JP2014511351A - Gas phase catalytic fluorination - Google Patents
Gas phase catalytic fluorination Download PDFInfo
- Publication number
- JP2014511351A JP2014511351A JP2013549900A JP2013549900A JP2014511351A JP 2014511351 A JP2014511351 A JP 2014511351A JP 2013549900 A JP2013549900 A JP 2013549900A JP 2013549900 A JP2013549900 A JP 2013549900A JP 2014511351 A JP2014511351 A JP 2014511351A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- stage
- oxidant
- gas stream
- fluorination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003682 fluorination reaction Methods 0.000 title claims abstract description 70
- 230000003197 catalytic effect Effects 0.000 title description 7
- 239000003054 catalyst Substances 0.000 claims abstract description 108
- 238000006243 chemical reaction Methods 0.000 claims abstract description 67
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 66
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims abstract description 62
- 239000007800 oxidant agent Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000007789 gas Substances 0.000 claims abstract description 38
- 230000001590 oxidative effect Effects 0.000 claims abstract description 37
- 230000008929 regeneration Effects 0.000 claims abstract description 35
- 238000011069 regeneration method Methods 0.000 claims abstract description 35
- 230000004913 activation Effects 0.000 claims description 40
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 29
- 229910052760 oxygen Inorganic materials 0.000 claims description 29
- 239000001301 oxygen Substances 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 19
- 239000011651 chromium Substances 0.000 claims description 15
- OQISUJXQFPPARX-UHFFFAOYSA-N 2-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)C(Cl)=C OQISUJXQFPPARX-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- FXRLMCRCYDHQFW-UHFFFAOYSA-N 2,3,3,3-tetrafluoropropene Chemical compound FC(=C)C(F)(F)F FXRLMCRCYDHQFW-UHFFFAOYSA-N 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- QJMGASHUZRHZBT-UHFFFAOYSA-N 2,3-dichloro-1,1,1-trifluoropropane Chemical compound FC(F)(F)C(Cl)CCl QJMGASHUZRHZBT-UHFFFAOYSA-N 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- ZXPCCXXSNUIVNK-UHFFFAOYSA-N 1,1,1,2,3-pentachloropropane Chemical compound ClCC(Cl)C(Cl)(Cl)Cl ZXPCCXXSNUIVNK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- IYFMQUDCYNWFTL-UHFFFAOYSA-N 1,1,2,2,3-pentachloropropane Chemical compound ClCC(Cl)(Cl)C(Cl)Cl IYFMQUDCYNWFTL-UHFFFAOYSA-N 0.000 claims description 4
- PQUUGVDRLWLNGR-UHFFFAOYSA-N 2,3,3,3-tetrachloroprop-1-ene Chemical compound ClC(=C)C(Cl)(Cl)Cl PQUUGVDRLWLNGR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical class O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 3
- 238000010574 gas phase reaction Methods 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- VJGCZWVJDRIHNC-UHFFFAOYSA-N 1-fluoroprop-1-ene Chemical compound CC=CF VJGCZWVJDRIHNC-UHFFFAOYSA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 150000001805 chlorine compounds Chemical class 0.000 claims description 2
- 238000001994 activation Methods 0.000 description 46
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 239000000460 chlorine Substances 0.000 description 23
- 239000000047 product Substances 0.000 description 22
- 229910052801 chlorine Inorganic materials 0.000 description 19
- 229910052731 fluorine Inorganic materials 0.000 description 15
- 125000001424 substituent group Chemical group 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 11
- 239000012190 activator Substances 0.000 description 10
- -1 HFO-1234yf Chemical class 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910052794 bromium Inorganic materials 0.000 description 8
- 229910052740 iodine Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910018487 Ni—Cr Inorganic materials 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- UMGQVBVEWTXECF-UHFFFAOYSA-N 1,1,2,3-tetrachloroprop-1-ene Chemical compound ClCC(Cl)=C(Cl)Cl UMGQVBVEWTXECF-UHFFFAOYSA-N 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910000423 chromium oxide Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- SMCNZLDHTZESTK-UHFFFAOYSA-N 2-chloro-1,1,1,2-tetrafluoropropane Chemical compound CC(F)(Cl)C(F)(F)F SMCNZLDHTZESTK-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical class CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- ZDCWZRQSHBQRGN-UHFFFAOYSA-N 1,1,1,2,3-pentafluoropropane Chemical compound FCC(F)C(F)(F)F ZDCWZRQSHBQRGN-UHFFFAOYSA-N 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- QCMJBECJXQJLIL-UHFFFAOYSA-L chromium(6+);oxygen(2-);difluoride Chemical compound [O-2].[O-2].[F-].[F-].[Cr+6] QCMJBECJXQJLIL-UHFFFAOYSA-L 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007033 dehydrochlorination reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- LDTMPQQAWUMPKS-OWOJBTEDSA-N (e)-1-chloro-3,3,3-trifluoroprop-1-ene Chemical compound FC(F)(F)\C=C\Cl LDTMPQQAWUMPKS-OWOJBTEDSA-N 0.000 description 1
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- CDOOAUSHHFGWSA-UHFFFAOYSA-N 1,3,3,3-tetrafluoropropene Chemical compound FC=CC(F)(F)F CDOOAUSHHFGWSA-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910021563 chromium fluoride Inorganic materials 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005796 dehydrofluorination reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- NHGVZTMBVDFPHJ-UHFFFAOYSA-N formyl fluoride Chemical compound FC=O NHGVZTMBVDFPHJ-UHFFFAOYSA-N 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- YVWGMAFXEJHFRO-UHFFFAOYSA-N halopropane Chemical compound FC(F)C(F)(F)CBr YVWGMAFXEJHFRO-UHFFFAOYSA-N 0.000 description 1
- 229950000188 halopropane Drugs 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- FTBATIJJKIIOTP-UHFFFAOYSA-K trifluorochromium Chemical compound F[Cr](F)F FTBATIJJKIIOTP-UHFFFAOYSA-K 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/26—Chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/86—Chromium
- B01J23/866—Nickel and chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/92—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/94—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/132—Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/12—Oxidising
- B01J37/14—Oxidising with gases containing free oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/22—Halogenating
- B01J37/26—Fluorinating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/125—Halogens; Compounds thereof with scandium, yttrium, aluminium, gallium, indium or thallium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
本発明は反応段階と再生段階とを交互に含むフッ素化方法であって、反応段階がフッ素化触媒の存在下で塩素化物をフッ化水素と気相反応させてフッ素化物を製造することを含み、再生段階がフッ素化触媒を酸化剤含有ガス流と接触させることを含む方法に関する。The present invention is a fluorination method comprising alternately a reaction stage and a regeneration stage, the reaction stage comprising producing a fluorinated product by reacting a chlorinated product with hydrogen fluoride in a gas phase in the presence of a fluorination catalyst. And a method wherein the regeneration step comprises contacting the fluorination catalyst with an oxidant-containing gas stream.
Description
本発明は、フッ化水素(HF)を用いて塩素化物を気相触媒フッ素化して、フッ素化物を製造する方法、特に2−クロロ−3,3,3−トリフルオロ−1−プロペン(HFCO−1233xf)または1,1,1,2,3−ペンタクロロプロパンを気相触媒フッ素化して2,2,2,3−テトラフルオロプロペン(HFO−1234yf)を製造する方法に関するものである。 The present invention relates to a method for producing a fluorinated product by gas phase catalytic fluorination of chlorinated product using hydrogen fluoride (HF), particularly 2-chloro-3,3,3-trifluoro-1-propene (HFCO- 1233xf) or 1,1,1,2,3-pentachloropropane to produce 2,2,2,3-tetrafluoropropene (HFO-1234yf) by vapor phase catalytic fluorination.
本発明で得られる製品、例えばHFO−1234yfは発泡剤、冷媒、エアゾル推進薬、伝熱媒体、消火器、その他の用途で公知の化合物である。このHFO−1234yfはオゾン減損ポテンシャルがゼロ(Zero Ozone Depletion Potential、ODP)の化合物で、地球温暖化ポテンシャル(GWP)も150以下と非常に低いことも公知である。 The product obtained by the present invention, such as HFO-1234yf, is a known compound for foaming agents, refrigerants, aerosol propellants, heat transfer media, fire extinguishers, and other applications. This HFO-1234yf is a compound having a zero ozone depletion potential (ODP), and is also known to have a very low global warming potential (GWP) of 150 or less.
オゾン層保護のためのモントリオールプロトコルによってクロロフルオロカーボン(CFC)の使用は禁止された。クロロフルオロカーボンの代わりにオゾン層への影響がより少ない化合物、例えばヒドロフルオロカーボン、HFC、例えばHFC−134aが用いられるようになった。しかし、これらの化合物は地球温暖化の原因である温室効果ガスであることが証明され、気候変動に関する京都議定書で規制された。地球の気候変動に対する懸念が引き続いているため、ODP(オゾン減損ポテンシャル)が高く且つGWP(地球温暖化ポテンシャル)が高いものを置換する方法を開発するというニーズが増大している。ヒドロフルオロカーボン(HFC)はオゾン層に影響を及ぼさない化合物であり、溶剤、洗浄剤、および、伝熱流体としてのクロロフルオロカーボン(CFC)およびヒドロクロロフルオロカーボン(HCFC)の代替物と認定されたが、それでも著しく高いGWP値を示す傾向がある。ヒドロフルオロオレフィン(HFO)はODP値がゼロで、GWP値が低い潜在的な代替物であると考えられている。
従って、このHFO化合物、特にHFO−1234yfを製造する方法が開発されている。
The use of chlorofluorocarbons (CFCs) was prohibited by the Montreal protocol for ozone layer protection. Instead of chlorofluorocarbons, compounds with less impact on the ozone layer, such as hydrofluorocarbons, HFCs such as HFC-134a, have come to be used. However, these compounds were proved to be greenhouse gases responsible for global warming and were regulated by the Kyoto Protocol on Climate Change. As concerns over global climate change continue, there is an increasing need to develop methods to replace those with high ODP (ozone depletion potential) and high GWP (global warming potential). Hydrofluorocarbons (HFCs) are compounds that do not affect the ozone layer and have been identified as alternatives to chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) as solvents, cleaning agents, and heat transfer fluids, Nevertheless, it tends to show a significantly higher GWP value. Hydrofluoroolefins (HFO) are considered to be a potential alternative with zero ODP values and low GWP values.
Therefore, a method for producing this HFO compound, particularly HFO-1234yf, has been developed.
特許文献1(国際特許公開第WO 2007/079431号公報)にはフッ素化オレフィン、例えばヒドロフルオロプロペンの製造方法が開示されている。単一反応または2つ以上の反応として広範囲に記載されたプロセスは、式C(X)mCCl(Y)nC(X)mの化合物をフッ素化して少なくとも一つの式CF3CF=CHZの化合物を製造することを含む。ここで、各X, YおよびZは独立してH, F, Cl, IまたはBrであり、各mは独立して1, 2または3であり、nは0または1である。HFO-1234yfは、HFCO-1233xfを1,1,1,2-テトラフルオロ-2-クロロプロパン (HCFC-244bb)にフッ素化し、その後、脱塩化水素することによって調製される。
HFCO-1233xfは対応する塩素化先駆体(CCl2=CClCH2Cl)のフッ素化によって調製される。
Patent Document 1 (International Patent Publication No. WO 2007/079431) discloses a method for producing a fluorinated olefin such as hydrofluoropropene. A process described extensively as a single reaction or more than one reaction is a fluorination of a compound of formula C (X) m CCl (Y) n C (X) m with at least one formula CF 3 CF═CHZ. Producing the compound. Here, each X, Y and Z is independently H, F, Cl, I or Br, each m is independently 1, 2 or 3, and n is 0 or 1. HFO-1234yf is prepared by fluorinating HFCO-1233xf to 1,1,1,2-tetrafluoro-2-chloropropane (HCFC-244bb) followed by dehydrochlorination.
HFCO-1233xf is prepared by fluorination of the corresponding chlorinated precursor (CCl 2 = CClCH 2 Cl).
特許文献2(欧州特許公開第EP−A−939071号公報)には、多くの可能性の中で、非常に長いリストの中にハロゲン化プロペンを気相フッ素化してフッ素化プロペン(例えばHFO-1234yfリスト中)を製造することが開示されている。 Patent document 2 (European Patent Publication No. EP-A-939071) includes, among many possibilities, fluorinated propenes (eg, HFO-) by vapor phase fluorination of halogenated propenes in a very long list. 1234yf list) is disclosed.
特許文献3(国際特許公開第WO 2008/054781号公報)には、必要に応じて触媒の存在下で、ハロプロパンまたはハロプロペンをHFと反応させて種々のフルオロプロパンおよびハロフルオロプロペンの種々の製造方法が開示されている。特許文献3には、HFの存在下で2,3-ジクロロ-1,1,1-トリフルオロプロパン (HCFC-243db)を触媒、特にCr/Co (98/2)上で反応させることによるHFO-1234yfの製造方法が開示されている。反応生成物はHFO-1234yfおよびHFCO-1233xfを含み、後者は主生成物であり、その他の生成物は1-クロロ-3,3,3-トリフルオロ-1-プロペン(HFCO-1233zd)および1,1,1,2,2-ペンタフルオロプロパン (HFC-245cb)および1,3,3,3-テトラフルオロ-1-プロペン (HFO-1234ze)である。 Patent Document 3 (International Patent Publication No. WO 2008/054781) discloses various fluoropropanes and various halofluoropropenes by reacting halopropane or halopropene with HF, optionally in the presence of a catalyst. A manufacturing method is disclosed. Patent Document 3 discloses an HFO produced by reacting 2,3-dichloro-1,1,1-trifluoropropane (HCFC-243db) in the presence of HF over a catalyst, particularly Cr / Co (98/2). A method for producing -1234yf is disclosed. The reaction products include HFO-1234yf and HFCO-1233xf, the latter being the main product, the other products being 1-chloro-3,3,3-trifluoro-1-propene (HFCO-1233zd) and 1 1,1,2,2-pentafluoropropane (HFC-245cb) and 1,3,3,3-tetrafluoro-1-propene (HFO-1234ze).
特許文献4(国際特許公開第WO 2008/002500号公報)には、脱フッ化水素触媒上での1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)の触媒変換によるHFO-1234yfとHFO-1234zeとの混合物の製造方法が開示されている。 Patent Document 4 (International Patent Publication No. WO 2008/002500) discloses HFO-by catalytic conversion of 1,1,1,2,3-pentafluoropropane (HFC-245eb) over a dehydrofluorination catalyst. A process for producing a mixture of 1234yf and HFO-1234ze is disclosed.
特許文献5(国際特許公開第WO2008/040969号公報)には、HCFC-243dbを脱塩化水素化してHFCO-1233 (xf および zd)を製造し、その後の1,1,1,2-テトラフルオロ-2-クロロプロパン (HCFC-244bb)の生成およびその後の脱塩化水素化による所望のHFO-1234yfの生成を含む反応を含む方法が開示されている。この文献の実施例1にはZn/クロミア触媒上でHCFC-243dbをHFと大気圧で気相反応させてHFO-1234yfおよびHFCO-1233xfが生成し、少量のHFC-245cbも一緒に生成されることが開示されている。 In Patent Document 5 (International Patent Publication No. WO2008 / 040969), HCFC-243db is dehydrochlorinated to produce HFCO-1233 (xf and zd), followed by 1,1,1,2-tetrafluoro A process is disclosed that includes a reaction involving the production of -2-chloropropane (HCFC-244bb) and subsequent production of the desired HFO-1234yf by dehydrochlorination. In Example 1 of this document, HFO-1234yf and HFCO-1233xf are produced by gas phase reaction of HCFC-243db with HF at atmospheric pressure over a Zn / chromia catalyst, and a small amount of HFC-245cb is also produced. It is disclosed.
特許文献6(国際特許公開第WO2009/015317号公報)には1,1,2,3-テトラクロロ-1-プロペン(HCO-1230xa)、1,1,1,2,3-ペンタクロロプロパン(HCC-240db)または2,3,3,3-テトラクロロ-1-プロペン(HCO-1230xf)のような塩素化物を触媒上で少なくとも一種の安定化剤の存在下に気相でHFと反応させる方法が開示されている。この方法で2-クロロ-3,3,3-トリフルオロ-1-プロペン(HFCO-1233xf)が得られる。 Patent Document 6 (International Patent Publication No. WO2009 / 015317) includes 1,1,2,3-tetrachloro-1-propene (HCO-1230xa), 1,1,1,2,3-pentachloropropane (HCC). -240db) or a chlorinated product such as 2,3,3,3-tetrachloro-1-propene (HCO-1230xf) on a catalyst in the gas phase in the presence of at least one stabilizer. Is disclosed. In this way, 2-chloro-3,3,3-trifluoro-1-propene (HFCO-1233xf) is obtained.
特許文献7(米国特許公開第US2009/0240090号明細書)には、式(I) CX2=CClCH2Xまたは式(II) CX3CCl=CH2または式(III) CX3CHClCH2X(ここでX=F, Cl, Br, I)の化合物から出発する2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)の製造方法が開示されている。この方法は3つの段階を含み、その後に精製を実行できる。この方法はより高い転化率および収率を可能にする再循環段階を含む。 Patent Document 7 (US Patent Publication No. US2009 / 0240090) includes formula (I) CX 2 = CClCH 2 X or formula (II) CX 3 CCl = CH 2 or formula (III) CX 3 CHClCH 2 X ( Here, a process for the production of 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) starting from a compound of X = F, Cl, Br, I) is disclosed. This method involves three stages, after which purification can be carried out. This process includes a recycle stage that allows for higher conversions and yields.
特許文献8(国際特許公開第WO 2010/123154号公報)の対象は、酸素および、酸化クロムまたはフッ素化酸化クロムを含む触媒の存在下でHFCO-1233xfをHFと反応させてHFCO-1233xfから出発するHFO-1234yfを製造する方法にある。 Patent Document 8 (International Patent Publication No. WO 2010/123154) starts from HFCO-1233xf by reacting HFCO-1233xf with HF in the presence of oxygen and a catalyst containing chromium oxide or fluorinated chromium oxide. There is a method of manufacturing HFO-1234yf.
しかし、特に改良された転化率および/または改良された選択率を有し、および/または、より長い期間にわたって有効な、フルオロオレフィン、例えばHFO−1234yfを製造する改良された方法を提供するというニーズが依然としてある。 However, there is a need to provide an improved process for producing fluoroolefins, such as HFO-1234yf, which have particularly improved conversion and / or improved selectivity and / or are effective over a longer period of time. There is still.
本発明は、反応段階と再生段階とを交互に含むフッ素化方法であって、反応段階がフッ素化触媒の存在下で塩素化物をフッ化水素と気相反応させてフッ素化物を製造することを含み、再生段階がフッ素化触媒を酸化剤含有ガス流と接触させることを含む方法を提供する。 The present invention relates to a fluorination method comprising alternately a reaction stage and a regeneration stage, wherein the reaction stage is a gas phase reaction of chlorinated product with hydrogen fluoride in the presence of a fluorination catalyst. And a regeneration step comprising contacting the fluorination catalyst with an oxidant-containing gas stream.
本発明の一実施例では、フッ素化方法が、フッ素化触媒を酸化剤含有ガス流と接触させることを含む予備活性化段階を含む。 In one embodiment of the present invention, the fluorination process includes a preactivation stage that includes contacting a fluorination catalyst with an oxidant-containing gas stream.
本発明の一実施例では、活性化段階および/または再生段階の酸化剤含有ガス流が酸素含有ガス流である。 In one embodiment of the invention, the oxidant-containing gas stream of the activation and / or regeneration stage is an oxygen-containing gas stream.
本発明の一実施例では、活性化段階および/または再生段階が、フッ素化触媒を酸化剤含有ガス流と少なくとも2時間、好ましくは少なくとも4時間、より好ましくは少なくとも10時間、さらに好ましくは少なくとも15時間接触させることを含む。 In one embodiment of the present invention, the activation stage and / or regeneration stage comprises fluorinating catalyst with an oxidant-containing gas stream for at least 2 hours, preferably at least 4 hours, more preferably at least 10 hours, even more preferably at least 15 Including contacting for hours.
本発明の一実施例では、活性化段階および/または再生段階の酸化剤含有ガス流が酸化剤に加えてフッ化水素を含み、且つ、活性化段階および/または再生段階の酸化剤含有ガス流中の酸化剤の比率が酸化剤とフッ化水素の総量に対して好ましくは2〜98モル%、より好ましくは5〜50モル%である。 In one embodiment of the present invention, the oxidant-containing gas stream of the activation stage and / or regeneration stage includes hydrogen fluoride in addition to the oxidizer, and the oxidant-containing gas stream of activation stage and / or regeneration stage. The ratio of the oxidizing agent is preferably 2 to 98 mol%, more preferably 5 to 50 mol%, based on the total amount of the oxidizing agent and hydrogen fluoride.
本発明の一実施例では、活性化段階および/または再生段階の酸化剤含有ガス流がフッ化水素を含まず、好ましくは空気である。 In one embodiment of the invention, the oxidant-containing gas stream of the activation stage and / or regeneration stage is free of hydrogen fluoride and is preferably air.
本発明の一実施例では、活性化段階および/または再生段階が下記(1)または(2)でフッ素化触媒をフッ化水素ガス流と接触させることを含む:
(1)フッ素化触媒を酸化剤含有ガス流と接触させる前、または
(2)フッ素化触媒を酸化剤含有ガス流と接触させた後。
In one embodiment of the present invention, the activation and / or regeneration step comprises contacting the fluorination catalyst with a hydrogen fluoride gas stream in (1) or (2) below:
(1) before contacting the fluorination catalyst with the oxidant-containing gas stream, or (2) after contacting the fluorination catalyst with the oxidant-containing gas stream.
本発明の一実施例では、活性化段階が、塩素化物を酸化剤含有ガス流と接触させる前に、フッ素化触媒の存在下で塩素化物をフッ化水素と気相反応させる予備段階を含む。 In one embodiment of the present invention, the activation stage includes a preliminary stage in which the chloride is vapor phase reacted with hydrogen fluoride in the presence of a fluorination catalyst prior to contacting the chloride with the oxidant-containing gas stream.
本発明の一実施例では、活性化段階および/または再生段階で酸化剤含有ガス流をフッ素化触媒と250〜500℃、好ましくは300〜400℃、より好ましくは350〜380℃の温度で接触させる。 In one embodiment of the invention, the oxidant-containing gas stream is contacted with the fluorination catalyst at a temperature of 250-500 ° C., preferably 300-400 ° C., more preferably 350-380 ° C. in the activation stage and / or regeneration stage. Let
本発明の一実施例では、フッ素化物がフルオロオレフィン、好ましくはフルオロプロペン、より好ましくは2,3,3,3−テトラフルオロ−1−プロペンである。 In one embodiment of the invention, the fluorinated product is a fluoroolefin, preferably fluoropropene, more preferably 2,3,3,3-tetrafluoro-1-propene.
本発明の一実施例では、塩素化物が、ヒドロクロロカーボン、ヒドロクロロフルオロカーボンおよびヒドロクロロフルオロオレフィンから選択され、好ましくは2−クロロ−3,3,3−トリフルオロ−1−プロペン、1,1,1,2,3−ペンタクロロプロパン、1,1,2,2,3−ペンタクロロプロパン、2,3−ジクロロ−1,1,1−トリフルオロプロパン、2,3,3,3−テトラクロロ−1−プロペンおよび1,1,2,3−テトラクロロ−1−プロペンから選択され、より好ましくは2−クロロ−3,3,3−トリフルオロ−1−プロペンである。 In one embodiment of the invention, the chlorinated product is selected from hydrochlorocarbons, hydrochlorofluorocarbons and hydrochlorofluoroolefins, preferably 2-chloro-3,3,3-trifluoro-1-propene, 1,1 , 1,2,3-pentachloropropane, 1,1,2,2,3-pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloro- It is selected from 1-propene and 1,1,2,3-tetrachloro-1-propene, more preferably 2-chloro-3,3,3-trifluoro-1-propene.
本発明の一実施例では、フッ素化触媒が担持触媒であり、好ましくはフッ素化アルミナ、フッ素化クロミア(Chromia)、フッ素化活性炭またはグラファイトカーボンの中から選択される担体上に担持されている。 In one embodiment of the invention, the fluorination catalyst is a supported catalyst, preferably supported on a support selected from fluorinated alumina, fluorinated chromia, fluorinated activated carbon or graphite carbon.
本発明の一実施例では、フッ素化触媒が非担持触媒である。
本発明の一実施例では、フッ素化触媒が、Co、Zn、Mn、Mg、V、Mo、Te、Nb、Sb、Ta、P、Niまたはこれらの混合物から選択される、好ましくはNiである共触媒をさらに含み、且つ、この共触媒が好ましくはフッ素化触媒の約1〜10重量%の量で存在する。
In one embodiment of the invention, the fluorination catalyst is an unsupported catalyst.
In one embodiment of the invention, the fluorination catalyst is selected from Co, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P, Ni or mixtures thereof, preferably Ni. It further comprises a cocatalyst and is preferably present in an amount of about 1-10% by weight of the fluorination catalyst.
本発明の一実施例では、フッ素化触媒が、クロムに対するニッケルの原子比が好ましくは0.5〜2、より好ましくは約1である混成クロム/ニッケル触媒である。 In one embodiment of the invention, the fluorination catalyst is a hybrid chromium / nickel catalyst with an atomic ratio of nickel to chromium of preferably 0.5-2, more preferably about 1.
本発明の一実施例では、フッ化水素:2−クロロ−3,3,3−トリフルオロ−1−プロペンのモル比を3:1〜150:1、好ましくは4:1〜70:1、より好ましくは5:1〜50:1、さらに好ましくは10:1〜30:1にする。
本発明の一実施例では、反応段階を1〜20バール、好ましくは5〜15バール、より好ましくは7〜10バールの圧力で実行する。
In one embodiment of the invention, the molar ratio of hydrogen fluoride: 2-chloro-3,3,3-trifluoro-1-propene is 3: 1 to 150: 1, preferably 4: 1 to 70: 1. More preferably 5: 1 to 50: 1, and still more preferably 10: 1 to 30: 1.
In one embodiment of the invention, the reaction stage is carried out at a pressure of 1-20 bar, preferably 5-15 bar, more preferably 7-10 bar.
本発明の一実施例では、反応段階を200〜450℃、好ましくは300〜430℃、より好ましくは320〜420℃、さらに好ましくは340〜380℃の温度で実行する。
本発明の一実施例では、反応段階でのフッ化水素と塩素化物との接触時間が、6〜100秒、好ましくは10〜80秒、より好ましくは15〜50秒である。
In one embodiment of the invention, the reaction stage is carried out at a temperature of 200-450 ° C, preferably 300-430 ° C, more preferably 320-420 ° C, and even more preferably 340-380 ° C.
In one embodiment of the present invention, the contact time between hydrogen fluoride and chlorinated product in the reaction stage is 6 to 100 seconds, preferably 10 to 80 seconds, more preferably 15 to 50 seconds.
本発明の一実施例では、反応段階を、塩素化物と酸素の総量に対して0.05〜15モル%、より好ましくは0.5〜10モル%、さらに好ましくは5〜10モル%の酸化剤、例えば酸素の存在下で実施する。 In one embodiment of the present invention, the reaction step is carried out with an oxidation of 0.05 to 15 mol%, more preferably 0.5 to 10 mol%, more preferably 5 to 10 mol%, based on the total amount of chlorinated products and oxygen. It is carried out in the presence of an agent such as oxygen.
本発明は上記背景技術に記載のニーズを満たす。特に、本発明はフルオロオレフィン、例えばHFO−1234yfの改良された製造方法を提供する。例えば、HFCO−1233xfの転化率が特許文献8(国際特許第WO 2010/123154号)に比べて改良される。この結果は、酸化剤、例えば酸素の存在下でフッ素化触媒を再生したときに、反応の性能が長時間にわたって増加する、という本発明者によって為された驚くべき発見によって可能になる。 The present invention satisfies the needs described in the background art above. In particular, the present invention provides an improved process for producing fluoroolefins such as HFO-1234yf. For example, the conversion of HFCO-1233xf is improved as compared to Patent Document 8 (International Patent No. WO 2010/123154). This result is made possible by the surprising discovery made by the inventor that the performance of the reaction increases over time when the fluorination catalyst is regenerated in the presence of an oxidant such as oxygen.
本発明の実施例の詳細な説明
以下、本発明を詳細に説明するが、本発明は下記の説明に限定されるものではない。特に断らない限り、百分比はモル%である。
フッ素化反応
本発明のフッ素化反応では、触媒の存在下で塩素化物をフッ化水素(HF)との反応によってフッ素化物に変換する。
「塩素化物」は塩素原子を有する任意の分子にすることができ、「フッ素化物」はフッ素原子を有する任意の分子にすることができる。
塩素化物は、F, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがClである直鎖または分岐鎖の(好ましくは直鎖の)C2またはC3またはC4またはC5アルカンまたはアルケン化合物であるのが好ましい。
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following description. Unless otherwise indicated, the percentage is mol%.
Fluorination reaction In the fluorination reaction of the present invention, a chlorinated product is converted to a fluorinated product by reaction with hydrogen fluoride (HF) in the presence of a catalyst.
“Chloride” can be any molecule having a chlorine atom, and “fluoride” can be any molecule having a fluorine atom.
Chlorides are linear or branched (preferably having one or more substituents selected from F, Cl, I and Br (preferably F and Cl), wherein at least one of the substituents is Cl. It is preferably a straight-chain) C2 or C3 or C4 or C5 alkane or alkene compound.
フッ素化物は、F, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがFである直鎖または分岐鎖の(好ましくは直鎖の)C2またはC3またはC4またはC5アルカンまたはアルケン化合物(好ましくはアルケン)であるのが好ましい。 The fluorinated product has one or more substituents selected from F, Cl, I and Br (preferably F and Cl), and at least one of the substituents is linear or branched (preferably A linear) C2 or C3 or C4 or C5 alkane or alkene compound (preferably an alkene) is preferred.
塩素化物は、F, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがClであるC3アルカンまたはアルケン化合物であり、フッ素化物は、F, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがFであるC3アルケン化合物であるのがより好ましい。 The chlorinated compound is a C3 alkane or alkene compound having one or more substituents selected from F, Cl, I and Br (preferably F and Cl), and at least one of the substituents being Cl. More preferably, the compound is a C3 alkene compound having one or more substituents selected from F, Cl, I and Br (preferably F and Cl), wherein at least one of the substituents is F.
本発明の変形例では、塩素化物は、F, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがClであるC4アルカンまたはアルケン化合物にすることができ、フッ素化物は、F, Cl, IおよびBr (好ましくはFおよびCl)から選択される一つ以上の置換基を有し、置換基の少なくとも一つがFであるC4アルケン化合物である。 In a variant of the invention, the chlorinated product has a C4 alkane having one or more substituents selected from F, Cl, I and Br (preferably F and Cl), wherein at least one of the substituents is Cl. Or a alkene compound, wherein the fluoride has one or more substituents selected from F, Cl, I and Br (preferably F and Cl), and at least one of the substituents is F C4 alkene compound.
本発明の一実施例では、フッ素化物はヒドロフルオロオレフィンである(従って、塩素置換基を全く持たない)。
反応中に、塩素化物中の少なくとも一つのCl置換基をF置換基で置換するのが好ましい。
In one embodiment of the invention, the fluorinated product is a hydrofluoroolefin (and thus has no chlorine substituents).
During the reaction, it is preferred to substitute at least one Cl substituent in the chlorinated product with an F substituent.
塩素化物のフッ素化物への変換は直接変換(すなわち、単一反応段階または基本的に一つの反応条件下での変換)および間接変換(すなわち、2つ以上の反応段階によってまたは2つ以上の反応条件を用いた変換)である。 Conversion of chlorinated products to fluorinated products includes direct conversion (ie, conversion in a single reaction stage or essentially under one reaction condition) and indirect conversion (ie, by two or more reaction stages or two or more reactions). Conversion using conditions).
さらに好ましいフッ素化反応は以下の通り:
(1)2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(2)1,1,1,2,3-ペンタクロロプロパン(HCC-240db)から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(3)1,1,2,2,3-ペンタクロロプロパン(HCC-240aa) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(4)2,3ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(5)1,1,2,3テトラクロロ-1-プロペン(HCO-1230xa) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(6)2,3,3,3テトラクロロ-1-プロペン(HCO-1230xf) から2,3,3,3-テトラフルオロ-1-プロペン (HFO-1234yf)への反応;
(7)1,1,1,2,3-ペンタクロロプロパン(HCC-240db)から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(8)1,1,2,2,3-ペンタクロロプロパン(HCC-240aa) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(9)2,3ジクロロ-1,1,1-トリフルオロプロパン(HCFC-243db) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(10)1,1,2,3テトラクロロ-1-プロペン(HCO-1230xa) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応;
(11)2,3,3,3テトラクロロ-1-プロペン(HCO-1230xf) から2-クロロ-3,3,3-トリフルオロ-1-プロペン (HFCO-1233xf) への反応。
More preferred fluorination reactions are as follows:
(1) Reaction from 2-chloro-3,3,3-trifluoro-1-propene (HFCO-1233xf) to 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf);
(2) Reaction from 1,1,1,2,3-pentachloropropane (HCC-240db) to 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf);
(3) Reaction from 1,1,2,2,3-pentachloropropane (HCC-240aa) to 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf);
(4) Reaction from 2,3 dichloro-1,1,1-trifluoropropane (HCFC-243db) to 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf);
(5) Reaction from 1,1,2,3 tetrachloro-1-propene (HCO-1230xa) to 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf);
(6) Reaction from 2,3,3,3 tetrachloro-1-propene (HCO-1230xf) to 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf);
(7) Reaction from 1,1,1,2,3-pentachloropropane (HCC-240db) to 2-chloro-3,3,3-trifluoro-1-propene (HFCO-1233xf);
(8) Reaction of 1,1,2,2,3-pentachloropropane (HCC-240aa) to 2-chloro-3,3,3-trifluoro-1-propene (HFCO-1233xf);
(9) Reaction of 2,3 dichloro-1,1,1-trifluoropropane (HCFC-243db) to 2-chloro-3,3,3-trifluoro-1-propene (HFCO-1233xf);
(10) Reaction of 1,1,2,3 tetrachloro-1-propene (HCO-1230xa) to 2-chloro-3,3,3-trifluoro-1-propene (HFCO-1233xf);
(11) Reaction from 2,3,3,3 tetrachloro-1-propene (HCO-1230xf) to 2-chloro-3,3,3-trifluoro-1-propene (HFCO-1233xf).
フッ素化反応はHFモル比を一般に3:1〜150:1、接触時間を6〜100秒、圧力を大気圧から20バールにして実施できる。触媒床温度は200〜450℃にすることができる。
フッ素化反応中の触媒の高速非活性化を防ぐために、酸化剤(例えば酸素または塩素)を酸化剤と塩素化物との混合物に対して例えば0.05〜15モル%の比率で添加できる。
The fluorination reaction can be carried out at an HF molar ratio of generally 3: 1 to 150: 1, a contact time of 6 to 100 seconds and a pressure from atmospheric pressure to 20 bar. The catalyst bed temperature can be 200-450 ° C.
In order to prevent fast deactivation of the catalyst during the fluorination reaction, an oxidant (eg oxygen or chlorine) can be added, for example in a ratio of 0.05 to 15 mol% with respect to the mixture of oxidant and chlorate.
触媒
本発明で使用するフッ素化触媒は担持または非担持触媒にすることができる。
この触媒は例えば遷移金属酸化物またはその誘導体を含む金属またはこの金属のハロゲン化物またはオキシハライドをベースにした触媒である。触媒は例えばFeCl3、クロムオキシフルオライド、酸化クロム(必要に応じてフッ素化されていてもよい)、フッ化クロムおよびこれらの混合物である。
他の可能な触媒はカーボン担持触媒、アンチモンベースの触媒、アルミニウムベースの触媒、(例えばAlF3およびAl2O3およびアルミナのオキシフルオライドおよびフッ化アルミニウム)である。
Catalyst The fluorination catalyst used in the present invention can be a supported or unsupported catalyst.
The catalyst is, for example, a metal based on a transition metal oxide or a derivative thereof or a halide or oxyhalide based on this metal. The catalyst is, for example, FeCl 3 , chromium oxyfluoride, chromium oxide (which may be fluorinated if necessary), chromium fluoride and mixtures thereof.
Other possible catalysts are carbon supported catalysts, antimony based catalysts, aluminum based catalysts (eg AlF 3 and Al 2 O 3 and alumina oxyfluorides and aluminum fluoride).
一般的に使用できる触媒はクロムオキシフルオライド、フッ化アルミニウムおよびオキシフルオライドおよびCr、Ni、Zn、Ti、V、Zr、Mo、Ge、Sn、Pb、Mgのような金属を含む担持または非担持触媒である。また、特許文献9の第7頁、第1〜5行目、第28〜32行目、特許文献10のパラグラフ[0022]、特許文献11の第9頁第22行目〜第10頁第34行目、特許文献12のクレーム1を参照することができる。これらの内容は本明細書の一部を成す。
好ましい実施例ではクロムとニッケルの両方を含む混成担持触媒である特定の触媒を使用する。金属元素に対するCr:Niのモル比は一般に0.5〜5の間、好ましくは0.7〜2の間で、1に近い。触媒は重量で0.5〜20%のクロムと、0.5〜20%のニッケル、好ましくは2〜10%の間の各金属を含むことができる。 The preferred embodiment uses a specific catalyst which is a hybrid supported catalyst containing both chromium and nickel. The molar ratio of Cr: Ni to metal element is generally between 0.5 and 5, preferably between 0.7 and 2, close to 1. The catalyst may contain 0.5-20% chromium by weight and 0.5-20% nickel, preferably between 2-10% of each metal.
触媒中の金属は活性化(または再生)中の金属誘導体、例えば酸化物、ハロゲン化物またはオキシハライドに変換される。 The metal in the catalyst is converted to a metal derivative during activation (or regeneration), such as an oxide, halide or oxyhalide.
担持触媒に関する限り、触媒担体はより高い温度および圧力でHFと混合可能な当業者に周知の材料から選択できる。例えば、フッ素化アルミナ、予備フッ素化活性炭、グラファイトまたはフッ素化グラファイトが、適した触媒担体である。
担体はアルミニウムにするのが好ましい。他の担体、例えばアルミナ、活性アルミナまたはアルミニウム誘導体を使用することもできる。これらの誘導体は例えば特許文献13に記載のアルミニウム・ハロゲン化物およびアルミニウムのハロゲン化物酸化物を含み、また、活性化方法で得られる。
The support is preferably aluminum. Other supports such as alumina, activated alumina or aluminum derivatives can also be used. These derivatives include, for example, aluminum halides and aluminum halide oxides described in Patent Document 13, and are obtained by an activation method.
触媒に関しては特許文献14、特にその第4頁第30行目〜第7頁第16行目を参照できる。この内容は本願明細書の一部をなす。
別の実施例では、本発明方法は好ましくは担持されていない表面積の大きなCrベースの触媒を使用する。好ましい触媒は表面積の大きな非担持酸化クロム触媒である。
この触媒は必要に応じて一種以上の共触媒、例えばCo, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P およびNi塩を低レベルで含むことができる。好ましい共触媒はニッケルである。他の好ましい共触媒はマグネシウムである。
In another embodiment, the process of the present invention preferably uses an unsupported high surface area Cr-based catalyst. A preferred catalyst is a high surface area unsupported chromium oxide catalyst.
The catalyst can optionally contain one or more cocatalysts, such as Co, Zn, Mn, Mg, V, Mo, Te, Nb, Sb, Ta, P and Ni salts, at low levels. A preferred cocatalyst is nickel. Another preferred cocatalyst is magnesium.
好ましい非担持クロム触媒は必要に応じてさらに、当業者に周知な方法、例えば含浸で調製されたコバルト、ニッケル、亜鉛またはマンガンから選択される低レベルの一種以上の共触媒、混成粉末等を含むことができる。 Preferred unsupported chromium catalysts optionally further comprise a low level of one or more cocatalysts selected from cobalt, nickel, zinc or manganese prepared by impregnation, such as impregnation, mixed powders, etc. be able to.
共触媒の量(存在する場合)は、1〜10重量%、好ましくは1〜5重量%で変えることができる。当業者に周知な方法、例えば水溶液または有機溶液から吸着した後に溶剤を蒸発させる方法によって共触媒を触媒に添加できる。この実施例での好ましい触媒は、共触媒としてニッケルまたは亜鉛を有する純粋な酸化クロムである。変形例では、共触媒を触媒と粉砕によって物理的に混合し、均質混合物を製造することができる。別の触媒はフッ素化アルミナに担持されたクロム/ニッケル混成触媒である。下記文献(参考として本明細書の一部を成す)にはこの別の触媒の調製方法が開示されている。
触媒には活性化前に乾燥段階を実施する。好ましくは乾燥ガス、好ましくは窒素を通す。乾燥段階は大気圧から20バールまでの圧力で実施できる。乾燥段階での触媒の温度は約1〜50時間、好ましくは5〜20時間の間、約1〜100秒、好ましくは約10〜40秒の接触時間で、室温から400℃まで、好ましくは約100℃〜約200℃にすることができる。
乾燥段階後、触媒活性の最高レベルにするために触媒を活性化する必要がある。
The catalyst is subjected to a drying step before activation. Preferably a dry gas, preferably nitrogen, is passed. The drying step can be carried out at pressures from atmospheric to 20 bar. The temperature of the catalyst in the drying stage is from about 1 to 50 hours, preferably 5 to 20 hours, with a contact time of about 1 to 100 seconds, preferably about 10 to 40 seconds, from room temperature to 400 ° C., preferably about The temperature can be 100 ° C to about 200 ° C.
After the drying stage, it is necessary to activate the catalyst in order to achieve the highest level of catalyst activity.
触媒の活性化
本発明者は、酸化剤含有ガス流を用いた上記触媒の(任意の)活性化によってフッ素化プロセスの効率を大幅に改善できることを見出した。
この活性化プロセスは、一種の活性化剤または2種の活性化剤を用いて2つの段階または単一段階で触媒を活性化することを含む。活性化剤の一つは酸化剤、例えば酸素または酸素/窒素混合物または空気または塩素である。他方の活性化剤(存在する場合)はHFにすることができる。
Catalyst Activation The inventors have found that (optional) activation of the catalyst using an oxidant-containing gas stream can greatly improve the efficiency of the fluorination process.
This activation process involves activating the catalyst in two stages or in a single stage using one or two activators. One activator is an oxidizing agent, such as oxygen or an oxygen / nitrogen mixture or air or chlorine. The other activator (if present) can be HF.
本発明の一実施例では、活性化プロセスは2段階活性化プロセスであり、第1に、酸化剤を第1活性化剤として用い、次いで、第2活性化剤としてHFを用いる。初めに、新規な触媒を酸化剤で処理する。この活性化段階の温度は約10〜約200時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。次いで、触媒をHFで処理する。活性化剤としてHFを用いる活性化段階の温度は約1〜約50時間の間、約100〜約450℃、好ましくは約200〜約300℃、接触時間は約1〜約100秒にすることができる。 In one embodiment of the present invention, the activation process is a two-stage activation process, first using an oxidant as the first activator and then using HF as the second activator. First, the new catalyst is treated with an oxidant. The temperature of this activation step can be from about 250 to about 500 ° C., preferably from about 300 to about 400 ° C., and the contact time can be from about 1 to about 200 seconds for about 10 to about 200 hours. The catalyst is then treated with HF. The temperature of the activation stage using HF as the activator is about 100 to about 450 ° C., preferably about 200 to about 300 ° C., for about 1 to about 50 hours, and the contact time is about 1 to about 100 seconds. Can do.
本発明の別の実施例では、活性化プロセスは2段階活性化プロセスであり、第1に、HFを第1活性化剤として用い、次いで、第2活性化剤として酸化剤を用いる。初めに、新規な触媒をHFで処理する。この活性化段階の温度は約1〜約50時間の間、約100〜約450℃、好ましくは約200〜約300℃、接触時間は約1〜約100秒にすることができる。次いで、触媒を酸化剤で処理する。この活性化段階の温度は約10〜約200時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。 In another embodiment of the present invention, the activation process is a two-stage activation process, first using HF as the first activator and then using the oxidizing agent as the second activator. First, the new catalyst is treated with HF. The temperature of this activation stage can be from about 100 to about 450 ° C., preferably from about 200 to about 300 ° C., for about 1 to about 50 hours, and the contact time can be from about 1 to about 100 seconds. The catalyst is then treated with an oxidant. The temperature of this activation step can be from about 250 to about 500 ° C., preferably from about 300 to about 400 ° C., and the contact time can be from about 1 to about 200 seconds for about 10 to about 200 hours.
さらに別の実施例では、活性化プロセスは2段階活性化プロセスであり、最初にフッ素化反応を行って実施する活性化、その後の酸化剤を用いた活性化を含む。フッ素化反応は約6〜約100時間(例えば50時間以下)実施できる。フッ素化反応中のHFモル比は約2〜約40にすることができる。酸化剤を用いた活性化段階の温度は約10〜約100時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。触媒活性がその最高レベルに達するまで両方の段階を繰り返すことができる。 In yet another embodiment, the activation process is a two-step activation process that includes an activation performed by first performing a fluorination reaction followed by activation with an oxidant. The fluorination reaction can be performed for about 6 to about 100 hours (for example, 50 hours or less). The HF molar ratio during the fluorination reaction can be from about 2 to about 40. The temperature of the activation step using the oxidizing agent can be about 250 to about 500 ° C., preferably about 300 to about 400 ° C. for about 10 to about 100 hours, and the contact time can be about 1 to about 200 seconds. . Both steps can be repeated until the catalyst activity reaches its highest level.
さらに別の実施例では、活性化プロセスはHFと酸化剤とを用いた一段階活性化プロセスである。HFと酸化剤との混合物中の酸化剤の比率は約2〜約98モル%にすることができる。活性化段階の温度は約10〜約200時間の間、約200〜約450℃、接触時間は約1〜約200秒にすることができる。 In yet another embodiment, the activation process is a one-step activation process using HF and an oxidizing agent. The ratio of oxidizer in the HF and oxidizer mixture can be from about 2 to about 98 mole percent. The temperature of the activation stage can be from about 200 to about 450 ° C. for about 10 to about 200 hours, and the contact time can be about 1 to about 200 seconds.
さらに別の実施例では、活性化プロセスは酸化剤のみを用いた(HFを用いない)一段階活性化プロセスである。この活性化段階の温度は約10〜約300時間の間、約250〜約500℃、好ましくは約300〜約400℃、接触時間は約1〜約200秒にすることができる。 In yet another embodiment, the activation process is a one-step activation process using only an oxidant (no HF). The temperature of this activation step can be from about 250 to about 500 ° C., preferably from about 300 to about 400 ° C., for about 10 to about 300 hours, and the contact time can be about 1 to about 200 seconds.
上記活性化プロセスは大気圧から約20バールまでの圧力で実施できる。
HFを用いる上記活性化段階ではHFは不活性ガス、例えば窒素と一緒に系に供給できる。HFの比率は混合物の約1〜約100モル%にすることができる。
酸化剤を用いる上記活性化段階では酸化剤は不活性ガス、例えば窒素と一緒に系に供給できる。酸素または塩素の比率は混合物の約1〜約100モル%にすることができる。
The activation process can be carried out at pressures from atmospheric to about 20 bar.
In the above activation step using HF, HF can be supplied to the system together with an inert gas, such as nitrogen. The proportion of HF can be from about 1 to about 100 mole percent of the mixture.
In the above activation step using an oxidant, the oxidant can be supplied to the system together with an inert gas such as nitrogen. The ratio of oxygen or chlorine can be from about 1 to about 100 mole percent of the mixture.
酸化剤含有ガス流を用いた活性化は少なくとも1時間、好ましくは少なくとも2時間、より好ましくは少なくとも4時間、さらに好ましくは少なくとも10時間、さらに好ましくは少なくとも15時間、250〜500℃、好ましくは300〜400℃、より好ましくは350〜380℃の温度で実行するのが好ましい。例えば約370℃の温度が適当である。 Activation with the oxidant-containing gas stream is at least 1 hour, preferably at least 2 hours, more preferably at least 4 hours, more preferably at least 10 hours, even more preferably at least 15 hours, 250-500 ° C., preferably 300 It is preferable to perform at a temperature of ˜400 ° C., more preferably 350 to 380 ° C. For example, a temperature of about 370 ° C. is appropriate.
活性化プロセスが2つの段階(例えば、第1活性化剤を用いる一方の段階と、第2活性化剤を用いる他方の段階)を含むときは、これらの段階を1回、2回またはそれ以上の回数で交互に繰り返すことができる。 When the activation process includes two stages (eg, one stage using a first activator and the other stage using a second activator), these stages are performed once, twice or more Can be repeated alternately.
触媒の再生
本発明者はさらに、フッ素化反応の効率は時間とともに低下する傾向があるが、触媒に再生段階を実施することによって、再び初期効率まで、さらにはそれ以上に高くできるということを見出した。再生段階では初期活性化段階と同様に、触媒を酸化剤含有ガス流と接触させる。
Catalyst regeneration The inventor further finds that the efficiency of the fluorination reaction tends to decrease with time, but that by performing a regeneration step on the catalyst, it can be increased again to the initial efficiency and even higher. It was. In the regeneration stage, as in the initial activation stage, the catalyst is contacted with an oxidant-containing gas stream.
本発明の一実施例では、各再生段階は一段階再生段階であり、酸素または空気または酸素/窒素混合物を用いて実施される。再生段階の温度は約10〜約200時間の間、約250〜約500℃、接触時間は約1〜約200秒にすることができる。再生段階は大気圧から約20バールまでの圧力で実施できる。 In one embodiment of the invention, each regeneration stage is a one-stage regeneration stage and is performed using oxygen or air or an oxygen / nitrogen mixture. The regeneration stage temperature can be about 250 to about 500 ° C. for about 10 to about 200 hours, and the contact time can be about 1 to about 200 seconds. The regeneration step can be carried out at pressures from atmospheric pressure to about 20 bar.
別の実施例では、各再生段階は一段階再生段階であり、酸素または空気または酸素/窒素混合物およびHFを用いて実施される。再生段階の温度は約10〜約200時間の間、約250〜約500℃、接触時間は約1〜約200秒にすることができる。再生段階は大気圧から約20バールまでの圧力で実施できる。酸素の比率は酸素とHFとの混合物に対して約2〜約98モル%にすることができ、且つ、酸素と窒素との混合物に対して約20〜約100モル%にすることができる。 In another embodiment, each regeneration stage is a single stage regeneration stage and is performed using oxygen or air or an oxygen / nitrogen mixture and HF. The regeneration stage temperature can be about 250 to about 500 ° C. for about 10 to about 200 hours, and the contact time can be about 1 to about 200 seconds. The regeneration step can be carried out at pressures from atmospheric pressure to about 20 bar. The proportion of oxygen can be about 2 to about 98 mole percent with respect to the mixture of oxygen and HF, and can be about 20 to about 100 mole percent with respect to the mixture of oxygen and nitrogen.
反応段階と再生段階とを交互に繰り返すときには、各反応段階の時間は50〜2000時間、好ましくは200〜1000時間にすることができ、各再生段階の時間は10〜200時間、好ましくは15〜60時間にすることができる。 When the reaction stage and the regeneration stage are alternately repeated, the time of each reaction stage can be 50 to 2000 hours, preferably 200 to 1000 hours, and the time of each regeneration stage is 10 to 200 hours, preferably 15 to It can be 60 hours.
以下、本発明の実施例を示すが、本発明が下記実施例に限定されるものではない。
使用した設備は管状オーブンで取り囲んだINCONEL(登録商標)合金600製の内径が19mmの管状反応装置から成る。この反応装置は圧力および温度制御装置をさらに備えている。反応物は静的撹拌ヒーターで予め混合し、気相にして反応装置の頂部に導入する。
反応装置の出口では、反応生成物のサンプルを採取し、プレカラムで洗浄し、低極性毛細管カラムを備えた気相クロマトグラフィでオンライン分析した。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
The equipment used consisted of an INCONEL® alloy 600 tubular reactor surrounded by a tubular oven and having an inner diameter of 19 mm. The reactor further comprises a pressure and temperature control device. The reactants are premixed with a static stirrer and made into a gas phase and introduced into the top of the reactor.
At the outlet of the reactor, a sample of the reaction product was taken, washed with a pre-column, and analyzed online by gas phase chromatography equipped with a low polarity capillary column.
気相クロマトグラフィによる分析はカラムCP Sil 8CB(寸法50m×0.32mm×5μm)および充填カラム1% SP1000/carbopack B, 60/80 メッシュ5 m長さを使用して実行する。オーブンの温度は第1の温度:40℃で10分間、次いで、10℃/分の勾配で250℃になるように、且つ、第2の温度:40℃で20分間、次いで、10℃/分の勾配で180℃になるようにプログラミングした。 Analysis by gas phase chromatography is performed using a column CP Sil 8CB (dimensions 50 m × 0.32 mm × 5 μm) and a packed column 1% SP1000 / carbopack B, 60/80 mesh 5 m long. The temperature of the oven is first temperature: 40 ° C. for 10 minutes, then 250 ° C. with a gradient of 10 ° C./minute, and the second temperature: 40 ° C. for 20 minutes, then 10 ° C./minute Was programmed to 180 ° C.
xiを材料の初期モル量、xfを材料の全最終モル量とすると、転化率(%)は(xi−xf)/xi×100になる。生成物の選択率はこの生成物の回収されたモル量と、材料の反応結果の生成物のモル量の合計との比から計算される。 When xi is the initial molar amount of the material and xf is the total final molar amount of the material, the conversion (%) is (xi−xf) / xi × 100. Product selectivity is calculated from the ratio of the recovered molar amount of this product to the sum of the molar amounts of product resulting from the reaction of the material.
触媒活性を維持するために空気を添加する。
接触時間は温度および圧力の実験条件における触媒床の容積と流量の全容積との比で定義される。HFのモル比は、HFのモル流量とHFCO−1233xfのモル流量との比で定義される。酸素のモル比は酸素のモル流量とHFCO−1233xfのモル流量との比で定義される。
Air is added to maintain catalytic activity.
The contact time is defined by the ratio of the catalyst bed volume to the total flow volume under the experimental conditions of temperature and pressure. The molar ratio of HF is defined by the ratio of the molar flow rate of HF to the molar flow rate of HFCO-1233xf. The molar ratio of oxygen is defined by the ratio of the molar flow rate of oxygen to the molar flow rate of HFCO-1233xf.
実施例1
HFCO−1233xfのフッ素化:
最初にフッ素化反応し、次いで空気で処理する活性化
A1F3に担持させた73cm3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
使用した触媒はフッ化アルミナ上に担持させたNi/Cr原子比=1の混成ニッケル/クロム触媒で、これはニッケルと無水クロム(CrO3)の溶液を含浸させ、含浸および乾燥後に固体を320℃〜390℃の間の温度で、フッ化水素酸および窒素との混合物(窒素中の酸の濃度は5〜10体積%)の存在下で処理して作った。
活性化プロセスでは(1)接触時間が6〜12秒、HFのモル比が23、HFCO 1233xf1モル当たり4モル%の酸素、340℃の温度で46時間行われるフッ素化反応によって触媒フッ素化を実施し、(2)370℃の空気下および1.5L/時で64時間処理した。
反応装置に無水HFを8.1g/時、HFCO−1233xfを2.2g/時の速度で、大気圧下に連続的に供給した。従って、接触時間は12.2秒であり、HFのモル比は24であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して4モル%である。HFCO−1233xfの転化率は40.8%である。全部の結果を[表1]に示した。
Example 1
Fluorination of HFCO-1233xf:
Fluorination of HFCO-1233xf was performed in the reactor using a 73 cm 3 Ni-Cr catalyst supported on activated A1F 3 which was first fluorinated and then treated with air .
The catalyst used was a Ni / Cr atomic ratio = 1 hybrid nickel / chromium catalyst supported on fluorinated alumina, impregnated with a solution of nickel and anhydrous chromium (CrO 3 ), and after impregnation and drying, the solid was obtained in 320%. It was made by treatment in the presence of a mixture of hydrofluoric acid and nitrogen (the concentration of the acid in the nitrogen was 5-10% by volume) at a temperature between 0 ° C. and 390 ° C.
In the activation process, (1) catalytic fluorination is carried out by a fluorination reaction carried out at a temperature of 340 ° C. for 46 hours at a contact time of 6 to 12 seconds, a molar ratio of HF of 23, 4 mol% oxygen per mole of HFCO 1233xf (2) It was treated under air at 370 ° C. and 1.5 L / hour for 64 hours.
Anhydrous HF was continuously supplied to the reactor at a rate of 8.1 g / hour and HFCO-1233xf at a rate of 2.2 g / hour under atmospheric pressure. Accordingly, the contact time was 12.2 seconds, the molar ratio of HF was 24, and the reaction temperature was 350 ° C. The amount of oxygen is 4 mol% with respect to the amount of HFCO-1233xf. The conversion of HFCO-1233xf is 40.8%. All the results are shown in [Table 1].
実施例2
HFCO−1233xfのフッ素化:
実施例1の触媒を再生後に再使用
実施例1と同じ触媒を用いて、1.5l/時、370℃で16時間、空気下に処理して再生段階を実施した。次いで、反応装置に無水HFを4.4g/時、HFCO−1233xfを1.2g/時の速度で、大気圧下に連続的に100時間供給した。従って、接触時間は22.4秒であり、HFのモル比は24であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して9モル%である。転化率は64.4%であるが、時間とともに触媒の非活性化が観察され、転化率は最終的に33.4%に達した。全部の結果を[表1]に示した。
Example 2
Fluorination of HFCO-1233xf:
The catalyst of Example 1 was reused after being regenerated. The same catalyst as in Example 1 was used, and the regeneration stage was carried out by treating in air at 1.5 l / hour and 370 ° C. for 16 hours. Next, anhydrous HF was continuously supplied to the reactor at a rate of 4.4 g / hour and HFCO-1233xf at a rate of 1.2 g / hour continuously under atmospheric pressure for 100 hours. Therefore, the contact time was 22.4 seconds, the molar ratio of HF was 24, and the reaction temperature was 350 ° C. The amount of oxygen is 9 mol% with respect to the amount of HFCO-1233xf. Although the conversion was 64.4%, catalyst deactivation was observed over time, and the conversion finally reached 33.4%. All the results are shown in [Table 1].
実施例3
HFCO−1233xfのフッ素化:
最初にフッ素化反応し、次いで空気で処理する活性化
実施例1に記載のA1F3に担持させた73cm3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
活性化プロセスは下記を5サイクルした:(1)以下に示す条件下で、6〜30時間行うフッ素化反応による触媒フッ素化の実施、その後の(2)370℃の空気による、1.5L/時、16〜64時間の触媒の処理。
フッ素化反応を目的として、反応装置に無水HFを3.4g/時、HFCO−1233xfを1g/時の速度で、大気圧下に連続的に供給した。従って、接触時間は29秒であり、HFのモル比は22であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して7〜8モル%である。転化率は69.7%であり、時間とともに54.7%まで減少する。次いで、1.5L/時の370℃の空気の下で再生段階を16時間実施した。この段階の後、初期に観察された転化率よりさらに高い転化率(72.4%)を回復した。全部の結果を[表1]に示した。
Example 3
Fluorination of HFCO-1233xf:
Fluorination of HFCO-1233xf was carried out in the reactor using 73 cm 3 Ni—Cr catalyst supported on A1F 3 as described in Example 1 which was first fluorinated and then treated with air .
The activation process was cycled 5 times as follows: (1) Implementation of catalytic fluorination by fluorination reaction performed for 6 to 30 hours under the following conditions, followed by (2) 1.5 L / in by air at 370 ° C. Hour, treatment of catalyst for 16-64 hours.
For the purpose of the fluorination reaction, anhydrous HF was continuously supplied to the reactor at a rate of 3.4 g / hour and HFCO-1233xf at 1 g / hour under atmospheric pressure. Accordingly, the contact time was 29 seconds, the HF molar ratio was 22, and the reaction temperature was 350 ° C. The amount of oxygen is 7-8 mol% with respect to the amount of HFCO-1233xf. The conversion is 69.7% and decreases to 54.7% over time. The regeneration phase was then carried out for 16 hours under 1.5 L / hour of 370 ° C. air. After this stage, a higher conversion (72.4%) was recovered than the conversion observed initially. All the results are shown in [Table 1].
実施例4(比較例)
HFCO−1233xfのフッ素化:
HFのみによる活性化
実施例1に記載のA1F3に担持させた73cm3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
空気下処理をせず、大気圧、350℃でHFによって触媒を活性化した後に、反応装置に無水HFを7.6g/時、HFCO−1233xfを2.2g/時の速度で、大気圧下に連続的に供給した。従って、接触時間は12.7秒であり、HFのモル比は23であり、反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して4モル%である。HFCO−1233xfの転化率は9.1%であった。
Example 4 (Comparative Example)
Fluorination of HFCO-1233xf:
Activation with HF alone Fluorination of HFCO-1233xf was carried out in the reactor using a 73 cm 3 Ni—Cr catalyst supported on A1F 3 as described in Example 1.
After activating the catalyst with HF at 350 ° C. at atmospheric pressure without treatment under air, the reactor was charged with anhydrous HF at a rate of 7.6 g / hr and HFCO-1233xf at a rate of 2.2 g / hr under atmospheric pressure. Continuously fed. Accordingly, the contact time was 12.7 seconds, the molar ratio of HF was 23, and the reaction temperature was 350 ° C. The amount of oxygen is 4 mol% with respect to the amount of HFCO-1233xf. The conversion of HFCO-1233xf was 9.1%.
実施例5(比較例)
特定の活性化を行わないHFCO−1233xfのフッ素化
実施例1に記載のA1F3に担持させた73cm3のNi−Cr触媒を用いて上記反応装置でHFO−1233xfのフッ素化を実行した。
反応装置に触媒を添加後、触媒を220℃で16時間窒素を用いて乾燥させた。次いで、反応装置の温度を350℃にし、反応装置に無水HFを4.5g/時、HFCO−1233xfおよび空気を1.2g/時の速度で、大気圧下に、350℃で連続的に供給した。接触時間は22秒であり、HF MRは24であった。酸素の量はHFCO−1233xfの量に対して9モル%である。24時間の反応後、HFCO−1233xfの転化率は14.8%に達した。
全部の結果を[表2]に示す。
Example 5 (Comparative Example)
Fluorination of HFCO-1233xf without specific activation Fluorination of HFO-1233xf was carried out in the reactor using 73 cm 3 Ni—Cr catalyst supported on A1F 3 as described in Example 1.
After adding the catalyst to the reactor, the catalyst was dried with nitrogen at 220 ° C. for 16 hours. The reactor temperature was then brought to 350 ° C., and anhydrous HF was continuously fed to the reactor at 350 ° C. at atmospheric pressure at a rate of 4.5 g / hr, HFCO-1233xf and air. did. The contact time was 22 seconds and the HF MR was 24. The amount of oxygen is 9 mol% with respect to the amount of HFCO-1233xf. After 24 hours reaction, the conversion of HFCO-1233xf reached 14.8%.
All results are shown in [Table 2].
実施例6
HFCO−1233xfのフッ素化:
空気のみによる活性化
実施例1に記載のA1F3に担持させた73cm3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
初めに、触媒を220℃で16時間窒素を用いて乾燥させた。次いで、窒素供給を停止し、空気を反応装置に2時間導入した。その後、オーブン温度を370℃にし、この温度で64時間維持した。触媒のこの活性化の後に、オーブン温度および空気流量を下記の実験用に調節した。反応装置に無水HFを5.0g/時、HFCO−1233xfを1.1g/時の速度で、大気圧下に連続的に供給した。接触時間は20秒であり、HF MRは30であった。反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して9モル%である。22時間の反応後、HFCO−1233xfの転化率は18.5%に達した。
全部の結果を[表2]に示す。
Example 6
Fluorination of HFCO-1233xf:
Activation with air alone Fluorination of HFCO-1233xf was carried out in the reactor using a 73 cm 3 Ni—Cr catalyst supported on A1F 3 as described in Example 1.
First, the catalyst was dried with nitrogen at 220 ° C. for 16 hours. The nitrogen supply was then stopped and air was introduced into the reactor for 2 hours. The oven temperature was then brought to 370 ° C. and maintained at this temperature for 64 hours. After this activation of the catalyst, the oven temperature and air flow rate were adjusted for the following experiments. Anhydrous HF was continuously fed to the reactor at a rate of 5.0 g / hr and HFCO-1233xf was 1.1 g / hr continuously under atmospheric pressure. The contact time was 20 seconds and the HF MR was 30. The reaction temperature was 350 ° C. The amount of oxygen is 9 mol% with respect to the amount of HFCO-1233xf. After 22 hours of reaction, the conversion of HFCO-1233xf reached 18.5%.
All results are shown in [Table 2].
実施例7
HFCO−1233xfのフッ素化:
HF、次いで空気による活性化
実施例1に記載のA1F3に担持させた73cm3のNi−Cr触媒を用いて上記反応装置でHFCO−1233xfのフッ素化を実行した。
初めに、触媒を220℃で16時間窒素を用いて大気圧下に乾燥させた。次いで、HFを導入し、2時間維持した。オーブン温度を350℃にし、HFを用いて3時間維持した。次いで、HFを空気で1.5l/時で置換し、オーブン温度を370℃にし、16時間維持した。その後、オーブン温度および空気流量を下記の実験用に調節し、HFおよびHFCO−1233xfを反応装置に導入した。反応装置に無水HFを4.1g/時、HFCO−1233xfを1.0g/時の速度で、大気圧下に連続的に供給した。接触時間は24秒であり、HF MRは26であった。反応温度は350℃であった。酸素の量はHFCO−1233xfの量に対して8モル%である。10時間の反応後、HFCO−1233xfの転化率は58.6%に達した。
全部の結果を[表2]に示す。
Example 7
Fluorination of HFCO-1233xf:
Activation with HF followed by air Fluorination of HFCO-1233xf was carried out in the reactor using a 73 cm 3 Ni—Cr catalyst supported on A1F 3 as described in Example 1.
First, the catalyst was dried under atmospheric pressure with nitrogen at 220 ° C. for 16 hours. HF was then introduced and maintained for 2 hours. The oven temperature was 350 ° C. and maintained with HF for 3 hours. The HF was then replaced with air at 1.5 l / hour and the oven temperature was brought to 370 ° C. and maintained for 16 hours. The oven temperature and air flow rate were then adjusted for the following experiment and HF and HFCO-1233xf were introduced into the reactor. Anhydrous HF was continuously supplied to the reactor at a rate of 4.1 g / hour and HFCO-1233xf was supplied at a rate of 1.0 g / hour under atmospheric pressure. The contact time was 24 seconds and the HF MR was 26. The reaction temperature was 350 ° C. The amount of oxygen is 8 mol% with respect to the amount of HFCO-1233xf. After 10 hours of reaction, the conversion of HFCO-1233xf reached 58.6%.
All results are shown in [Table 2].
Claims (20)
(1)フッ素化触媒を酸化剤含有ガス流と接触させる前、または
(2)フッ素化触媒を酸化剤含有ガス流と接触させた後。 The process according to any one of the preceding claims, wherein the activation and / or regeneration stage comprises contacting the fluorination catalyst with a hydrogen fluoride gas stream in (1) or (2) below:
(1) before contacting the fluorination catalyst with the oxidant-containing gas stream, or (2) after contacting the fluorination catalyst with the oxidant-containing gas stream.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2011/000316 WO2012098422A1 (en) | 2011-01-21 | 2011-01-21 | Catalytic gas phase fluorination |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015217316A Division JP6129931B2 (en) | 2015-11-05 | 2015-11-05 | Gas phase catalytic fluorination |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014511351A true JP2014511351A (en) | 2014-05-15 |
JP6165061B2 JP6165061B2 (en) | 2017-07-19 |
Family
ID=44201982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013549900A Active JP6165061B2 (en) | 2011-01-21 | 2011-01-21 | Gas phase catalytic fluorination |
Country Status (9)
Country | Link |
---|---|
US (3) | US9302961B2 (en) |
EP (2) | EP3257832B2 (en) |
JP (1) | JP6165061B2 (en) |
CN (1) | CN103313960B (en) |
ES (2) | ES2740848T3 (en) |
MX (1) | MX341767B (en) |
PL (1) | PL2665693T3 (en) |
RU (2) | RU2571415C2 (en) |
WO (1) | WO2012098422A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016505578A (en) * | 2012-12-19 | 2016-02-25 | 中化近代環保化工(西安)有限公司Sinochem Modern Environmental Protection Chemicals (Xi’An) Co.,Ltd. | Method for producing 1,3,3,3-tetrafluoropropene |
JP2016130222A (en) * | 2015-01-13 | 2016-07-21 | ダイキン工業株式会社 | Production method of fluorine-containing olefin |
JP2017525669A (en) * | 2014-07-02 | 2017-09-07 | アルケマ フランス | Method for producing tetrafluoropropene |
WO2017183702A1 (en) * | 2016-04-21 | 2017-10-26 | ダイキン工業株式会社 | Method for producing hydrochlorofluorocarbon and/or hydrofluorocarbon |
JP2019513721A (en) * | 2016-04-04 | 2019-05-30 | アルケマ フランス | Process for preparing hexafluorobutadiene |
WO2022014488A1 (en) * | 2020-07-15 | 2022-01-20 | Agc株式会社 | Method for producing 1-chloro-2, 3, 3-trifluoropropene |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2807137B1 (en) * | 2012-01-25 | 2017-04-26 | Daikin Industries, Ltd. | Process for producing fluorine-containing olefin |
JP6465814B2 (en) | 2013-01-29 | 2019-02-06 | アーケマ・インコーポレイテッド | Activation and regeneration of fluorination catalysts |
FR3027303B1 (en) | 2014-10-16 | 2016-10-07 | Arkema France | COMPOSITIONS BASED ON 1,1,1,2,3-PENTACHLOROPROPANE |
FR3027304B1 (en) | 2014-10-16 | 2018-02-23 | Arkema France | COMPOSITIONS BASED ON 1,1,1,3,3-PENTACHLOROPROPANE |
US10950140B2 (en) | 2017-06-22 | 2021-03-16 | Visyn Inc. | Video practice systems and methods |
CN113527036A (en) | 2015-05-21 | 2021-10-22 | 科慕埃弗西有限公司 | By SbF5Hydrofluorination of 1233xf to 244bb |
GB2559056B (en) | 2015-07-17 | 2019-09-11 | Mexichem Fluor Sa De Cv | Process for preparing 245cb and 1234yf from 243db |
GB2540427B (en) | 2015-07-17 | 2017-07-19 | Mexichem Fluor Sa De Cv | Process for the preparation of 2,3,3,3-tetrafluoropropene (1234yf) |
CN104987278B (en) * | 2015-07-20 | 2016-09-28 | 山东联创互联网传媒股份有限公司 | The synthetic method of 2,3,3,3-tetrafluoropropene |
FR3045029A1 (en) | 2015-12-14 | 2017-06-16 | Arkema France | CATALYTIC GAS PHASE FLUORATION WITH CHROMIUM-BASED CATALYSTS |
US10590049B2 (en) | 2016-02-03 | 2020-03-17 | Daikin Industries, Ltd. | Method for producing tetrafluoropropene |
FR3051468B1 (en) | 2016-05-19 | 2019-07-26 | Arkema France | PROCESS FOR PRODUCING TETRAFLUOROPROPENE |
FR3051469B1 (en) | 2016-05-19 | 2018-05-11 | Arkema France | PROCESS FOR PRODUCING TETRAFLUOROPROPENE |
FR3066926B1 (en) * | 2017-06-06 | 2020-05-22 | Arkema France | PROCESS FOR MODIFYING THE DISPENSING OF FLUORIDE IN A HYDROCARBON COMPOUND. |
FR3078698B1 (en) | 2018-03-07 | 2020-02-21 | Arkema France | PROCESS FOR PRODUCTION OF 2-CHLORO-3,3,3-TRIFLUOROPROPENE |
FR3078700B1 (en) | 2018-03-07 | 2020-07-10 | Arkema France | PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE |
FR3078699B1 (en) | 2018-03-07 | 2020-02-21 | Arkema France | PROCESS FOR PRODUCING 2,3,3,3-TETRAFLUOROPROPENE |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB805503A (en) * | 1956-03-15 | 1958-12-10 | Dow Chemical Co | Improved fluorination catalyst and process |
JPS5391091A (en) * | 1977-01-21 | 1978-08-10 | Hoechst Ag | Method of activating fluorination catalyst |
JPH0592141A (en) * | 1991-05-29 | 1993-04-16 | Showa Denko Kk | Method for activating and regenerating chromium type fluorinating catalyst |
JPH05131150A (en) * | 1990-09-14 | 1993-05-28 | Imperial Chem Ind Plc <Ici> | Method for regenerating fluorinating catalyst |
JPH06107573A (en) * | 1991-12-23 | 1994-04-19 | Ausimont Spa | Method for purification of 1,1,1-trifluoro- 2-fluoroethane |
JPH0838904A (en) * | 1993-09-07 | 1996-02-13 | Showa Denko Kk | Chromium-based fluorination catalyst, its production and fluorinating method |
JPH0852364A (en) * | 1994-06-03 | 1996-02-27 | Hoechst Ag | Regenerating method of fluorinated catalyst |
JPH0977701A (en) * | 1995-09-13 | 1997-03-25 | Asahi Chem Ind Co Ltd | Production of dichlorohexafluorobutene |
JPH1043607A (en) * | 1996-05-06 | 1998-02-17 | Ausimont Spa | Method for regenerating chromium (iii) compound based catalyst |
JP2004516241A (en) * | 2000-06-12 | 2004-06-03 | ユニヴァーシティー オヴ フロリダ リサーチ ファウンデーション | Method for producing fluorinated benzene |
JP2005517664A (en) * | 2001-12-21 | 2005-06-16 | ゾルファイ フルーオル ウント デリヴァーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Catalyst regeneration using elemental halogen |
JP2005536425A (en) * | 2002-08-22 | 2005-12-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Nickel-substituted and mixed nickel- and cobalt-substituted chromium oxide compositions, their production, and their use as catalysts and catalyst precursors |
JP2009227675A (en) * | 2008-03-20 | 2009-10-08 | Honeywell Internatl Inc | Integrated process to produce 2,3,3,3-tetrafluoropropene |
WO2009125200A2 (en) * | 2008-04-09 | 2009-10-15 | Ineos Fluor Holdings Limited | Process |
WO2009158321A1 (en) * | 2008-06-26 | 2009-12-30 | Arkema Inc. | Catalytic gas phase fluorination of 1230xa to 1234yf |
JP2010043080A (en) * | 2008-08-08 | 2010-02-25 | Honeywell Internatl Inc | Improved method for producing 2-chloro-1,1,1,2-tetrafluoropropane (hcfc-244bb) |
JP2010531895A (en) * | 2007-06-27 | 2010-09-30 | アーケマ・インコーポレイテッド | Method for producing hydrofluoroolefin |
WO2010123154A2 (en) * | 2009-04-23 | 2010-10-28 | Daikin Industries, Ltd. | Process for preparation of 2,3,3,3-tetrafluoropropene |
JP2010534680A (en) * | 2007-07-25 | 2010-11-11 | ハネウェル・インターナショナル・インコーポレーテッド | Improved process for producing 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf) |
US20100331583A1 (en) * | 2006-01-03 | 2010-12-30 | Honeywell International Inc. | Method for prolonging a catalyst's life during hydrofluorination |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3341281A (en) * | 1965-01-22 | 1967-09-12 | Dow Chemical Co | Fluorination catalyst pellets |
US3431067A (en) * | 1965-01-23 | 1969-03-04 | Daikin Ind Ltd | Method of manufacturing a fluorination catalyst |
JPH0685878B2 (en) * | 1988-04-13 | 1994-11-02 | ダイキン工業株式会社 | Method for activating chromium-based fluorination catalyst |
US4902838A (en) | 1988-12-28 | 1990-02-20 | E. I. Du Pont De Nemours And Company | Isomerization of saturated fluorohydrocarbons |
CN1044095C (en) * | 1990-09-14 | 1999-07-14 | 帝国化学工业公司 | Process for regeneration of fluorination catalyst |
US5227350A (en) | 1990-09-14 | 1993-07-13 | Imperial Chemical Industries Plc | Fluorination catalyst regeneration |
FR2669022B1 (en) | 1990-11-13 | 1992-12-31 | Atochem | PROCESS FOR THE MANUFACTURE OF TETRAFLUORO-1,1,1,2-ETHANE. |
GB9104775D0 (en) * | 1991-03-07 | 1991-04-17 | Ici Plc | Fluorination catalyst and process |
FR2713633B1 (en) | 1993-12-09 | 1996-01-19 | Atochem Elf Sa | Gas phase fluorination using crystallized catalysts. |
FR2757085B1 (en) | 1996-12-13 | 1999-01-22 | Atochem Elf Sa | MASS CATALYSTS BASED ON CHROME AND NICKEL FOR GAS PHASE FLUORINATION OF HALOGENATED HYDROCARBONS |
EP0939071B1 (en) | 1998-02-26 | 2003-07-30 | Central Glass Company, Limited | Method for producing fluorinated propane |
RU2200729C2 (en) * | 1998-07-09 | 2003-03-20 | Сентрал Гласс Компани, Лимитед | Method of synthesis of perhalogenated cyclopentene |
US7485598B2 (en) * | 2006-06-21 | 2009-02-03 | Arkema Inc. | High pressure catalyst activation method and catalyst produced thereby |
CN1867402B (en) * | 2003-10-14 | 2010-04-28 | 纳幕尔杜邦公司 | Chromium oxide compositions containing zinc, their preparation, and their use as catalysts and catalyst precursors |
WO2007079431A2 (en) | 2006-01-03 | 2007-07-12 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
ES2539938T3 (en) * | 2006-06-27 | 2015-07-07 | E.I. Du Pont De Nemours And Company | Tetrafluoropropene production procedures |
FR2906517B1 (en) | 2006-10-02 | 2008-12-05 | Renault Sas | METHOD AND SYSTEM FOR CONTROLLING A VEHICLE EQUIPPED WITH A PILOT BRAKING SYSTEM |
BRPI0717091A2 (en) | 2006-10-03 | 2013-11-26 | Ineos Fluor Holdings Ltd | PROCESSES FOR PREPARING A COMPOUND AND ISOMERIZING A COMPOUND, USING A CATALYST, FLUID, COOLING MIXTURE, AND, AUTOMOBILE. |
CN103553871A (en) | 2006-10-31 | 2014-02-05 | 纳幕尔杜邦公司 | Processes for the production of fluoropropanes and halopropenes and azeotropic compositions of 2-chloro-3,3,3-trifluoro-1-propene with hf and of 1,1,1,2,2-pentafluoropropane with hf |
FR2929271B1 (en) | 2008-03-28 | 2010-04-16 | Arkema France | PROCESS FOR THE PREPARATION OF 1,2,3,3,3-PENTAFLUOROPROPENE-1 |
KR101637584B1 (en) * | 2009-04-21 | 2016-07-07 | 엘지전자 주식회사 | METHOD OF MAINTAINING A QUALITY OF SERVICE(QoS) IN A WIRELESS COMMUNICATION SYSTEM |
WO2011077193A1 (en) † | 2009-12-23 | 2011-06-30 | Arkema France | Catalytic gas phase fluorination of 243db to 1234yf |
US9120716B2 (en) | 2010-10-22 | 2015-09-01 | Arkema France | Process for the preparation of 2,3,3,3 tetrafluoropropene |
-
2011
- 2011-01-21 EP EP17179561.0A patent/EP3257832B2/en active Active
- 2011-01-21 JP JP2013549900A patent/JP6165061B2/en active Active
- 2011-01-21 CN CN201180065464.5A patent/CN103313960B/en active Active
- 2011-01-21 PL PL11712666T patent/PL2665693T3/en unknown
- 2011-01-21 EP EP11712666.4A patent/EP2665693B1/en active Active
- 2011-01-21 RU RU2013138746/04A patent/RU2571415C2/en not_active IP Right Cessation
- 2011-01-21 WO PCT/IB2011/000316 patent/WO2012098422A1/en active Application Filing
- 2011-01-21 US US13/980,672 patent/US9302961B2/en active Active
- 2011-01-21 ES ES17179561T patent/ES2740848T3/en active Active
- 2011-01-21 ES ES11712666.4T patent/ES2637249T3/en active Active
- 2011-01-21 MX MX2013008409A patent/MX341767B/en active IP Right Grant
-
2015
- 2015-11-03 RU RU2015147298A patent/RU2654694C2/en not_active IP Right Cessation
-
2016
- 2016-02-29 US US15/055,738 patent/US9758449B2/en active Active
-
2017
- 2017-07-10 US US15/644,973 patent/US9969663B2/en active Active
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB805503A (en) * | 1956-03-15 | 1958-12-10 | Dow Chemical Co | Improved fluorination catalyst and process |
JPS5391091A (en) * | 1977-01-21 | 1978-08-10 | Hoechst Ag | Method of activating fluorination catalyst |
JPH05131150A (en) * | 1990-09-14 | 1993-05-28 | Imperial Chem Ind Plc <Ici> | Method for regenerating fluorinating catalyst |
JPH0592141A (en) * | 1991-05-29 | 1993-04-16 | Showa Denko Kk | Method for activating and regenerating chromium type fluorinating catalyst |
JPH06107573A (en) * | 1991-12-23 | 1994-04-19 | Ausimont Spa | Method for purification of 1,1,1-trifluoro- 2-fluoroethane |
JPH0838904A (en) * | 1993-09-07 | 1996-02-13 | Showa Denko Kk | Chromium-based fluorination catalyst, its production and fluorinating method |
JPH0852364A (en) * | 1994-06-03 | 1996-02-27 | Hoechst Ag | Regenerating method of fluorinated catalyst |
JPH0977701A (en) * | 1995-09-13 | 1997-03-25 | Asahi Chem Ind Co Ltd | Production of dichlorohexafluorobutene |
JPH1043607A (en) * | 1996-05-06 | 1998-02-17 | Ausimont Spa | Method for regenerating chromium (iii) compound based catalyst |
JP2004516241A (en) * | 2000-06-12 | 2004-06-03 | ユニヴァーシティー オヴ フロリダ リサーチ ファウンデーション | Method for producing fluorinated benzene |
JP2005517664A (en) * | 2001-12-21 | 2005-06-16 | ゾルファイ フルーオル ウント デリヴァーテ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Catalyst regeneration using elemental halogen |
JP2005536425A (en) * | 2002-08-22 | 2005-12-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Nickel-substituted and mixed nickel- and cobalt-substituted chromium oxide compositions, their production, and their use as catalysts and catalyst precursors |
US20100331583A1 (en) * | 2006-01-03 | 2010-12-30 | Honeywell International Inc. | Method for prolonging a catalyst's life during hydrofluorination |
JP2010531895A (en) * | 2007-06-27 | 2010-09-30 | アーケマ・インコーポレイテッド | Method for producing hydrofluoroolefin |
JP2010534680A (en) * | 2007-07-25 | 2010-11-11 | ハネウェル・インターナショナル・インコーポレーテッド | Improved process for producing 2-chloro-3,3,3-trifluoropropene (HCFC-1233xf) |
JP2009227675A (en) * | 2008-03-20 | 2009-10-08 | Honeywell Internatl Inc | Integrated process to produce 2,3,3,3-tetrafluoropropene |
WO2009125200A2 (en) * | 2008-04-09 | 2009-10-15 | Ineos Fluor Holdings Limited | Process |
WO2009158321A1 (en) * | 2008-06-26 | 2009-12-30 | Arkema Inc. | Catalytic gas phase fluorination of 1230xa to 1234yf |
JP2010043080A (en) * | 2008-08-08 | 2010-02-25 | Honeywell Internatl Inc | Improved method for producing 2-chloro-1,1,1,2-tetrafluoropropane (hcfc-244bb) |
WO2010123154A2 (en) * | 2009-04-23 | 2010-10-28 | Daikin Industries, Ltd. | Process for preparation of 2,3,3,3-tetrafluoropropene |
Non-Patent Citations (1)
Title |
---|
KRISHNA MURTHY JANMANCHI, ET AL.: "Highly reactive and regenerable fluorinating agent for oxidative fluorination of aromatics", ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 12, no. 2, JPN6014037845, 2008, pages 349 - 354, XP002654346, ISSN: 0002890712 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016505578A (en) * | 2012-12-19 | 2016-02-25 | 中化近代環保化工(西安)有限公司Sinochem Modern Environmental Protection Chemicals (Xi’An) Co.,Ltd. | Method for producing 1,3,3,3-tetrafluoropropene |
JP2017525669A (en) * | 2014-07-02 | 2017-09-07 | アルケマ フランス | Method for producing tetrafluoropropene |
JP2020037560A (en) * | 2014-07-02 | 2020-03-12 | アルケマ フランス | Method for producing tetrafluoropropene |
JP2016130222A (en) * | 2015-01-13 | 2016-07-21 | ダイキン工業株式会社 | Production method of fluorine-containing olefin |
JP2019513721A (en) * | 2016-04-04 | 2019-05-30 | アルケマ フランス | Process for preparing hexafluorobutadiene |
WO2017183702A1 (en) * | 2016-04-21 | 2017-10-26 | ダイキン工業株式会社 | Method for producing hydrochlorofluorocarbon and/or hydrofluorocarbon |
JP2017193511A (en) * | 2016-04-21 | 2017-10-26 | ダイキン工業株式会社 | Method for producing hydrochlorofluorocarbon and/or hydrofluorocarbon |
US11124467B2 (en) | 2016-04-21 | 2021-09-21 | Daikin Industries, Ltd. | Method for producing hydrochlorofluorocarbon and/or hydrofluorocarbon |
WO2022014488A1 (en) * | 2020-07-15 | 2022-01-20 | Agc株式会社 | Method for producing 1-chloro-2, 3, 3-trifluoropropene |
Also Published As
Publication number | Publication date |
---|---|
WO2012098422A8 (en) | 2013-07-25 |
CN103313960B (en) | 2016-06-08 |
US9969663B2 (en) | 2018-05-15 |
RU2013138746A (en) | 2015-02-27 |
US9758449B2 (en) | 2017-09-12 |
EP2665693A1 (en) | 2013-11-27 |
EP2665693B1 (en) | 2017-07-19 |
JP6165061B2 (en) | 2017-07-19 |
US20170313638A1 (en) | 2017-11-02 |
US20140012051A1 (en) | 2014-01-09 |
US20160176789A1 (en) | 2016-06-23 |
ES2740848T5 (en) | 2022-12-29 |
PL2665693T3 (en) | 2017-10-31 |
EP3257832B1 (en) | 2019-07-10 |
MX2013008409A (en) | 2013-10-17 |
CN103313960A (en) | 2013-09-18 |
EP3257832A1 (en) | 2017-12-20 |
RU2654694C2 (en) | 2018-05-22 |
RU2571415C2 (en) | 2015-12-20 |
US9302961B2 (en) | 2016-04-05 |
WO2012098422A1 (en) | 2012-07-26 |
MX341767B (en) | 2016-09-01 |
ES2637249T3 (en) | 2017-10-11 |
EP3257832B2 (en) | 2022-10-19 |
ES2740848T3 (en) | 2020-02-06 |
RU2015147298A (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6165061B2 (en) | Gas phase catalytic fluorination | |
JP6165060B2 (en) | Gas phase catalytic fluorination | |
US10988423B2 (en) | Gas-phase catalytic fluorination with chromium catalysts | |
JP6129931B2 (en) | Gas phase catalytic fluorination | |
JP6555693B2 (en) | Gas phase catalytic fluorination | |
JP5988516B2 (en) | Method for preparing fluorinated olefin compound | |
JP6189910B2 (en) | Gas phase catalytic fluorination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140902 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20141202 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20141209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151105 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20151113 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20160205 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6165061 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |