glow treatment is completed, a plasma generating container 13 made of a glass tube, and
In the vacuum container 14, the reading of the vacuum gauge 12 is, for example, 10 −4 To.
The vacuum pump 15 exhausts until the pressure reaches rr. Next, a glass tube 1 of hydrocarbon gas 2 and argon gas 9
The pressure inside 3 is set by the vacuum gauge 12, the flow rate adjusting valve 3, and the flow rate adjusting valve 10 so as to be a predetermined pressure. The mixed gas containing the hydrocarbon gas 2 and the argon gas 9 in the plasma generation container 13 is turned into plasma by the high frequency power supply 1 and the excitation coil 11 as shown in FIG. 1, for example. The mixed gas thus plasmatized has a pressure difference between the internal pressure of the plasma generation container 13 and the internal pressure of the vacuum container 14, and at least ion species in the plasma,
For example, when the DC power source 6 shown in FIG.
, And is electrically accelerated by a DC electric field set to have a negative potential and is sprayed onto the substrate 8. In this embodiment, in order to accelerate the ion species in the plasma to reach the substrate and also allow the electrons to reach the substrate as described above, at least one positive electrode is provided with at least one hole having a size equal to or larger than the sheath length. In this embodiment, the positive electrode 5 is, for example, a second electrode.
As shown in the figure, a cylindrical object composed of a lattice-like object whose one end face is open was used. Further, as the negative electrode 7, for example, a disc object as shown in FIG. 3 was used. As a result of using the positive electrode having an opening of 2 mm, accumulation of the positive electrode on the formed film was not a problem. Although the high hardness carbon film is formed on the substrate 8 by the above operation, the plasma generation container 13 and the vacuum container 14 are always in the vacuum pump 1 during the above operation.
5, the plasma generating container 13 and the vacuum container 14 are evacuated so that the internal pressures are kept constant. This operation ends after the predetermined film thickness is formed on the substrate 8 and then the power supply from the high frequency power supply 1 and the supply of the hydrocarbon gas 2 and the argon gas 9 are stopped.

炭化水素ガスとしては、メタンガス,アセチレンガス,
エチレンガス,エタンガス,ブタンガスなどを使用して
もよい。第1表に、メタンガスを使用し高硬度炭素膜を
形成した場合の一形成条件例,および第2表に前記条件
での形成方法の特性,形成膜の特性を示す。
As hydrocarbon gas, methane gas, acetylene gas,
Ethylene gas, ethane gas, butane gas, etc. may be used. Table 1 shows an example of forming conditions when a high hardness carbon film is formed using methane gas, and Table 2 shows characteristics of the forming method under the above conditions and characteristics of the formed film.

我々は本実施例によって、広範囲な形成条件で高硬度炭
素膜を形成し得た。第3表に本実施例で高硬度炭素膜を
形成し得た形成条件を示す。Vはイオン種加速用直流
電圧,FM/Wは炭化水素ガス流量(F)と炭化水素ガス分子
量(M)との積と高周波電源によるプラズマ励起電力(W)と
の比であり、PA/PCHはガラス管内におけるアルゴンガス
圧力(PA)と炭化水素ガス圧力(PCH)との比である。
According to this example, we could form a high hardness carbon film under a wide range of forming conditions. Table 3 shows the forming conditions by which the high hardness carbon film was formed in this example. V B is the DC voltage for accelerating the ion species, FM / W is the ratio of the product of the hydrocarbon gas flow rate (F) and the molecular weight of the hydrocarbon gas (M) to the plasma excitation power (W) by the high frequency power source, and P A / P CH is the ratio of the argon gas pressure (P A ) and the hydrocarbon gas pressure (P CH ) in the glass tube.

以上のように、本発明の高硬度炭素膜形成方法に基づい
た本実施例によって、高硬度炭素膜が、基体は室温のま
まで、しかも正電荷蓄積を中和する付加的手段を用い
ず、従来に比べ数倍〜数10倍もの高成膜速度で得られ
た。本実施例では水素ガスを用いずアルゴンガスを用い
て高硬度炭素膜を形成し得たため、工業化する際に極め
て有利である。また、アルゴンガスを用いているため、
基体表面の前グロー洗浄処理と、高硬度炭素膜の形成が
基体を形成装置内に設置したまま連続して処理できるこ
とも、本発明を工業化する際に有利な点の一つである。
As described above, according to the present embodiment based on the method for forming a high-hardness carbon film of the present invention, the high-hardness carbon film has a substrate at room temperature, and does not use an additional means for neutralizing positive charge accumulation, It was obtained at a high film forming rate several times to several tens of times higher than the conventional one. In this embodiment, since the high hardness carbon film can be formed by using the argon gas instead of the hydrogen gas, it is extremely advantageous in industrialization. Also, since argon gas is used,
The fact that the pre-glow cleaning treatment on the surface of the substrate and the formation of the high-hardness carbon film can be performed continuously while the substrate is installed in the forming apparatus is one of the advantages in industrializing the present invention.

なお、総圧力(PCH+PA)は実施例では0.4Torrとした
が、0.1〜10Torrの範囲であれば同様の効果が得ら
れる。
Although the total pressure (P CH + P A ) is set to 0.4 Torr in the embodiment, the same effect can be obtained in the range of 0.1 to 10 Torr.

発明の効果 本発明の高硬度炭素膜形成方法は、炭化水素ガス,アル
ゴンガスを含有する混合ガスを、炭素,水素,アルゴン
各元素単位のイオン種,ラジカル種,中性種と、炭化水
素のイオン種,ラジカル種,中性種,および電子を含む
プラズマ状態に励起し、前記プラズマを基体に吹付ける
プラズマCVD法によって高硬度炭素膜を基体に形成す
ることを特徴としている。その結果、従来の高硬度炭素
膜形成方法では基体温度が少なくとも室温より高温で、
しかも低成膜速度でしか得られなかった高硬度炭素膜
を、一挙に基体温度を室温のままで、しかも膜形成中の
形成膜上の正電荷蓄積を中和する付加手段を用いること
なく従来に比べ数倍〜数10倍もの高成膜速度で得るこ
とができる。本発明はプラズマCVD法であるため、例
えば電気力によりイオン種を加速する場合の直流電圧は
PVD法の場合に比べ小さい値でも結合力の強い高硬度
炭素膜を得た。従って本発明の高硬度炭素膜形成方法で
は、従来では基体温度が上昇するため基体材質として用
いていた、例えば金属,半導体,ガラスはいうにおよば
す、殆んどすべてのプラスチック材料にさえも、電気的
に中和する付加手段を用いず、結合力の強い高硬度炭素
膜を、短時間に形成し得る。さらに本発明では、水素ガ
スを使用せずアルゴンガスを使用していて高硬度炭素膜
を形成し得る。従って水素ガスによる爆発の危険などは
まったくない上に、基体の表面洗浄として極めて重要な
前グロー処理もアルゴンガスで行なっているため、前記
前グロー処理工程と高硬度炭素膜形成工程度が基体を設
置したまま連続して行える、たど工業化に非常に有利で
ある。
EFFECTS OF THE INVENTION The method for forming a high hardness carbon film of the present invention uses a mixed gas containing a hydrocarbon gas and an argon gas as a mixture of an ionic species, a radical species, a neutral species of carbon, hydrogen and argon elemental units, and a hydrocarbon. It is characterized in that a high hardness carbon film is formed on a substrate by a plasma CVD method in which a plasma state containing ionic species, radical species, neutral species, and electrons is excited and the plasma is sprayed onto the substrate. As a result, in the conventional high hardness carbon film forming method, the substrate temperature is at least higher than room temperature,
Moreover, a high-hardness carbon film, which was obtained only at a low film formation rate, can be obtained by using the conventional method without any additional means for neutralizing the positive charge accumulation on the formed film during the film formation while keeping the substrate temperature at room temperature. It can be obtained at a high film forming rate which is several times to several tens of times higher than the above. Since the present invention is a plasma CVD method, for example, a high-hardness carbon film having a strong binding force is obtained even if the DC voltage when accelerating the ion species by an electric force is smaller than that in the PVD method. Therefore, in the high-hardness carbon film forming method of the present invention, since almost all plastic materials, such as metal, semiconductor, and glass, which have been conventionally used as the base material because the temperature of the base rises, It is possible to form a high-hardness carbon film having a strong binding force in a short time without using an additional means for electrically neutralizing. Furthermore, in the present invention, a high hardness carbon film can be formed by using argon gas without using hydrogen gas. Therefore, there is no danger of explosion due to hydrogen gas, and since the pre-glow treatment, which is extremely important for cleaning the surface of the substrate, is also performed with argon gas, the pre-glow treatment step and the high hardness carbon film forming step It can be done continuously while it is installed, which is very advantageous for industrialization of throat.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の高硬度炭素膜形成方法を実施した装置
の原理図、第2図,第3図は同装置の一部分の斜視図、
第4図,第5図はそれぞれ従来の方法による装置の原理
図である。 2……炭化水素ガス、8……基体、9……アルゴンガ
ス、13……プラズマ発生容器、14……真空容器、1
6……吹出し口。
FIG. 1 is a principle view of an apparatus for carrying out the high hardness carbon film forming method of the present invention, and FIGS. 2 and 3 are perspective views of a part of the apparatus.
FIG. 4 and FIG. 5 are principle diagrams of the apparatus according to the conventional method. 2 ... Hydrocarbon gas, 8 ... Substrate, 9 ... Argon gas, 13 ... Plasma generation container, 14 ... Vacuum container, 1
6 ... outlet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米澤 武敏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭60−5882(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taketoshi Yonezawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-60-5882 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭化水素ガス(分圧: PCH Torr)とアルゴ
ンガス(分圧: P Torr)を含有する圧力比(P
CH)が0.1〜10、総圧力(PCH+PA)が0.1〜1
0Torrの混合ガスを吹出し口を有するプラズマ発生容器
に導入し、前記混合ガスを前記プラズマ発生容器内にお
いて炭素、水素、アルゴンのイオン種、ラジカル種、中
性種と炭化水素のイオン種、ラジカル種、中性種と電子
からなるプラズマに励起し、そのプラズマを前記吹出し
口より粘性流として、−0.1kV〜−5kVの負電位
の基体に吹付けて、前記基体に高硬度炭素膜を形成する
ことを特徴とする高硬度炭素膜形成方法。
1. A pressure ratio (P A / P) containing a hydrocarbon gas (partial pressure: P CH Torr) and an argon gas (partial pressure: P A Torr).
P CH ) is 0.1 to 10, total pressure (P CH + P A ) is 0.1 to 1
A mixed gas of 0 Torr is introduced into a plasma generation container having an outlet, and the mixed gas is charged with carbon, hydrogen, argon ion species, radical species, neutral species and hydrocarbon ion species, radical species in the plasma generation vessel. Excited into a plasma composed of neutral species and electrons, the plasma is sprayed as a viscous flow from the outlet onto a substrate having a negative potential of −0.1 kV to −5 kV to form a high hardness carbon film on the substrate. A method of forming a high hardness carbon film, comprising:
JP59258038A 1984-08-31 1984-12-06 High hardness carbon film forming method Expired - Lifetime JPH0637704B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59258038A JPH0637704B2 (en) 1984-12-06 1984-12-06 High hardness carbon film forming method
EP19850115085 EP0183254B1 (en) 1984-11-29 1985-11-28 Plasma CVD apparatus and method for forming a diamond-like carbon film
DE19853587881 DE3587881T2 (en) 1984-11-29 1985-11-28 Process for plasma chemical vapor deposition and process for producing a film of diamond-like carbon.
US06/803,001 US4645977A (en) 1984-08-31 1985-11-29 Plasma CVD apparatus and method for forming a diamond like carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258038A JPH0637704B2 (en) 1984-12-06 1984-12-06 High hardness carbon film forming method

Publications (2)

Publication Number Publication Date
JPS61136678A JPS61136678A (en) 1986-06-24
JPH0637704B2 true JPH0637704B2 (en) 1994-05-18

Family

ID=17314670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258038A Expired - Lifetime JPH0637704B2 (en) 1984-08-31 1984-12-06 High hardness carbon film forming method

Country Status (1)

Country Link
JP (1) JPH0637704B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238962A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Method and apparatus for forming film
JPS6414976A (en) * 1987-07-08 1989-01-19 Sumitomo Electric Industries Josephson element and manufacture thereof
JPH0610853B2 (en) * 1988-01-22 1994-02-09 株式会社半導体エネルギー研究所 Method for producing magnetic member coated with carbon film
EP0556517A1 (en) * 1991-12-26 1993-08-25 General Electric Company Diamond films
US6805941B1 (en) 1992-11-19 2004-10-19 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US5637373A (en) 1992-11-19 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605882A (en) * 1983-06-22 1985-01-12 Mitsubishi Metal Corp Formation of hard carbonaceous film on surface of substrate

Also Published As

Publication number Publication date
JPS61136678A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
US4959242A (en) Method for forming a thin film
JP3344723B2 (en) Method for depositing diamond-like conductive electron-emitting carbon-based thin films
KR100324619B1 (en) Method for reforming surface of metal and surface reformed metal fabricated thereby
US6570172B2 (en) Magnetron negative ion sputter source
JPS6117907B2 (en)
US20050045103A1 (en) Method and apparatus for applying material to glass
JPH0635323B2 (en) Surface treatment method
US5206060A (en) Process and device for the deposition of thin layers and product made thereby
JPH0637704B2 (en) High hardness carbon film forming method
WO2003017737A2 (en) Cascade arc plasma and abrasion resistant coatings made therefrom
JP3207469B2 (en) Atmospheric pressure blowing type plasma reactor
JPS644591B2 (en)
JPH0995784A (en) Formation of carbon film
JPH03274269A (en) Method for synthesizing diamondlike thin film and diamondlike thin film
JP3175891B2 (en) Plasma generator and etching method using the same
Segers et al. Thin Film Deposition Using a Dielectric‐barrier Discharge
JP3582885B2 (en) Method and apparatus for smoothing diamond
JPH02115379A (en) Device for forming thin film
JP2001098358A (en) Deposition device for carbon thin film and method for manufacturing carbon thin film
JPS61288069A (en) Diamond-like carbon film forming device
JPH07110995B2 (en) Thin film forming method and thin film forming apparatus
JP2594961B2 (en) Gas ion source device
JPH0627340B2 (en) Hybrid plasma thin film synthesis method and device
JPS58225637A (en) Ion beam apparatus
CN114875383A (en) Method for depositing a layer, deposition system and method for replacing a window of a deposition system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term