JPH059183U - Synchronous linear motor - Google Patents
Synchronous linear motorInfo
- Publication number
- JPH059183U JPH059183U JP7057091U JP7057091U JPH059183U JP H059183 U JPH059183 U JP H059183U JP 7057091 U JP7057091 U JP 7057091U JP 7057091 U JP7057091 U JP 7057091U JP H059183 U JPH059183 U JP H059183U
- Authority
- JP
- Japan
- Prior art keywords
- stator
- linear motor
- mover
- synchronous linear
- traveling direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Linear Motors (AREA)
Abstract
(57)【要約】
【目的】 小形でトルクリップルが小さく、効率が良
く、さらに安価であるというコストパフォーマンスが極
めて高く、かつ容易にシリーズ化が可能となる柔軟性を
持ったリニアモータの提供が可能となる。
【構成】 固定子を両側から可動子(ムービングマグネ
ット式)で挟み込むにした磁束貫通形の同期リニアモー
タにおいて、固定子は強磁性体よりなる平板のギャップ
側両面に、各相の要素コイルをU,逆W,Vの順で電気
的位相角を120°ずらし所定の極ピッチで巻回した平
滑な帯状コイルを貼付し電機子とし、可動子はU字形の
強磁性体の両内面に、前記固定子の極ピッチと同じ極ピ
ッチで、進行方向に極性が互いに異なるように永久磁石
を配置した可動子ユニットを複数個、前記固定子の両側
からギャップを介し挟み込むようにし、同期リニアモー
タを構成する。
(57) [Summary] [Purpose] It is possible to provide a linear motor that is compact, has a small torque ripple, is highly efficient, and is inexpensive, has extremely high cost performance, and is flexible enough to be easily made into a series. It will be possible. [Structure] In a magnetic flux penetration type synchronous linear motor in which a stator is sandwiched by movers (moving magnet type) from both sides, the stator has a U-shaped coil of each phase on both sides of a flat plate made of a ferromagnetic material. , The reverse W and V, the electrical phase angle is shifted by 120 °, and a smooth strip coil wound at a predetermined pole pitch is attached to form an armature, and the mover is formed on both inner surfaces of a U-shaped ferromagnetic body. Synchronous linear motor is constructed by sandwiching a plurality of mover units in which permanent magnets are arranged at the same pole pitch as that of the stator so that the polarities are different from each other in the traveling direction through gaps from both sides of the stator. To do.
Description
【0001】[0001]
本考案は、超精密駆動装置などに用いられる、ムービングマグネット形の磁束 貫通形同期リニアモータに関する。 The present invention is a moving magnet type magnetic flux used in ultra-precision drive devices. The present invention relates to a through-type synchronous linear motor.
【0002】[0002]
従来の磁束貫通形の3相同期リニアモータは、例えば特開昭63−21796 5号公報に開示されているように、固定子の電機子を可動子(ムービングマグネ ット式)により両側から挟み込むにしてあり、固定子を通る磁束が進行方向と同 じ方向になる構造となっている。 固定子の電機子コイルは、コアのスロット内に各相コイルを進行方向に向かっ てU,逆W,Vの順で所定の極ピッチで巻回してある。 一方、可動子は磁性板上に所定の磁極ピッチで着磁方向が交互になるように界 磁磁石が配置されている。 電機子コイルを交流励磁すると、磁束はギャップ−隣接する界磁磁石−電機子 磁極−対向する界磁磁石−ギャップを通り、電機子反作用により推力を発生する 。 A conventional magnetic flux penetrating type three-phase synchronous linear motor is disclosed in, for example, Japanese Patent Laid-Open No. 63-21796. As disclosed in Japanese Unexamined Patent Publication No. 5 (1999), an armature of a stator is replaced with a mover (moving magnet). The magnetic flux passing through the stator is in the same direction as the traveling direction. The structure is the same. The stator armature coil has each phase coil oriented in the direction of travel within the core slot. U, reverse W, and V are wound at a predetermined pole pitch in this order. On the other hand, the mover is arranged on the magnetic plate so that the magnetizing directions alternate with a predetermined magnetic pole pitch. A magnet is arranged. When the armature coil is excited by alternating current, the magnetic flux becomes a gap-adjacent field magnet-armature Pass the magnetic pole-opposing field magnet-gap and generate thrust by armature reaction .
【0003】[0003]
ところが従来技術では、以下に述べるような問題点があった。そこで本考案は 、これら問題点を解決することを目的としている。 1) 固定子の作る界磁により、可動子に強力な磁気吸引力が働き、可動子が撓 みギャップが変動する。 2) 電機子の磁極間を渡る漏れ磁束が多くなることがあり、これはモータ定数 を低下させる要因となっている。 3) 界磁の極ピッチはコイルの極ピッチの2倍とびとなり、機器のシリーズ化 などを行う場合、モータ推力に応じて可動子寸法を変える際、相数極ピッチの2 倍おきとなり、その中間の推力を得ようとした場合、新規設計・製作の必要性が 生じ、製造コストを増加させる要因となっている。 However, the conventional technology has the following problems. So the present invention , Aims to solve these problems. 1) The magnetic field generated by the stator causes a strong magnetic attraction force on the mover, causing the mover to bend. The gap changes. 2) Leakage magnetic flux across the armature poles may increase, which is the motor constant. Has become a factor that lowers. 3) The field pole pitch is twice as large as the coil pole pitch, making it a device series For example, when changing the mover size according to the motor thrust, the number of phases and pole pitch should be 2 If you try to get the thrust in the middle, the need for new design and production This is a factor that increases the manufacturing cost.
【0004】[0004]
上記課題を解決するため、固定子の両側からギャップを介し可動子(ムービン グマグネット式)で挟み込むにしてある磁束貫通形の3相同期リニアモータにお いて、非磁性体よりなる平板のギャップ側両面に、進行方向に向かってU,逆W ,Vの順で所定のコイルピッチで巻回し、これを極ピッチごとに螺旋状に折り曲 げ成形した整列もしくは重ね巻した平滑な帯状コイルを電機子として貼付した固 定子と、U字形の強磁性体の両内面に、前記固定子の極ピッチと同じ極ピッチで 、進行方向に、極性が互いに異なるように永久磁石を配置した可動子ユニットを 複数個、前記固定子の両側からギャップを介し挟み込むようにし、同期リニアモ ータを構成する。 In order to solve the above-mentioned problems, the movable element (moving element) For a magnetic flux penetration type three-phase synchronous linear motor that is sandwiched between Then, on both sides of the gap side of the flat plate made of a non-magnetic material, U and reverse W in the traveling direction. , V in the order of a predetermined coil pitch, and spirally bend this for each pole pitch Aligned or overwound smooth strip-shaped coil is attached as an armature. At the same pole pitch as that of the stator, on both the inner surface of the stator and the U-shaped ferromagnetic body. , A mover unit in which permanent magnets are arranged so that their polarities are different from each other in the traveling direction. A plurality of synchronous linear models are inserted so that they are sandwiched from both sides of the stator with a gap. Configure the data.
【0005】[0005]
各界磁極では可動子の進行方向と直交方向に磁束が流れ、キャップ−永久磁石 −可動子コア−永久磁石−キャップを通り、電機子コイルに帰還し、電機子コイ ルに3相交流を流すことによって生じる移動磁界と作用して可動子ユニットに推 力を発生する。 In each field pole, magnetic flux flows in the direction orthogonal to the moving direction of the mover, and the cap-permanent magnet. -Movable core-Permanent magnet-Passes through the cap and returns to the armature coil, Action on the mover unit by acting with the moving magnetic field generated by flowing three-phase alternating current Generate force.
【0006】[0006]
以下、本考案の具体的実施例を4極のモータを例にとり、図1、図2および図 3により説明する。 非磁性材よりなる固定台1には、逆T字形の非磁性体よりなる固定子コア2の 底部を固定してある。一方、I字部両面には、図2に示すように、各相の要素コ イルを進行方向に向かってU,逆W,Vの順で所定のコイルピッチτで巻回し、 極ピッチで螺旋状に折り曲げ成形した平滑な帯状コイル3a、3b(例えば、特 開昭60−216746に開示の要素コイル)を面対象に貼付し電機子とした固 定子を構成する。 電機子コイルとなる帯状コイル3a、3bは、各相に流れる電流のベクトルと 、永久磁石5が作る界磁磁束ベクトルが直交するように巻かれており、向かい合 う帯状コイル3a、3bに流れる電流は同方向になるように結線してある。この 帯状コイル3a、3bにモータ端子から平衡3相電流を印加すると、進行方向に 移動磁界が発生する。 帯状コイル3a、3bの両面とギャップ4を介し、図3に示すように、永久磁 石5a、5bを、U字形をした強磁性体の可動子コア6両内面に、対面する磁石 の極性が交互に異なるように貼付し、可動子7のユニット7a、7b、7c、7 dを構成する。 この可動子7のユニット7a、・・、7dを進行方向にモータの極数と同じユ ニット数だけ、前記帯状コイル3a、3bの磁極ピッチτと同じ磁極ピッチで、 隣極同士が交互に異なる極性となるようにし、ギャップを介し固定子を挟み込む ように配置する。 このとき、磁束の流れは、図1に点線で示すように、進行方向に対して直交す る。 Hereinafter, a specific embodiment of the present invention will be described with reference to FIG. 1, FIG. 2 and FIG. 3 will be described. The fixed base 1 made of a non-magnetic material has a stator core 2 made of an inverted T-shaped non-magnetic material. The bottom is fixed. On the other hand, on both sides of the I-shaped part, as shown in FIG. The coil is wound in the order of U, reverse W and V at a predetermined coil pitch τ in the traveling direction, Smooth strip-shaped coils 3a and 3b (for example, The element coil disclosed in Kaisho 60-216746) is attached to a plane object to form an armature. Make up Sadako. The strip coils 3a and 3b, which are armature coils, have a vector of the current flowing in each phase and , Are wound so that the field magnetic flux vectors created by the permanent magnets 5 are orthogonal to each other, and face each other. The currents flowing through the corrugated coils 3a and 3b are connected in the same direction. this When a balanced three-phase current is applied to the strip coils 3a and 3b from the motor terminals, it moves in the traveling direction. A moving magnetic field is generated. As shown in FIG. 3, the permanent magnets are inserted through the gaps 4 and both sides of the strip coils 3a and 3b. Magnets that face the stones 5a and 5b on both inner surfaces of the U-shaped ferromagnetic mover core 6 Are attached so that the polarities of them are different from each other, and the units 7a, 7b, 7c, 7 of the mover 7 are Configure d. .., 7d of the mover 7 in the same direction as the number of poles of the motor in the traveling direction. With the same number of knits as the magnetic pole pitch τ of the strip coils 3a and 3b, Make sure that the adjacent poles have different polarities and sandwich the stator through the gap. To arrange. At this time, the flow of magnetic flux is orthogonal to the traveling direction, as shown by the dotted line in FIG. It
【0007】 また、本考案の応用例として、可動子7のユニット数を3,5,7個などの奇 数個で可動子を構成したり、一つおきに可動子のユニットを間引いた構成にして もよい。 図4は、可動子7の支持に関する他の実施例を示す。 逆T字形の固定子コア2の先端部と基底部に、可動子7の進行方向に流体ダク ト8、8を設け、流体ダクト8、8と直交方向に流体吐出口9を複数所定のピッ チで設け、可動子7に設けた平面に流体を吐出し流体軸受10を構成し、可動子 7を流体軸受により支持する。 図5は、可動子7の支持に関するその他の実施例を示す。 逆T字形の固定子コア2の先端部と基底部に、可動子7の進行方向に連続した 溝11を設け、溝11内に転動自在にボール12を嵌め込み、ホール12を可動 子7の溝11に対向する位置に複数設けた孔14内に収納した与圧用バネ13に より溝11の方向に押圧し、リニア・ボール・ガイドを構成し、可動子7を支持 する。 図6および図7は固定子の冷却に関する他の実施例を示す。 箱形の可動子コア6の内面に対向して永久磁石5a、5bを固定した可動子7 を固定台1の上面にリニアガイド15により支持してある。H字状の非磁性体よ りなる固定子コア2は長手方向の両端部でブラケット16、16で支持してあり 、固定子コア2の上下の凹部に貼り付けた帯状コイル3a、3bは永久磁石5a 、5bに空隙を介して対向させてある。固定子コア2の両側には長手方向に冷却 パイプ17を埋め込んであり、ブラケット16の外側に開口して図示しない給排 水装置に連結し、冷却液を供給して固定子コアを介して電機子巻線を冷却するよ うにしてある。 したがって、帯状コイルからなる電機子巻線および装置全体の冷却効果を向上 させることができる。 なお、冷却パイプ17の代りにヒートパイプの吸熱部を固定子コア2に埋め込 み、その放熱部に冷却フィンを設けて冷却するようにしてもよい。[0007] In addition, as an application example of the present invention, the number of units of the mover 7 is an odd number such as 3, 5, or 7. Make up a mover with several pieces, or thin out every other mover unit. Good. FIG. 4 shows another embodiment relating to the support of the mover 7. The tip of the inverted T-shaped stator core 2 and the bottom of the stator core 2 have a fluid duct in the traveling direction of the mover 7. Provided with a plurality of fluid discharge ports 9 in a direction orthogonal to the fluid ducts 8, 8. And a fluid bearing 10 is formed by discharging fluid to the plane provided on the mover 7. 7 is supported by a fluid bearing. FIG. 5 shows another embodiment relating to the support of the mover 7. The tip end and the base of the inverted T-shaped stator core 2 are continuous in the traveling direction of the mover 7. The groove 11 is provided, and the ball 12 is fitted into the groove 11 so as to be rollable, and the hole 12 can be moved. The pressurizing spring 13 housed in a plurality of holes 14 provided at positions facing the groove 11 of the child 7. Supports the mover 7 by pressing in the direction of the groove 11 to form a linear ball guide. To do. 6 and 7 show another embodiment of cooling the stator. A mover 7 fixed with permanent magnets 5a and 5b facing the inner surface of a box-shaped mover core 6. Is supported on the upper surface of the fixed base 1 by a linear guide 15. It's an H-shaped non-magnetic material The stator core 2 is composed of brackets 16 and 16 supported at both ends in the longitudinal direction. , The strip-shaped coils 3a and 3b attached to the upper and lower recesses of the stator core 2 are the permanent magnets 5a. 5b are opposed to each other with a gap. Longitudinal cooling on both sides of the stator core 2 The pipe 17 is embedded, and the pipe 17 is opened to the outside of the bracket 16. It is connected to a water device and supplies cooling liquid to cool the armature windings via the stator core. I have it. Therefore, the cooling effect of the armature winding consisting of strip coils and the entire device is improved. Can be made. In addition, instead of the cooling pipe 17, the heat absorption part of the heat pipe is embedded in the stator core 2. Alternatively, a cooling fin may be provided on the heat radiation portion to cool the heat radiation portion.
【0008】[0008]
以上述べたように、本考案によれば以下の様な効果がある。 1) 固定子コアを非磁性体で構成するので、磁気吸引力が大幅に減少し、可動 子の撓みも大幅に減少し、ギャップ変動が僅かになり精密運動が可能になる。 2) 磁束の流れを可動子のユニット毎に進行方向と直交させたので、漏れ磁束 を低減出来る。 3) 可動子ユニットの個数が偶数でも奇数でもよく、従来個別に設計で対応し ていたものを、ユニット数の選択でいろいろな推力に対応できシリーズ化が可能 となる。 4) 固定子コアの中に冷却液を通したり、ヒートパイプにより冷却するように してあるので、電機子巻線および装置全体の温度を均一にし、熱膨張による位置 決め精度の低下を防ぐことができる。 従って、小形でトルクリップルが小さく、効率が良く、さらに安価であるとい う、コストパフォーマンスが極めて高い、1つの設計から容易にシリーズ化が可 能となる柔軟性を持ったリニアモータの提供が可能となる。 As described above, the present invention has the following effects. 1) Since the stator core is made of non-magnetic material, the magnetic attraction force is greatly reduced and the stator core is movable. The flexure of the child is also greatly reduced, the gap variation is small, and precise movement is possible. 2) Since the flow of magnetic flux is made orthogonal to the traveling direction for each unit of the mover, leakage flux Can be reduced. 3) The number of mover units may be even or odd. What was previously available can be made into a series by supporting various thrusts by selecting the number of units Becomes 4) Pass cooling liquid through the stator core or cool it with a heat pipe. Therefore, the temperature of the armature winding and the entire device is made uniform, and the position due to thermal expansion is adjusted. It is possible to prevent the determination accuracy from decreasing. Therefore, it is said that it is small, has small torque ripple, is highly efficient, and is inexpensive. The cost performance is extremely high, and you can easily make a series from one design. It is possible to provide a linear motor that has the flexibility to operate.
【図1】本考案の実施例を示す斜視図FIG. 1 is a perspective view showing an embodiment of the present invention.
【図2】本考案の実施例を示す帯状コイルの平面図FIG. 2 is a plan view of a strip coil showing an embodiment of the present invention.
【図3】本考案の実施例を示す磁気回路の断面図FIG. 3 is a sectional view of a magnetic circuit showing an embodiment of the present invention.
【図4】本考案の他の実施例を示す断面図FIG. 4 is a sectional view showing another embodiment of the present invention.
【図5】本考案のその他の実施例を示す断面図FIG. 5 is a sectional view showing another embodiment of the present invention.
【図6】本考案のその他の実施例を示す図7の−断
面に沿う断面図FIG. 6 is a cross-sectional view taken along the cross-section of FIG. 7 showing another embodiment of the present invention.
【図7】本考案のその他の実施例を示す図6の−断
面に沿う断面図FIG. 7 is a cross-sectional view taken along the cross-section of FIG. 6 showing another embodiment of the present invention.
1 固定台 2 固定子コア
3 帯状コイル 4 ギャップ
5、5a、5b 永久磁石 6 可動子コア
7 可動子 7a、7b、7b、7d
可動子のユニット
8 流体ダクト 9 流体吐出口
10 流体軸受 11 溝
12 ボール 13 バネ
14 孔 15 リニアガイド
16 ブラケット 17 冷却パイプ1 Fixed Stand 2 Stator Core 3 Strip Coil 4 Gap 5, 5a, 5b Permanent Magnet 6 Mover Core 7 Mover 7a, 7b, 7b, 7d
Movable unit 8 Fluid duct 9 Fluid discharge port 10 Fluid bearing 11 Groove 12 Ball 13 Spring 14 Hole 15 Linear guide 16 Bracket 17 Cooling pipe
Claims (5)
で挟み込むようにした磁束貫通形同期リニアモータにお
いて、非磁性体よりなる平板のギャップ側両面に、進行
方向に向かって要素コイルをU,逆W,Vの順にずらし
た形で所定の極ピッチで巻回した平滑な帯状コイルを電
機子として貼付し電機子とした固定子と、U字形の強磁
性体の両内面に、前記固定子の極ピッチと同じ極ピッチ
で、進行方向に極性が互いに異なるように永久磁石を配
置した可動子ユニットを複数個、前記固定子の両側から
ギャップを介し挟み込むようにしたことを特徴とする同
期リニアモータ。1. A magnetic flux penetrating synchronous linear motor in which a stator is sandwiched from both sides of a stator by a flux penetrating type synchronous linear motor, and element coils U, The stator is formed by attaching a smooth strip-shaped coil wound in a predetermined pole pitch in a reverse W and V order to each other as an armature, and the stator on both inner surfaces of a U-shaped ferromagnetic body. The same linear pitch as that of No. 1, but a plurality of mover units in which permanent magnets are arranged so that the polarities are different from each other in the traveling direction are sandwiched from both sides of the stator through a gap. motor.
が揃うように1磁極ピッチおきに配置した請求項1記載
の同期リニアモータ。2. The synchronous linear motor according to claim 1, wherein the mover units are arranged at every one magnetic pole pitch so that the magnetizing directions on one side are aligned.
に配置した請求項1または2記載の同期リニアモータ。3. The synchronous linear motor according to claim 1, wherein an odd number of the mover units are arranged in the traveling direction.
びる冷却液の流通路を形成した請求項1から3までのい
ずれか1項に記載の同期リニアモータ。4. The synchronous linear motor according to any one of claims 1 to 3, wherein the stator is provided with a cooling liquid flow passage extending in a traveling direction of the mover.
びるヒートパイプの吸熱部を埋め込んだ請求項1から3
までのいずれか1項に記載の同期リニアモータ。5. The heat absorbing part of a heat pipe extending in the traveling direction of the mover is embedded in the stator.
The synchronous linear motor according to any one of items 1 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7057091U JP2524103Y2 (en) | 1991-05-07 | 1991-08-07 | Synchronous linear motor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4129891 | 1991-05-07 | ||
JP3-41298 | 1991-05-07 | ||
JP7057091U JP2524103Y2 (en) | 1991-05-07 | 1991-08-07 | Synchronous linear motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH059183U true JPH059183U (en) | 1993-02-05 |
JP2524103Y2 JP2524103Y2 (en) | 1997-01-29 |
Family
ID=26380874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7057091U Expired - Fee Related JP2524103Y2 (en) | 1991-05-07 | 1991-08-07 | Synchronous linear motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2524103Y2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116013U (en) * | 1979-02-05 | 1980-08-15 | ||
JPS5695510U (en) * | 1979-12-20 | 1981-07-29 | ||
JPS5822913U (en) * | 1981-08-05 | 1983-02-12 | 東邦商事株式会社 | bolero |
JPS5822915U (en) * | 1981-08-05 | 1983-02-12 | 東邦商事株式会社 | bolero |
JP2002058232A (en) * | 2000-08-09 | 2002-02-22 | Yaskawa Electric Corp | Coreless linear motor |
JP2003061331A (en) * | 2001-08-20 | 2003-02-28 | Yaskawa Electric Corp | Linear motor |
-
1991
- 1991-08-07 JP JP7057091U patent/JP2524103Y2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55116013U (en) * | 1979-02-05 | 1980-08-15 | ||
JPS5695510U (en) * | 1979-12-20 | 1981-07-29 | ||
JPS5822913U (en) * | 1981-08-05 | 1983-02-12 | 東邦商事株式会社 | bolero |
JPS5822915U (en) * | 1981-08-05 | 1983-02-12 | 東邦商事株式会社 | bolero |
JP2002058232A (en) * | 2000-08-09 | 2002-02-22 | Yaskawa Electric Corp | Coreless linear motor |
JP2003061331A (en) * | 2001-08-20 | 2003-02-28 | Yaskawa Electric Corp | Linear motor |
Also Published As
Publication number | Publication date |
---|---|
JP2524103Y2 (en) | 1997-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006074975A (en) | Linear motor and linear movement stage arrangement | |
JPH0734646B2 (en) | Linear motor | |
TW201121211A (en) | Linear motor | |
JP2002335666A (en) | Linear motor | |
US20160134181A1 (en) | Linear motor, compressor equipped with linear motor and equipment equipped with linear motor | |
JP2002142436A (en) | Linear motor | |
JPH059183U (en) | Synchronous linear motor | |
JP6864844B2 (en) | Lateral magnetic flux linear motor | |
JP3894297B2 (en) | Linear actuator | |
JP3834875B2 (en) | Linear motor | |
JPS62193543A (en) | Moving-coil type linear motor | |
JPH10323012A (en) | Linear motor | |
JPH11243677A (en) | Coaxial linear motor | |
KR100331232B1 (en) | Linear motion apparatus having brushless linear motor | |
JP3446563B2 (en) | Linear motor | |
JP4476502B2 (en) | Linear motor | |
JP4106571B2 (en) | Linear motor | |
JPH03207256A (en) | Linear servo motor | |
JP2642240B2 (en) | Linear motor | |
JP6677048B2 (en) | Moving coil type linear motor | |
JPH0662786U (en) | Synchronous linear motor | |
JPS619161A (en) | Coreless linear dc motor | |
JP3731011B2 (en) | Single pole linear DC motor | |
JPH0681482B2 (en) | Linear motor | |
JP3685468B2 (en) | Single pole linear DC motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |