JPH0592141A - Method for activating and regenerating chromium type fluorinating catalyst - Google Patents

Method for activating and regenerating chromium type fluorinating catalyst

Info

Publication number
JPH0592141A
JPH0592141A JP3126196A JP12619691A JPH0592141A JP H0592141 A JPH0592141 A JP H0592141A JP 3126196 A JP3126196 A JP 3126196A JP 12619691 A JP12619691 A JP 12619691A JP H0592141 A JPH0592141 A JP H0592141A
Authority
JP
Japan
Prior art keywords
catalyst
treatment
reaction
activity
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3126196A
Other languages
Japanese (ja)
Other versions
JP3248923B2 (en
Inventor
Katsuyuki Tsuji
勝行 辻
Seiichi Tomota
清一 友田
Kimitaka Oshiro
公孝 大城
Hideji Hirayama
秀二 平山
Hidetoshi Nakayama
秀俊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12619691A priority Critical patent/JP3248923B2/en
Publication of JPH0592141A publication Critical patent/JPH0592141A/en
Application granted granted Critical
Publication of JP3248923B2 publication Critical patent/JP3248923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To repeatedly activate a catalyst lowered in its activity, in the activation and regeneration of a fluorinating catalyst of halogenated hydrocarbon based on chromium, by successively applying oxidizing treatment and reducing treatment whose temp. ranges are respectively specified to the used catalyst. CONSTITUTION:When a fluorinating catalyst of halogenated hydrocarbon based on chromium used as an aerosol, a refrigerant, a foaming agent or a solvent lowered in its activity is activated, at first, oxidizing treatment bringing said catalyst into contact with oxidative-gas (O2, N2O or O3) at 150-500 deg.C is performed and, subsequently, reducing treatment bringing the catalyst into contact with reductive gas (H2, CO or NO) at 100-500 deg.C is performed. In succession to these treatments, reaction may be resumed immediately but it is pref. to resume reaction after the catalyst is again treated with HF. By these treatments, the activity of the catalyst can be restored up to the initial activity level without scattering effective components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハロゲン化炭化水素の
フッ素化反応に用いられる、クロムを主成分とするフッ
素化触媒の賦活再生方法に関する。
TECHNICAL FIELD The present invention relates to a method for activating and regenerating a fluorination catalyst containing chromium as a main component, which is used in a fluorination reaction of halogenated hydrocarbons.

【0002】[0002]

【従来の技術】フッ素を含有するハロゲン化炭化水素
は、フロンガスとよばれ、エアロゾル、冷媒、発泡剤、
溶剤等として広い用途を有している。近年塩素を含むフ
ロンガスは、オゾン層を破壊するおそれがあることか
ら、オゾン層を破壊しない、水素を含むハロゲン化炭化
水素(一般にHCFCと略記される)や塩素を全く含ま
ないフッ化炭化水素(一般にHFCと略記される)がオ
ゾン層を破壊するフロンの代替フロンとして注目されて
いる。
2. Description of the Related Art Halogenated hydrocarbons containing fluorine are called chlorofluorocarbons, and they are aerosols, refrigerants, blowing agents,
It has a wide range of uses as a solvent. In recent years, CFCs containing chlorine may damage the ozone layer. Therefore, halogenated hydrocarbons containing hydrogen (generally abbreviated as HCFC) that do not damage the ozone layer and fluorohydrocarbons that do not contain chlorine ( (Generally abbreviated as HFC) is attracting attention as a CFC alternative to CFCs that destroy the ozone layer.

【0003】水素を含むハロゲン化炭化水素を気相接触
反応で製造する際には、活性の高いことから従来、クロ
ム系触媒が用いられていた。
When producing halogenated hydrocarbons containing hydrogen by a gas phase catalytic reaction, chromium-based catalysts have been conventionally used because of their high activity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年注
目されている上記水素を含有するフロン(HCFC,H
FC)の製造にクロム系触媒を用いると、水素を含まな
いフロンを製造する場合に較べて、触媒活性の低下が早
いことが認められる。したがって、HCFCやHFCの
製造にクロム系触媒を用いるには、有効な賦活再生方
法、或いは活性を長期にわたって保持させる方法を開発
することが必要となる。
However, the above-mentioned hydrogen-containing CFCs (HCFC, H
It is recognized that when a chromium-based catalyst is used in the production of FC), the catalytic activity is reduced more rapidly than in the case of producing CFCs containing no hydrogen. Therefore, in order to use a chromium-based catalyst for the production of HCFCs and HFCs, it is necessary to develop an effective activation regeneration method or a method for maintaining the activity for a long period of time.

【0005】クロム系触媒の活性を保持する方法として
は、例えば原料にCl2 を同伴させる方法(特公昭52
−33604号公報)、O2 を同伴させる方法(特公昭
56−23407号公報)等があるが、上記水素を含有
するハロゲン化炭化水素の製造においては、いずれも活
性維持効果はほとんど認められないばかりでなく、望ま
しくない副生物が増加するといった欠点を有する。
As a method of maintaining the activity of the chromium-based catalyst, for example, a method of entraining Cl 2 in the raw material (Japanese Patent Publication No. 52-52).
No. 33604), a method of entraining O 2 (Japanese Patent Publication No. 56-23407), etc., but in the production of the halogenated hydrocarbon containing hydrogen, almost no activity maintaining effect is observed. Not only that, but it also has the drawback of increasing unwanted by-products.

【0006】また、劣化した触媒の賦活再生方法として
は、酸素で処理したフッ化クロムを10〜50%の割合
で劣化触媒に添加する方法(特公昭49−4715
8)、活性低下が認められた時点で触媒に酸素を通じ再
活性化する方法(特公昭62−44973号、特開平1
−262946号)等があるが、酸素で処理した触媒を
そのままフッ素化反応に使用すると有効成分の飛散が生
じ、長期にわたり使用すると活性低下をまねくとともに
飛散した物質の処理も問題となる。さらに反応によって
は、酸素で処理しただけの触媒では、好ましくない副生
物が増加することもある。
As a method for activating and regenerating a deteriorated catalyst, chromium fluoride treated with oxygen is added to the deteriorated catalyst in a ratio of 10 to 50% (Japanese Patent Publication No. 49-4715).
8) A method of reactivating oxygen by passing oxygen through the catalyst when a decrease in activity is observed (JP-B-62-44973, JP-A-1).
However, if the catalyst treated with oxygen is used as it is in the fluorination reaction, the active ingredient will be scattered, and if it is used for a long period of time, the activity will be decreased and the treatment of the scattered substance will be a problem. In addition, depending on the reaction, the catalyst just treated with oxygen may increase undesired by-products.

【0007】本発明者らは、上記の問題を解決すべく鋭
意研究した結果、活性が低下したクロムを主成分とする
ハロゲン化炭化水素のフッ素化触媒を再生賦活する場
合、先ず酸化性ガスと接触させる酸化処理およびこれに
引続いて還元性ガスと接触させる還元処理を順次行うこ
とにより、触媒の有効成分を飛散させることなく触媒の
活性を回復させることができることを発見した。触媒の
有効成分が飛散しないため再生後も長期にわたって活性
が維持でき、また、賦活再生を繰返しても初期と同等の
活性を得ることができる。さらに、HCFC−133a
のフッ素化反応などでは酸素で処理しただけの触媒に較
べ還元処理を併用した触媒でより高い選択性が得られる
ことも見出した。
As a result of intensive studies to solve the above problems, the inventors of the present invention have found that when reactivating a fluorinated catalyst of a halogenated hydrocarbon whose main component is chromium whose activity has been lowered, an oxidizing gas is used. It has been discovered that the catalytic activity can be recovered without scattering the active component of the catalyst by sequentially performing the oxidizing treatment for contacting and the subsequent reducing treatment for contacting with a reducing gas. Since the active ingredient of the catalyst does not scatter, the activity can be maintained for a long period of time even after the regeneration, and even if the activation regeneration is repeated, the same activity as the initial stage can be obtained. Furthermore, HCFC-133a
It was also found that in the fluorination reaction, etc., higher selectivity can be obtained with a catalyst that also uses a reduction treatment in comparison with a catalyst that has only been treated with oxygen.

【0008】本発明は上記の発見に基づいてなされたも
ので、活性の低下したクロム系フッ素化触媒を、繰返し
賦活しても、もとの状態に再生できるフッ素化触媒の賦
活再生方法を提供することを目的とする。
The present invention has been made on the basis of the above findings, and provides a method for activating and regenerating a fluorination catalyst which can regenerate the chromium-based fluorination catalyst having a reduced activity to its original state even after repeated activation. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明に係るクロムを主
成分とするハロゲン化炭化水素のフッ素化触媒を賦活再
生する方法においては、先ず150〜500℃の温度
で、酸化性ガスと接触させる酸化処理、およびこれに引
続いて100〜500℃の温度で還元性ガスと接触させ
る還元処理を順次行なうことを問題解決の手段とした。
In the method for activating and regenerating a fluorination catalyst for halogenated hydrocarbons containing chromium as a main component according to the present invention, first, a temperature of 150 to 500 ° C. is contacted with an oxidizing gas. The oxidation treatment and the subsequent reduction treatment of contacting with a reducing gas at a temperature of 100 to 500 [deg.] C. were successively performed, which was a means for solving the problem.

【0010】これらの酸化処理、還元処理に引続き、直
に反応を再開してもよいが、HFにより再度触媒をHF
処理した後に反応を再開することが望ましい。これは、
還元処理により生成し触媒に吸着している水や過度に酸
化をうけた触媒が再フッ素化される際に生成する水が装
置の腐食上問題となる為に除去するばかりでなく、HF
処理により触媒を一層活性な状態に変化させることがで
きるためである。
Following these oxidation treatments and reduction treatments, the reaction may be restarted immediately.
It is desirable to restart the reaction after treatment. this is,
Not only is the water generated by the reduction treatment adsorbed to the catalyst and the water generated when the excessively oxidized catalyst is re-fluorinated caused a problem on the corrosion of the equipment, but it is also removed.
This is because the treatment can change the catalyst to a more active state.

【0011】本発明の触媒賦活再生方法は一般のハロゲ
ン化炭化水素を製造する際に適用できる。すなわちHF
によるフッ素化反応、ハロゲン化炭化水素同志のハロゲ
ン交換反応にクロム系触媒を用いる際に有効である。
The catalyst activation regeneration method of the present invention can be applied to the production of general halogenated hydrocarbons. Ie HF
It is effective when a chromium-based catalyst is used in the fluorination reaction by OH and the halogen exchange reaction between halogenated hydrocarbons.

【0012】近年注目されているオゾン層を破壊しない
あるいは破壊しにくい含水素ハロゲン化炭化水素を製造
する場合、すなわち、CH2 Cl2 、CHCl3 、CH
Cl=CCl2 、CH2 =CCl2 、CCl2 =CCl
2 、CH3 CCl3 、CF3 CHCl2 、CF3 CH2
Cl、CF2 ClCF2 CHCl2 、等をHFでフッ素
化する反応をクロム系触媒で行う場合には、活性低下が
早いため本発明が特に効力を発揮する。
In the case of producing a hydrogen-containing halogenated hydrocarbon that does not or hardly destroys the ozone layer, which has been attracting attention in recent years, that is, CH 2 Cl 2 , CHCl 3 , CH.
Cl = CCl 2 , CH 2 = CCl 2 , CCl 2 = CCl
2 , CH 3 CCl 3 , CF 3 CHCl 2 , CF 3 CH 2
When the reaction of fluorinating Cl, CF 2 ClCF 2 CHCl 2 , etc. with HF is carried out with a chromium-based catalyst, the present invention is particularly effective because the activity decreases quickly.

【0013】クロムを主成分とするフッ素化触媒として
はCr2 3 やCrF3 およびオキシフッ化クロムCr
x y のようにいわゆるクロム単味の触媒、これらク
ロム化合物を活性炭、アルミナ、AlF3 、TiO2
どに担持した担持触媒、さらには、Mg、Ca、Sr、
Ba、Mn、Co、Ni、Cu、Ag、Al等の金属を
少なくとも1種含有する多元系触媒などがあげられる。
As the fluorination catalyst containing chromium as the main component, Cr 2 O 3 , CrF 3 and chromium oxyfluoride Cr are used.
A so-called chromium simple catalyst such as O x F y , a supported catalyst in which these chromium compounds are supported on activated carbon, alumina, AlF 3 , TiO 2, etc., and further Mg, Ca, Sr,
Examples thereof include multi-component catalysts containing at least one metal such as Ba, Mn, Co, Ni, Cu, Ag and Al.

【0014】今、含水素ハロゲン化炭化水素である1,
1,1,2−テトラフルオロエタン(HFC−134a
と略記される)の製法を例として上記Cr系触媒を説明
すると、特開昭55−27138にはCrF3 ・3H2
Oを空気で焼成した触媒、水酸化クロムをHFで活性化
した触媒、さらにはCrを活性炭に担持した触媒が開示
されており、また特開平2−172933には、Cr、
Al、Mgの硝酸水溶液から共沈法によって得られた水
酸化物から調製した触媒が耐久性に勝れた触媒として開
示されている。
Now, the hydrogen-containing halogenated hydrocarbons 1,
1,1,2-Tetrafluoroethane (HFC-134a
The method of to) abbreviated To explain the Cr-based catalyst as an example and, in JP 55-27138 CrF 3 · 3H 2
A catalyst in which O is calcined with air, a catalyst in which chromium hydroxide is activated by HF, and a catalyst in which Cr is supported on activated carbon are disclosed, and JP-A-2-172933 discloses Cr,
A catalyst prepared from a hydroxide obtained by a coprecipitation method from an aqueous nitric acid solution of Al and Mg is disclosed as a catalyst having excellent durability.

【0015】上記フッ素化触媒の活性低下の原因とし
て、次の2つのことが考えられる。
The following two factors can be considered as the causes of the decrease in the activity of the fluorination catalyst.

【0016】1つは原料あるいは生成する有機物が触媒
表面で多量化して表面に沈着し、活性点の作用を阻害す
るいわゆるコーキングという現象によるものである。
One is due to the phenomenon of so-called coking, in which the raw materials or the organic matter produced are deposited on the surface of the catalyst in a large amount and deposited on the surface to inhibit the action of active sites.

【0017】いま1つは、反応中に触媒がHFにより過
度のフッ素化をうけ、活性な状態でなくなってしまうと
いう現象によるものである。
The other one is due to the phenomenon that the catalyst is excessively fluorinated by HF during the reaction and becomes inactive.

【0018】Cr系触媒においても、劣化した触媒を解
析するとカーボンの付着や過度のフッ素化を示す触媒の
酸素含有量の減少が観察されることが多く、上記の要因
が活性低下に寄与していることが推定される。
In the case of Cr-based catalysts as well, when the deteriorated catalyst is analyzed, carbon adhesion and excessive fluorination are often observed to decrease the oxygen content of the catalyst, and the above factors contribute to the activity decrease. It is estimated that

【0019】従って、こうした劣化触媒を再生するため
には、表面に付着した炭素類の除去、およびフッ素化の
進行した触媒を元の酸素含有量になるまで酸素を補給す
ることが必要となる。このための方法として触媒を酸化
性ガスによって処理する方法が考えられる。
Therefore, in order to regenerate such a deteriorated catalyst, it is necessary to remove carbons adhering to the surface and supply oxygen to the catalyst having advanced fluorination until the original oxygen content is reached. As a method for this, a method of treating the catalyst with an oxidizing gas can be considered.

【0020】酸化性ガスとしては、O2 、N2 O、O3
等が使用できるが、扱いやすさ、入手しやすさ等の理由
からO2 が好ましい。処理温度としては150℃以下の
温度では触媒自体や付着カーボンの酸化反応が進行せ
ず、また500℃以上では触媒の過剰酸化をひきおこし
たり、粒子成長を促進して比表面積の低下をひきおこす
ため150〜500℃、特に250〜450℃とするの
が好ましい。
Oxidizing gases include O 2 , N 2 O, O 3
Although like can be used, ease of handling, O 2 is preferred for reasons such as ready availability. When the treatment temperature is 150 ° C. or lower, the oxidation reaction of the catalyst itself or the adhering carbon does not proceed, and at 500 ° C. or higher, the catalyst is excessively oxidized or the particle growth is promoted to decrease the specific surface area. It is preferable to set the temperature to ˜500 ° C., especially 250 to 450 ° C.

【0021】酸化性ガスは0.1〜100%の濃度範囲
で用いることができるが、高濃度の酸化性ガスを用いる
ことは触媒の有効成分の飛散を促進するため好ましくな
い。一方、濃度が低すぎても処理時間が長くなるため、
酸化性ガス濃度が1〜30%になるようにN2 、Ar等
の不活性ガスで希釈して用いることが好ましい。
The oxidizing gas can be used in a concentration range of 0.1 to 100%, but it is not preferable to use a high concentration of oxidizing gas because it promotes the scattering of the active ingredient of the catalyst. On the other hand, if the concentration is too low, the processing time will be long,
It is preferable to use it after diluting it with an inert gas such as N 2 or Ar so that the concentration of the oxidizing gas becomes 1 to 30%.

【0022】処理圧力は特に制限はないが、操作、取扱
い上常圧付近で行うのが適当である。用いるガスの流量
は処理に要する時間、酸化性ガスの有効反応率等を考慮
するとGHSV(標準状態換算)にして10〜1000
0Hr-1が適当である。
The treatment pressure is not particularly limited, but it is suitable to carry out the treatment at around atmospheric pressure in terms of operation and handling. The flow rate of the gas used is 10 to 1000 in GHSV (converted to standard state) in consideration of the time required for the treatment, the effective reaction rate of the oxidizing gas, and the like.
0Hr -1 is suitable.

【0023】劣化した触媒に以上の条件下で酸化性ガス
を供給すると発熱が生じ、CO、CO2 、H2 O等のガ
スが生成する。CO、CO2 等のガスの生成が認められ
なくなるまで処理を継続することが望ましいが、時間が
かかりすぎる場合には、触媒層に発熱がなくなった時点
で処理を終了してもよい。
When the oxidizing gas is supplied to the deteriorated catalyst under the above conditions, heat is generated, and gases such as CO, CO 2 and H 2 O are generated. It is desirable to continue the treatment until the generation of gas such as CO and CO 2 is no longer recognized, but if it takes too long, the treatment may be terminated when the catalyst layer no longer generates heat.

【0024】以上のような酸化処理のみを施した触媒に
反応原料であるHFを供給すると触媒の有効成分の飛散
が認められ、長期にわたって触媒を使用する際に活性低
下をまねくとともに飛散物の処理も問題になる。従っ
て、有効成分の飛散を抑制する必要が生じる。
When HF, which is a reaction raw material, is supplied to the catalyst which has been subjected to only the above-described oxidation treatment, scattering of the active ingredient of the catalyst is recognized, and when the catalyst is used for a long period of time, the activity is lowered and the scattered matter is treated. Also becomes a problem. Therefore, it becomes necessary to suppress the scattering of the active ingredient.

【0025】上記の問題は還元処理を酸化処理に継続し
て併用することで解決できる。すなわち、酸化処理後の
触媒に還元性ガスを以下の条件で供給し還元処理を行
う。処理温度は、100℃以下では還元反応がほとんど
進行せず、500℃以上では好ましくない触媒の過剰還
元が進行するため100〜500℃、好ましくは250
〜450℃の温度範囲で行う。
The above problems can be solved by continuously using the reduction treatment and the oxidation treatment together. That is, a reducing gas is supplied to the catalyst after the oxidation treatment under the following conditions to perform the reduction treatment. The treatment temperature is 100 to 500 ° C., preferably 250 to 100 ° C., because the reduction reaction hardly progresses at 100 ° C. or less and the unfavorable excessive reduction of the catalyst proceeds at 500 ° C. or higher.
It is carried out in a temperature range of ˜450 ° C.

【0026】還元性ガスとしては、H2 、CO、NOな
どを使用することができるが、還元力、取扱い易さ等の
理由からH2 を用いるのが適当である。還元性ガスの濃
度は、0.01〜100%で行うことができるが、取扱
い上の安全性からH2 の場合は0.1〜4%、COの場
合は0.1〜12%の濃度で使用することが望ましい。
酸素処理同様、圧力は常圧付近、ガス流量はGHSV
(標準状態換算)で10〜10000Hr-1が適当であ
る。還元処理も発熱反応であるため、還元性ガスの反応
率が0%になるまで処理を行うことが望ましいが、触媒
層に発熱がないことを終了基準としてもよい。
[0026] As the reducing gas, H 2, CO, may be used, such as NO, reducing power, it is for reasons of easy handling and the like used and H 2 is appropriate. The reducing gas can be used at a concentration of 0.01 to 100%, but for safety in handling, the concentration of H 2 is 0.1 to 4%, and CO is 0.1 to 12%. It is desirable to use.
Similar to oxygen treatment, the pressure is near normal pressure and the gas flow rate is GHSV.
10 to 10000 Hr -1 (converted to standard state) is suitable. Since the reduction treatment is also an exothermic reaction, it is desirable to perform the treatment until the reaction rate of the reducing gas reaches 0%, but it may be determined that the catalyst layer does not generate heat as the termination criterion.

【0027】以上のように酸化処理に継続して還元処理
を行うことで有効成分を飛散させることなく初期の活性
レベルにまで活性を回復させることができる。また、実
施例で述べるように還元処理を併用することで反応によ
っては、好ましくない副生物の生成を抑制する効果も期
待できる。
As described above, by performing the reduction treatment after the oxidation treatment, the activity can be restored to the initial activity level without scattering the active ingredient. In addition, as described in the examples, the effect of suppressing the production of undesired by-products can be expected depending on the reaction by using the reduction treatment together.

【0028】本発明の賦活再生処理は反応前を含む任意
の時点で行うことができ、例えば、触媒調製時の焼成方
法としても有効である。
The activation regeneration treatment of the present invention can be carried out at any time, including before the reaction, and is also effective as a calcination method at the time of catalyst preparation.

【0029】[0029]

【実施例】以下実施例および比較例を示して、本発明を
具体的に説明する。なお説明中ガス流量および空間速度
(SV)はすべて標準状態に換算した値である。
EXAMPLES The present invention will be specifically described with reference to Examples and Comparative Examples. In the description, the gas flow rate and space velocity (SV) are all values converted into the standard state.

【0030】実施例1 (触媒調製)CrCl3 ・6H2 O:111gを純水:
77gに溶解し、高純度(99.93wt%)活性アル
ミナ:100gを浸漬して触媒液を全量吸収させた。こ
れを120℃で3時間乾燥した後、空気流通下(SV=
200hr-1)400℃で3時間、さらにH2 流通下
(SV=200hr-1)350℃で3時間焼成した。
Example 1 (Catalyst preparation) CrCl 3 .6H 2 O: 111 g of pure water:
It was dissolved in 77 g, and 100 g of high-purity (99.93 wt%) activated alumina: 100 g was immersed to absorb the whole amount of the catalyst liquid. This was dried at 120 ° C. for 3 hours and then under air flow (SV =
Baking was performed at 200 hr −1 ) at 400 ° C. for 3 hours, and further under H 2 flow (SV = 200 hr −1 ) at 350 ° C. for 3 hours.

【0031】(HF処理)上記焼成して得られた触媒3
0mlをインコネル製反応管に充填し、以下の条件でH
Fにより処理した。 処理条件 温度:250〜450℃ HF濃度:1〜100モル% (但し希釈はN2 によって行なった) SV:400hr-1
(HF treatment) Catalyst 3 obtained by the above calcination
Fill 0 ml of Inconel reaction tube and
Treated with F. Treatment conditions Temperature: 250 to 450 ° C. HF concentration: 1 to 100 mol% (however, dilution was performed with N 2 ) SV: 400 hr −1

【0032】上記HF処理を行なった時に、反応管の出
口ガスを希硝酸トラップにバブルして、飛散成分を捕集
して分析したが、何も検出されず、触媒成分は飛散して
いないことを示した。
When the HF treatment was carried out, the outlet gas of the reaction tube was bubbled into a dilute nitric acid trap to collect and analyze the scattered components, but nothing was detected and the catalyst components were not scattered. showed that.

【0033】(フッ素化反応)HF処理をした後、引継
いて反応温度を330℃に設定し、1気圧、HF:40
0ml/min、1,1,1−トリフルオロクロロエタ
ン(HCFC−133a)100ml/minを供給
し、反応を開始した。反応を300時間継続したところ
HCFC−133aの転化率が、初期に比して3.1%
低下した。
(Fluorination reaction) After HF treatment, the reaction temperature was continuously set at 330 ° C., 1 atm, HF: 40
0 ml / min and 1,1,1-trifluorochloroethane (HCFC-133a) 100 ml / min were supplied to start the reaction. When the reaction was continued for 300 hours, the conversion rate of HCFC-133a was 3.1% compared to the initial rate.
Fell.

【0034】(酸化、還元処理)上記活性が低下した、
インコネル製反応器に充填されている触媒30mlを3
50℃に保持し、空気:63ml/min、N2 :18
7ml/minを供給し、10時間酸化処理を行なっ
た。次いで反応器内部をN2 でパージした後、350℃
に保持して、H23.5ml/min、N2 :172m
l/minを供給し、2時間還元処理を行なった。
(Oxidation and reduction treatment) The above-mentioned activity is lowered,
30 ml of the catalyst packed in the Inconel reactor is
Hold at 50 ° C, air: 63 ml / min, N 2 : 18
7 ml / min was supplied and oxidation treatment was performed for 10 hours. Next, after purging the inside of the reactor with N 2 , 350 ° C.
Kept at H 2, 3.5 ml / min, N 2 : 172 m
l / min was supplied and reduction treatment was performed for 2 hours.

【0035】(HF処理)その後、反応器を330℃に
設定し、HFガス:400ml/minを供給し、再度
触媒のHF処理を行なった。このHF処理においても触
媒成分の飛散は認められなかった。
(HF treatment) After that, the reactor was set at 330 ° C., HF gas: 400 ml / min was supplied, and the catalyst was subjected to HF treatment again. Scattering of the catalyst component was not recognized even in this HF treatment.

【0036】(フッ素化反応の再開)上記HF:400
ml/minの気流中に、さらにHCFC−133aを
100ml/minで供給し、反応を再開した。HCF
C133aの転化率は、前のフッ素化反応の5時間目と
同率であり、活性が回復していることを示した。また生
成したHFC−134aの選択率も98.7%と初期と
同等になった。
(Restart of fluorination reaction) HF: 400
HCFC-133a was further supplied at 100 ml / min in the air flow of ml / min to restart the reaction. HCF
The conversion rate of C133a was the same as that of the 5th hour of the previous fluorination reaction, indicating that the activity was restored. Further, the selectivity of the produced HFC-134a was 98.7%, which was equivalent to the initial level.

【0037】(賦活処理の繰返し)さらに同一条件で反
応を継続し、300時間毎に反応器内において、酸化処
理、還元処理、HF処理よりなる賦活処理を行なった。
結果を第1表に示す。
(Repetition of activation treatment) Further, the reaction was continued under the same conditions, and an activation treatment consisting of an oxidation treatment, a reduction treatment and an HF treatment was performed every 300 hours in the reactor.
The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例2 実施例1と同じ触媒を用い、同じ条件で300時間HC
FC−133aのフッ素化反応に使用して劣化した触媒
30mlを350℃に保持し、N2 O10ml/mi
n、N2 160ml/minを供給し、8時間酸化処
理を行った。次いで反応器内部をN2 でパージした後、
350℃に保持してH2 3.5ml/minを供給
し、2時間還元処理を行ってHF処理した後再び同一条
件でHCFC−133aのフッ素化反応を行った。結果
を表2に示す。
Example 2 HC was used for 300 hours under the same conditions using the same catalyst as in Example 1.
30 ml of the deteriorated catalyst used for the fluorination reaction of FC-133a was kept at 350 ° C., and N 2 O was 10 ml / mi.
Then, 160 ml / min of n and N 2 was supplied and oxidation treatment was performed for 8 hours. Then, after purging the inside of the reactor with N 2 ,
The temperature was maintained at 350 ° C., 3.5 ml / min of H 2 was supplied, reduction treatment was performed for 2 hours, HF treatment was performed, and then fluorination reaction of HCFC-133a was performed again under the same conditions. The results are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】比較例1 実施例1と同じ触媒を用い、同じ条件で300時間、H
CFC−133aのフッ素化反応に使用した触媒30m
lに、実施例1において行なった賦活処理のうち、酸化
処理とHF処理を行なって、再びHCFC−133aの
フッ素化反応を行なった。
Comparative Example 1 Using the same catalyst as in Example 1, under the same conditions for 300 hours, H 2
Catalyst 30m used for CFC-133a fluorination reaction
Among the activation treatments performed in Example 1, the oxidation treatment and the HF treatment were performed on 1 and the fluorination reaction of HCFC-133a was performed again.

【0042】その結果、HCFC−133aの転化率
は、19.7%で、実施例1と変わらなかったが、副生
物であるジクロロフルオロエチレン(HCFC−112
1)、1,1−ジフルオロ、1,2クロロエタン(HC
FC−132b)等が増加し、HFC−134aの選択
率は、98.2%と実施例1より低く、かつ時間ととも
に低下して、100時間後には96.8%まで低下し
た。
As a result, the conversion rate of HCFC-133a was 19.7%, which was not different from that of Example 1, but the by-product dichlorofluoroethylene (HCFC-112) was used.
1), 1,1-difluoro, 1,2-chloroethane (HC
FC-132b) and the like increased, and the selectivity of HFC-134a was 98.2%, which was lower than that of Example 1, and decreased with time, and decreased to 96.8% after 100 hours.

【0043】また、HF処理において触媒が含有するC
rの2%が飛散した。この結果から、還元処理が必要で
あることがわかる。
In addition, C contained in the catalyst in the HF treatment
2% of r was scattered. From this result, it can be seen that the reduction process is necessary.

【0044】実施例3 実施例1と同じにして、調製、賦活した触媒30mlを
300℃に保持し、1気圧でHF:210ml/mi
n、トリクロロエチレン(CHCl=CCl2)42m
l/minを供給し、フッ素化反応を500時間継続し
HCFC−133aを生成せしめた。その後実施例1の
賦活処理を行ない、再び同一条件で反応を行なった。結
果を表3に示す。
Example 3 In the same manner as in Example 1, 30 ml of the catalyst prepared and activated was kept at 300 ° C., and HF was 210 ml / mi at 1 atm.
n, trichlorethylene (CHCl = CCl 2 ) 42 m
l / min was supplied and the fluorination reaction was continued for 500 hours to generate HCFC-133a. After that, the activation treatment of Example 1 was performed, and the reaction was performed again under the same conditions. The results are shown in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】実施例4 実施例1と同じ方法で調製、賦活した触媒50mlを3
30℃で保持し、1気圧でHF:140ml/min、
パークロロエチレン(CCl2 =CCl2 ):25ml
/minを供給し、フッ素化反応を500時間行なっ
た。その後、実施例1と同じ賦活処理を行ない同一条件
でフッ素化反応を再開した。結果を第4表に示す。
Example 4 50 ml of the catalyst prepared and activated in the same manner as in Example 1 was added to 3 parts.
Hold at 30 ° C, HF at 1 atm: 140 ml / min,
Perchlorethylene (CCl 2 = CCl 2 ): 25 ml
/ Min was supplied and the fluorination reaction was carried out for 500 hours. Then, the same activation treatment as in Example 1 was performed, and the fluorination reaction was restarted under the same conditions. The results are shown in Table 4.

【0047】[0047]

【表4】 [Table 4]

【0048】実施例5 実施例1と同じにして調製、賦活した触媒30mlを2
50℃に保持し、1気圧でHF:200ml/min、
ジクロロメタン(CH2 Cl2 ):50ml/minを
供給し、フッ素化反応を500時間継続しジフルオロメ
タン(CH2 2 )を得た。次いで実施例1と同じ賦活
処理を行ない同一条件で反応を再開した。結果を第5表
に示す。
Example 5 2 ml of 30 ml of catalyst prepared and activated in the same manner as in Example 1
Hold at 50 ° C., HF at 1 atm: 200 ml / min,
Dichloromethane (CH 2 Cl 2 ): 50 ml / min was supplied and the fluorination reaction was continued for 500 hours to obtain difluoromethane (CH 2 F 2 ). Then, the same activation treatment as in Example 1 was performed and the reaction was restarted under the same conditions. The results are shown in Table 5.

【0049】[0049]

【表5】 [Table 5]

【0050】実施例6 市販のCrF3 ・3H2 Oをペレットに打錠成型し、3
0mlをインコネル製反応器に充填し、空気流通下(S
V200hr-1)500℃で2時間焼成した。次いで、
400℃に保持し、HFガスによりHF処理を行なった
後、HF気流下で350℃まで降温し、1気圧でHF:
180ml/min、HCFC−133a:45ml/
minを供給し、フッ素化反応を200時間継続しHF
C−134aを得た。その後、実施例1と同じ賦活処理
を行ない、同一条件で反応を再開した。結果を表6に示
す。
Example 6 Commercially available CrF 3 .3H 2 O was tableted into pellets and 3
0 ml was filled in an Inconel reactor and air was passed (S
V200hr -1 ) It baked at 500 degreeC for 2 hours. Then
After being kept at 400 ° C. and subjected to HF treatment with HF gas, the temperature was lowered to 350 ° C. under an HF gas flow, and HF at 1 atm:
180 ml / min, HCFC-133a: 45 ml /
min is supplied, the fluorination reaction is continued for 200 hours and HF
C-134a was obtained. Then, the same activation treatment as in Example 1 was performed, and the reaction was restarted under the same conditions. The results are shown in Table 6.

【0051】[0051]

【表6】 [Table 6]

【0052】実施例7 Al(NO3 3 ・9H2 O:440g、Cr(N
3 3 ・9H2 O:50g、Mg(NO3 2 ・6H
2 O:16gを1リットルの水に溶解し、これと28%
アンモニア水溶液800gを攪拌しながら、加熱した
1.6リットルの水に添加して得られた沈殿を濾過、水
洗して120℃で乾燥した。乾燥品を450℃で空気気
流下(SV=250hr-1)5時間焼成し、できた酸化
物粉末を打錠成型した。こうして調製した触媒30ml
を反応器に充填してHF処理を行なった。続いて330
℃に保持し1気圧でHF:30ml/min、HCFC
−133a:120ml/minを供給し、フッ素化反
応を300時間継続しHFC−134aを得た後、実施
例1の賦活処理を行ない同一条件で反応を再開した。結
果を表7に示す。
[0052] Example 7 Al (NO 3) 3 · 9H 2 O: 440g, Cr (N
O 3) 3 · 9H 2 O : 50g, Mg (NO 3) 2 · 6H
2 O: 16 g dissolved in 1 liter of water, 28%
A precipitate obtained by adding 800 g of an aqueous ammonia solution to 1.6 l of heated water while stirring was filtered, washed with water, and dried at 120 ° C. The dried product was baked at 450 ° C. for 5 hours in an air stream (SV = 250 hr −1 ) and the resulting oxide powder was tablet-molded. 30 ml of catalyst prepared in this way
Was charged into the reactor and subjected to HF treatment. Then 330
HF: 30ml / min, HCFC at 1 ℃
-133a: 120 ml / min was supplied and the fluorination reaction was continued for 300 hours to obtain HFC-134a. Then, the activation treatment of Example 1 was performed and the reaction was restarted under the same conditions. The results are shown in Table 7.

【0053】[0053]

【表7】 [Table 7]

【0054】比較例2 実施例1の触媒調製操作において乾燥後に空気焼成のみ
を行いH2 焼成を行わずにHF処理を行った。この処理
において触媒が含有するCrの10%が飛散した。この
結果から還元処理は触媒調製時の処理としても有効であ
ることがわかる。
Comparative Example 2 In the catalyst preparation operation of Example 1, after drying, only calcination with air was carried out and HF treatment was carried out without carrying out H 2 calcination. In this treatment, 10% of Cr contained in the catalyst was scattered. From this result, it can be seen that the reduction treatment is effective as a treatment at the time of catalyst preparation.

【0055】[0055]

【発明の効果】以上説明したように本発明に係るクロム
系フッ素化触媒の賦活再生方法は、先ず酸化処理、引続
いて還元処理を順次行なうので、触媒は、有効成分を失
うことなく賦活され、賦活再生を繰返しても、初期の活
性レベルに再生されるばかりでなく、反応によっては本
賦活再生方法によって選択性が向上する。従って、工業
触媒の賦活再生方法として好適に使用され、経済的にフ
ッ素化反応を行なわせることができる利点がある。
As described above, in the method for activating and regenerating the chromium-based fluorination catalyst according to the present invention, first, the oxidation treatment and then the reduction treatment are sequentially performed, so that the catalyst is activated without losing the active ingredient. Even if the activation regeneration is repeated, not only the initial activity level is regenerated, but also the selectivity is improved by this activation regeneration method depending on the reaction. Therefore, it is advantageously used as a method for activating and regenerating an industrial catalyst, and has an advantage that the fluorination reaction can be economically performed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 19/08 9280−4H (72)発明者 平山 秀二 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社化学品研究所内 (72)発明者 中山 秀俊 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社化学品研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location C07C 19/08 9280-4H (72) Inventor Shuji Hirayama 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko KK Chemicals Laboratory (72) Inventor Hidetoshi Nakayama 5-1, Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko Chemicals Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 クロムを主成分とするハロゲン化炭化水
素のフッ素化触媒の賦活再生方法において、先ず150
〜500℃の温度で酸化性ガスと接触させる酸化処理お
よびこれに引続いて100〜500℃の温度で還元性ガ
スと接触させる還元処理を順次行なうことを特徴とする
クロム系フッ素化触媒の賦活再生方法。
1. A method for activating and regenerating a fluorination catalyst for halogenated hydrocarbons containing chromium as a main component, the method comprising:
Activation of a chromium-based fluorination catalyst, characterized in that an oxidation treatment of contacting with an oxidizing gas at a temperature of ˜500 ° C. and a reduction treatment of subsequently contacting with a reducing gas at a temperature of 100 to 500 ° C. are sequentially performed. How to play.
JP12619691A 1991-05-29 1991-05-29 Activation regeneration method of chromium-based fluorination catalyst and method of producing halogenated hydrocarbon Expired - Lifetime JP3248923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12619691A JP3248923B2 (en) 1991-05-29 1991-05-29 Activation regeneration method of chromium-based fluorination catalyst and method of producing halogenated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12619691A JP3248923B2 (en) 1991-05-29 1991-05-29 Activation regeneration method of chromium-based fluorination catalyst and method of producing halogenated hydrocarbon

Publications (2)

Publication Number Publication Date
JPH0592141A true JPH0592141A (en) 1993-04-16
JP3248923B2 JP3248923B2 (en) 2002-01-21

Family

ID=14929083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12619691A Expired - Lifetime JP3248923B2 (en) 1991-05-29 1991-05-29 Activation regeneration method of chromium-based fluorination catalyst and method of producing halogenated hydrocarbon

Country Status (1)

Country Link
JP (1) JP3248923B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494873A (en) * 1993-09-07 1996-02-27 Showa Denko K.K. Chromium-based fluorination catalyst, process for producing the catalyst, and fluorination process using the catalyst
EP0806242A1 (en) * 1996-05-06 1997-11-12 AUSIMONT S.p.A. Process for the regeneration of a catalyst based on trivalent chromium compounds
EP0806241B1 (en) * 1996-05-06 2002-11-20 AUSIMONT S.p.A. Process for the regeneration of a catalyst based on trivalent chromium compounds
JP2014511350A (en) * 2011-01-21 2014-05-15 アルケマ フランス Gas phase catalytic fluorination
JP2014511351A (en) * 2011-01-21 2014-05-15 アルケマ フランス Gas phase catalytic fluorination
JP2016053064A (en) * 2015-11-05 2016-04-14 アルケマ フランス Gas phase catalytic fluorination
JP5915808B1 (en) * 2014-12-24 2016-05-11 ダイキン工業株式会社 Method for removing the catalyst used in the reaction
FR3045029A1 (en) * 2015-12-14 2017-06-16 Arkema France CATALYTIC GAS PHASE FLUORATION WITH CHROMIUM-BASED CATALYSTS
JP2017213524A (en) * 2016-05-31 2017-12-07 ダイキン工業株式会社 Method for extracting catalyst, method for producing fluorine group-containing compound, and method for preserving catalyst
CN110719811A (en) * 2017-06-06 2020-01-21 阿科玛法国公司 Process for changing the fluorine distribution in hydrocarbon compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372611C (en) * 2004-12-23 2008-03-05 西安近代化学研究所 Regeneration method of fluorine catalyst with chromium base

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494873A (en) * 1993-09-07 1996-02-27 Showa Denko K.K. Chromium-based fluorination catalyst, process for producing the catalyst, and fluorination process using the catalyst
EP0806242A1 (en) * 1996-05-06 1997-11-12 AUSIMONT S.p.A. Process for the regeneration of a catalyst based on trivalent chromium compounds
US6150572A (en) * 1996-05-06 2000-11-21 Ausimont S.P.A. Process for the regeneration of a catalyst based on trivalent chromium compounds
AU731414B2 (en) * 1996-05-06 2001-03-29 Ausimont S.P.A. Process for the regeneration of a catalyst based on trivalent chromium compounds
EP0806241B1 (en) * 1996-05-06 2002-11-20 AUSIMONT S.p.A. Process for the regeneration of a catalyst based on trivalent chromium compounds
JP2014511350A (en) * 2011-01-21 2014-05-15 アルケマ フランス Gas phase catalytic fluorination
JP2014511351A (en) * 2011-01-21 2014-05-15 アルケマ フランス Gas phase catalytic fluorination
JP2016120481A (en) * 2014-12-24 2016-07-07 ダイキン工業株式会社 Method of removing catalyst used for reaction
JP5915808B1 (en) * 2014-12-24 2016-05-11 ダイキン工業株式会社 Method for removing the catalyst used in the reaction
WO2016104085A1 (en) * 2014-12-24 2016-06-30 ダイキン工業株式会社 Method for removing catalyst used in reaction
US9896401B2 (en) 2014-12-24 2018-02-20 Daikin Industries, Ltd. Method for removing catalyst used in reaction
JP2016053064A (en) * 2015-11-05 2016-04-14 アルケマ フランス Gas phase catalytic fluorination
FR3045029A1 (en) * 2015-12-14 2017-06-16 Arkema France CATALYTIC GAS PHASE FLUORATION WITH CHROMIUM-BASED CATALYSTS
WO2017103378A1 (en) * 2015-12-14 2017-06-22 Arkema France Gas-phase catalytic fluorination with chromium catalysts.
CN108367285A (en) * 2015-12-14 2018-08-03 阿科玛法国公司 Gas phase catalytic fluorination is carried out with chrome catalysts
JP2019500359A (en) * 2015-12-14 2019-01-10 アルケマ フランス Vapor phase catalytic fluorination using chromium catalyst
US10577294B2 (en) 2015-12-14 2020-03-03 Arkema France Gas-phase catalytic fluorination with chromium catalysts
US10988423B2 (en) 2015-12-14 2021-04-27 Arkema France Gas-phase catalytic fluorination with chromium catalysts
JP2017213524A (en) * 2016-05-31 2017-12-07 ダイキン工業株式会社 Method for extracting catalyst, method for producing fluorine group-containing compound, and method for preserving catalyst
CN110719811A (en) * 2017-06-06 2020-01-21 阿科玛法国公司 Process for changing the fluorine distribution in hydrocarbon compounds

Also Published As

Publication number Publication date
JP3248923B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
CN104918700B (en) Activation and regeneration of fluorination catalysts
JP5788961B2 (en) Pretreatment and regeneration method of catalyst used in production process of fluoroiodoalkanes
JP5380446B2 (en) Dehydrochlorination of hydrochlorofluorocarbons using pretreated activated carbon catalyst
RU2654694C2 (en) Catalytic gas-phase fluorination
EP2665692B1 (en) Catalytic gas phase fluorination
JP7336849B2 (en) Gas phase catalytic fluorination using chromium catalyst
AU626349B2 (en) Purification of saturated halocarbons
JPH0780796B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
JP3248923B2 (en) Activation regeneration method of chromium-based fluorination catalyst and method of producing halogenated hydrocarbon
JP2005500150A (en) Method for preparing a fluorination catalyst
US5545774A (en) Process for the manufacture of 1,1,1,3,3,3-hexafluoropropane
JPH0852364A (en) Regenerating method of fluorinated catalyst
JP4172607B2 (en) Mixed fluorination catalyst
JPH08104656A (en) Reaction process using phosphate catalyst
JPH06104183B2 (en) Catalytic decomposition method of chlorofluoroalkane
JP2996598B2 (en) Chromium-based fluorination catalyst, its production method and fluorination method
JP2022518445A (en) Methods for activating chromia catalysts
JPH03275149A (en) Method for regenerating catalyst for production of unsaturated diester
JP4738035B2 (en) Process for producing 1,1,1,2-tetrafluoroethane and / or pentafluoroethane and use thereof
JP3862316B2 (en) Method for purifying pentafluoroethane
JP5025052B2 (en) Method for producing hexafluoroethane and use thereof
JPH0761944A (en) Fluorination catalyst and fluorinating method
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JP3900566B2 (en) Catalytic cracking of fluorinated hydrocarbons
JP2006512271A (en) Aluminum fluoride

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10