JPH0591646A - Under voltage relay device with current compensator - Google Patents

Under voltage relay device with current compensator

Info

Publication number
JPH0591646A
JPH0591646A JP3272019A JP27201991A JPH0591646A JP H0591646 A JPH0591646 A JP H0591646A JP 3272019 A JP3272019 A JP 3272019A JP 27201991 A JP27201991 A JP 27201991A JP H0591646 A JPH0591646 A JP H0591646A
Authority
JP
Japan
Prior art keywords
voltage
vector
value
current
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3272019A
Other languages
Japanese (ja)
Other versions
JP2733397B2 (en
Inventor
Toshiki Hattori
俊樹 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3272019A priority Critical patent/JP2733397B2/en
Publication of JPH0591646A publication Critical patent/JPH0591646A/en
Application granted granted Critical
Publication of JP2733397B2 publication Critical patent/JP2733397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To shorten a testing time by detecting an under-voltage of a power system by seventh calculating means when any of first second and fourth deciding means outputs a decision result. CONSTITUTION:First deciding means 10 decides whether an absolute value <=a voltage settled value of a voltage vector is satisfied or not. Second deciding means 12 decides whether a ratio <= a voltage settled value of the ratio of the absolute value of a composite value of a current vector and a voltage vector to that of a current vector is satisfied or not. Fourth deciding means 17 decides whether (the absolute value of the voltage vector) <= (an added value of the absolute value of a composite value of the impedance settled value and the current vector to a voltage regulated value) is satisfied or not. When any of the first, second and fourth means 10, 12, 17 outputs a decision result, seventh calculating means 19 detects an under-voltage of a power system. Thus, the operating voltage value of a characteristic part applied by a compensating voltage is easily obtained to shorten a testing time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電力系統の事故を検出
する保護リレーの電流補償付不足電圧リレーに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an undervoltage relay with current compensation of a protection relay for detecting an accident in a power system.

【0002】[0002]

【従来の技術】図8は例えば昭和51年1月25日
(株)電気書院発行の「リレープラクティクスシリーズ
第2巻送配電線の保護継電システム」P.90に示され
た従来の電力系統の事故検出リレーの動作特性図であ
る。(尚、電流及び電圧ベクトルの表記法に関しては、
使用字句の制限上、電流ベクトルを示すドットI、電圧
ベクトルを示すドットVは使用不可能であるため、本文
中では単に“V”,“I”を使用する。)この図におい
て、横軸は電流ベクトル(I)方向、ZIL ∠θL は電
流ベクトルを送電線Lの経路角θL だけ移相させたベク
トルにあらかじめ整定により与えられる整定値Zを乗じ
たもの、Vはリレー設置点の電圧ベクトル、φはVとI
のなす角、K1 はあらかじめ設定される電圧整定値であ
る。
2. Description of the Related Art FIG. 8 shows, for example, "Relay Practics Series Volume 2 Transmission / Distribution Protective Relay System" issued by Densho Shoin Co., Ltd. on January 25, 1976. FIG. 90 is an operating characteristic diagram of the conventional power system accident detection relay shown in FIG. 90. (Note that regarding the notation of current and voltage vectors,
Since the dot I indicating the current vector and the dot V indicating the voltage vector cannot be used due to the limitation of terms used, "V" and "I" are simply used in the text. ) In this figure, the horizontal axis is the current vector (I) direction, and ZI L ∠ θ L is the vector obtained by phase-shifting the current vector by the path angle θ L of the transmission line L, and multiplying it by the settling value Z given in advance , V is the voltage vector at the relay installation point, φ is V and I
The angle formed by K 1 , K 1 is a preset voltage set value.

【0003】次に動作について説明する。リレーの設置
されている送電線に事故が発生するとリレー設置の電圧
Vは電流IによりθL だけ進むため結局ZIL ∠θL
ほぼ同相となり斜線内に入り動作となる。また、もし電
圧が低下しない場合でも電流が流れると|ZIL ∠θL
|が大きくなるためVは斜線内に入り動作となる。これ
を一般に電流補償付不足電圧リレーと称し電力系統の事
故検出リレーとして使用されている。
Next, the operation will be described. When an accident occurs in the transmission line in which the relay is installed, the voltage V of the relay installation advances by θ L due to the current I, so that the phase is almost in phase with ZI L ∠θ L and the operation enters the shaded line. Also, if current flows even if the voltage does not drop, | ZI L ∠θ L
Since | becomes large, V enters the diagonal line and operates. This is generally called an undervoltage relay with current compensation and is used as a fault detection relay in the power system.

【0004】[0004]

【発明が解決しようとする課題】従来の電力系統の事故
検出装置である電流補償付不足電圧リレーは以上のよう
に構成されているため、リレーの動作特性試験を行う場
合、電流補償をかけた特性部分(図8のA部)のデータ
をとる時、動作電圧値が容易に求まらず、(1)式のよ
うな換算を行う必要があり、現地試験時に時間がかかる
問題があった。
Since the undervoltage relay with current compensation, which is a conventional fault detection device for a power system, is configured as described above, current compensation is applied when conducting an operation characteristic test of the relay. When the data of the characteristic part (A part in FIG. 8) is taken, the operating voltage value cannot be easily obtained, and it is necessary to perform conversion as shown in equation (1), which causes a problem that it takes time during the on-site test. .

【0005】[0005]

【数1】 [Equation 1]

【0006】この発明は上記のような問題点を解消する
ためになされたもので、電流補償をかけた特性部分の動
作電圧値が容易に、かつ電圧Vと電流Iのなす角θに無
関係に求まる電流補償付不足電圧リレーを得ることを目
的とする。
The present invention has been made in order to solve the above-mentioned problems, and the operating voltage value of the characteristic portion subjected to the current compensation is easy and irrespective of the angle θ formed by the voltage V and the current I. The purpose is to obtain an undervoltage relay with current compensation that can be obtained.

【0007】[0007]

【課題を解決するための手段】この発明に係る電流補償
付不足電圧リレーは電力系統の電流ベクトルを送電線の
線路角θL だけ移相させたベクトルをIL ∠θL とし、
電圧ベクトルをV、あらかじめ設定される電圧整定値を
1 、インピーダンス整定値をZとした時、上記電圧ベ
クトルの絶対値≦電圧整定値であるか判定する第1判定
手段と、上記電流ベクトル電圧とベクトルの合成量の絶
対値と電流ベクトルの絶対値の比≦電圧整定値であるか
判定する第3判定手段と、上記電流ベクトルと電圧ベク
トルの合成量≧0であるか判定する第2判定手段と、電
圧ベクトルの絶対値≦インピーダンス整定値と電流ベク
トルの合成量の絶対値と電圧整定値の加算値であるか判
定する第4判定手段と、上記第1判定手段、或は第2な
いし第4判定手段の何れか一方で判定結果が出力された
時、電力系統の不足電圧を検出する不足電圧検出手段と
を備えたものである。
In an undervoltage relay with current compensation according to the present invention, a vector obtained by phase-shifting a current vector of a power system by a line angle θ L of a transmission line is I L ∠θ L ,
When the voltage vector is V, the preset voltage settling value is K 1 , and the impedance settling value is Z, first determining means for determining whether or not the absolute value of the voltage vector ≦ voltage settling value, and the current vector voltage A third determination means for determining whether the ratio of the absolute value of the combined amount of the vector and the absolute value of the current vector ≦ the voltage settling value, and the second determination for determining whether the combined amount of the current vector and the voltage vector ≧ 0. Means, fourth judging means for judging whether or not absolute value of voltage vector ≦ impedance settling value and absolute value of combined amount of current vector and voltage settling value, first judging means, or second or second Undervoltage detection means for detecting an undervoltage of the power system when the determination result is output by any one of the fourth determination means.

【0008】[0008]

【作用】この発明における電流補償をK1 +|ZIL
θL |を半径とする原点を中心とした円特性としている
ため、動作域の最大動作電圧|V|は電圧ベクトルと電
流ベクトルIのなす角φによらず一定で、その値はK1
+|ZIL ∠θL |となるためその部分のデータをとる
ことが容易となる。
The function of the current compensation in the present invention is K 1 + | ZI L
Since the circular characteristic is centered on the origin with the radius of θ L |, the maximum operating voltage | V | in the operating region is constant regardless of the angle φ formed by the voltage vector and the current vector I, and its value is K 1
Since + | ZI L ∠θ L |, it becomes easy to obtain data for that portion.

【0009】[0009]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1において、Bは母線、Lは被保護
送電線、CBは母線Bと送電線Lを接続するしゃ断器、
CTは送電線Lに流れる電流を所定の大きさに変流する
電流変流器、PTは同じく電圧を所定の大きさに変成す
る電圧変成器である。
EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, B is a bus bar, L is a protected transmission line, CB is a circuit breaker connecting the bus line B and the transmission line L,
CT is a current transformer that transforms the current flowing through the power transmission line L to a predetermined magnitude, and PT is a voltage transformer that similarly transforms the voltage to a predetermined magnitude.

【0010】また、1,2はCT,PTからの入力をリ
レー側にて変換する入力変換器、3,4はフィルター部
で、電流のフィルター部はθL だけ移相する機能をもた
せている。5,6はサンプルホールド回路、7はマルチ
プレクサー回路と呼ばれる切り換え回路、8はアナログ
デジタル変換回路である。8の出力はデジタル値に変換
されており、その後の演算はデジタル演算することがで
きる。
Further, reference numerals 1 and 2 are input converters for converting inputs from CT and PT on a relay side, reference numerals 3 and 4 are filter portions, and a current filter portion has a function of phase shifting by θ L. . Reference numerals 5 and 6 are sample and hold circuits, 7 is a switching circuit called a multiplexer circuit, and 8 is an analog-digital conversion circuit. The output of 8 is converted into a digital value, and the subsequent calculation can be performed by digital calculation.

【0011】一点鎖線で囲まれた部分20はソフトウェ
アの処理回路を示すが9は|V|を演算する第1演算手
段、10は|V|≦K1 の判定を行う第1判定手段、1
1は|IL ∠θL ×V/|IL ∠θL |を演算する第2
演算手段、12は|IL ∠θL ×V/|I|L ≦K1
判定を行う第2判定手段、13はIL ∠θL ・Vを演算
する第3演算手段、14はIL ∠θL ・V≧0の判定を
行う第3判定手段、15は|ZIL ∠θL |を演算する
第4演算手段、16はK1 +|ZIL ∠θL |を演算す
る第5演算手段、17は|V|≦K1 +|ZIL ∠θL
|の判定を行う第4判定手段、18は第2〜第4判定手
段12,14,17の判定信号の論理積を演算する第6
演算手段、19は10と18の出力の論理和を演算する
第7演算手段である。
First calculating means for calculating a, is 10 | | [0011] portion 20 surrounded by a chain line shows the processing circuitry of the software but 9 | V V | first determining means for determining ≦ K 1, 1
1 is the second for calculating | I L ∠θ L × V / | I L ∠θ L |
Calculating means, 12 is second determining means for determining | I L ∠θ L × V / | I | L ≦ K 1 , 13 is third calculating means for calculating I L ∠θ L · V, and 14 is I Third judging means for judging L ∠θ L · V ≧ 0, 15 is fourth calculating means for calculating | ZI L ∠θ L |, and 16 is first calculating K 1 + | ZI L ∠θ L | 5 computing means, 17 is | V | ≦ K 1 + | ZI L ∠θ L
The fourth judging means for judging |, and the sixth judging means 18 calculates the logical product of the judgment signals of the second to fourth judging means 12, 14, and 17.
Arithmetic means, 19 is a seventh arithmetic means for calculating the logical sum of the outputs of 10 and 18.

【0012】図1において、第2演算手段11は|IL
∠θL×V|/|IL ∠θL |なる演算を行うが、IL
∠θL ×VはベクトルIL ∠θL とVの外積を示すの
で、IL ∠θL とVのなす角をθとすると第2演算手段
11は||IL ∠θL |・|V|sinθ|/|IL
θL |=||V|sinθ|を演算するものである。従
って、第2判定手段12では||V|sinθ|≦K1
を判定することとなり、これを特性図にかくと図2の斜
線部を示すこととなる。
In FIG. 1, the second computing means 11 has a | I L
∠θ L × V | / | I L ∠θ L | becomes performs computation but, I L
Since ∠Shita L × V denotes the outer product of vector I L ∠Shita L and V, I L ∠θ When the angle of the L and V and θ second arithmetic means 11 || I L ∠θ L | · | V | sin θ | / | I L
θ L | = || V | sin θ | is calculated. Therefore, in the second determination means 12, || V | sin θ | ≦ K 1
Is determined, and the hatched portion in FIG. 2 is shown in the characteristic diagram.

【0013】また、第3演算手段13で行うIL ∠θL
・VはベクトルIL ∠θL とVの内積を示し、同様に、
|IL ∠θL |×|V|cosθを演算している。この
結果を第3判定手段14で正負判定するが、正の場合は
θ≦90°を示すことになり特性図で示すと図3の斜線
部の如くとなる。
Further, I L ∠θ L performed by the third computing means 13
V is the inner product of the vector I L ∠θ L and V, and similarly,
| I L ∠θ L | × | V | cos θ is calculated. The third judging means 14 judges whether this result is positive or negative. When the result is positive, θ ≦ 90 ° is indicated, and the characteristic diagram shows the shaded area in FIG.

【0014】第4、第5演算手段15,16、第4判定
手段17の回路では方向性のない単純な大きさ判定であ
り第4判定手段17の出力は図4の如く半径K1 +|Z
L∠θL |の円内を示すこととなる。以上の3つの判
定部の出力の論理積18を求めると図5の如くなること
は明らかである。更に第1演算手段9、第1判定手段1
0の結果は図6に示す半径K1 なる円内を示し、この結
果と第6演算手段18による論理積結果の論理和を第7
演算手段19で求めると図7の特性となる。
The circuits of the fourth and fifth calculating means 15 and 16 and the fourth judging means 17 make a simple size judgment without directivity, and the output of the fourth judging means 17 is radius K 1 + | as shown in FIG. Z
I L ∠ θ L | will be shown within the circle. It is obvious that the logical product 18 of the outputs of the above three judging units is obtained as shown in FIG. Further, the first calculation means 9 and the first determination means 1
The result of 0 indicates the inside of the circle having the radius K 1 shown in FIG. 6, and the logical sum of this result and the result of the logical product by the sixth calculating means 18 is the seventh
The characteristics shown in FIG. 7 are obtained by the calculation means 19.

【0015】以上の演算の中でベクトルの外積、内積を
演算する必要があるが、現在実用化されているマイクロ
プロセッサを用いたデジタルリレーでは以下のように演
算することができる。
In the above calculation, it is necessary to calculate the outer product and the inner product of the vector, but the digital relay using a microprocessor currently in practical use can perform the following calculation.

【0016】(外積)2つのベクトルI,Vを例えば電
気角30°毎でサンプリングしている場合、(2)式に
示す演算を行う。 i(t)×v(t−3)−i(t−3)×v(t) …(2) i(t),v(t)は時刻tにおける電圧ベクトル電流
VとベクトルIの瞬時値、i(t−3),v(t−3)
は時刻tより3サンプリング前、即ち電気角90°前の
瞬時値を示す。従って、(2)式は以下のようにかけ
る。θは電流ベクトルIと電圧ベクトルVのなす角は以
下の式で示される。
(Outer product) When the two vectors I and V are sampled at an electrical angle of 30 °, for example, the calculation shown in the equation (2) is performed. i (t) * v (t-3) -i (t-3) * v (t) (2) i (t) and v (t) are the instantaneous values of the voltage vector current V and the vector I at time t. , I (t-3), v (t-3)
Indicates an instantaneous value three samples before the time t, that is, an electrical angle of 90 °. Therefore, the equation (2) is applied as follows. θ is an angle formed by the current vector I and the voltage vector V is expressed by the following equation.

【0017】[0017]

【数2】 [Equation 2]

【0018】(2)式を|I|で除算し、絶対値をとる
と|V|sinθが算出できる。 (内積)同様に、(3)式に示す演算を行う。 i(t)×v(t)+i(T−3)×v(t−3) …(3) (3)式をかき直すと以下の式となる。
By dividing the equation (2) by | I | and taking the absolute value, | V | sin θ can be calculated. (Inner product) Similarly, the calculation shown in Expression (3) is performed. i (t) × v (t) + i (T−3) × v (t−3) (3) When the equation (3) is rewritten, the following equation is obtained.

【0019】[0019]

【数3】 [Equation 3]

【0020】これを正負判定すればθが90°以内か以
上かが判定できるわけである。
By judging whether this is positive or negative, it can be judged whether θ is within 90 ° or more.

【0021】[0021]

【発明の効果】以上のように、この発明によれば、電流
補償をK1 +|ZIL ∠θL |を半径とする原点を中心
とした円特性としたため、動作域の最大動作値|V|
(図7のA部)は電圧ベクトルと電流ベクトルIのなす
角φによらず一定で、その値はK1 +|ZIL ∠θL
となり、その部分のデータをとることが容易となり、試
験時間の短縮等の効果がある。
As described above, according to the present invention, the current compensation has the circular characteristic centered on the origin with the radius of K 1 + | ZI L ∠θ L | V |
(A in FIG. 7) is constant regardless of the angle φ formed by the voltage vector and the current vector I, and its value is K 1 + | ZI L ∠θ L |
Therefore, it becomes easy to obtain the data of that portion, and there is an effect such as shortening the test time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるブロック図である。FIG. 1 is a block diagram according to an embodiment of the present invention.

【図2】この発明の特性図の一部(|V|sin≦K
1 )を示す説明図である。
FIG. 2 is a part of the characteristic diagram of the present invention (| V | sin ≦ K
It is explanatory drawing which shows 1 ).

【図3】この発明の特性図の一部(|IL ∠θL |・|
V|cos≧0)を示す説明図である。
FIG. 3 is a part of the characteristic diagram of the present invention (| I L ∠θ L |. |
It is explanatory drawing which shows V | cos> = 0.

【図4】この発明の特性図の一部(|V|≦K1 +|Z
L ∠θL |)を示す説明図で
FIG. 4 is a part of the characteristic diagram of the present invention (| V | ≦ K 1 + | Z
I L ∠ θ L |)

【図5】この発明の特性図の一部で、図2、図3、図4
に示す各特性図の論理積を示す説明図である。
FIG. 5 is a part of the characteristic diagram of the present invention and is shown in FIGS.
It is explanatory drawing which shows the logical product of each characteristic diagram shown in FIG.

【図6】この発明の特性図の一部(|V|≦K1 )を示
す説明図である。
FIG. 6 is an explanatory diagram showing a part (| V | ≦ K 1 ) of the characteristic diagram of the present invention.

【図7】図5と図6の論理和をとった図で、この発明の
特性図を示す説明図である。
FIG. 7 is a diagram obtained by taking the logical sum of FIG. 5 and FIG. 6, and is an explanatory diagram showing a characteristic diagram of the present invention.

【図8】従来の電流補償付不足電圧リレーの特性を示す
説明図である。
FIG. 8 is an explanatory diagram showing characteristics of a conventional undervoltage relay with current compensation.

【符号の説明】[Explanation of symbols]

B 電力系統の母線 L 被保護送電線 8 アナログデジタル変換回路 9 |V|を演算する第1演算手段 10 |V|≦K1 を判定する第1判定手段 11 |IL ∠θL ×V|/|IL ∠θL |を演算する
第2演算手段 12 |IL ∠θL ×V|/|IL ∠θL |≦K1 を判
定する第2判定手段 13 IL ∠θL ・Vを演算する第3演算手段 14 IL ∠θL ・V≧0を判定する第3判定手段 15 |ZIL ∠θL |を演算する第4演算手段 16 K1 +|ZIL ∠θL |を判定する第5演算手段 17 |V|≦K1 +|ZIL ∠θL |を判定する第4
判定手段 18 論理積回路を演算する第6演算手段 19 論理和回路を演算する第7演算手段
First calculation means 10 for calculating a | | V | ≦ K 1 second judging unit 11 judges | I L ∠θ L × V V | bus L protected transmission line 8 analog to digital conversion circuit 9 in B power system | Second calculating means for calculating / | I L ∠θ L | 12 | II L ∠θ L × V | / | Second determining means for determining I L ∠θ L | ≦ K 1 13 I L ∠θ L Third calculation means for calculating V 14 I L ∠θ L · Third determination means for judging V ≧ 0 15 | ZI L ∠θ L | Fourth calculation means 16 K 1 + | ZI L ∠θ L Fifth calculating means for determining | 17 | V | ≦ K 1 + | ZI L ∠θ L |
Judgment means 18 Sixth calculation means for calculating AND circuit 19 Seventh calculation means for calculating OR circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の電圧のベクトル、送電線の線
路角だけ移相された電流ベクトルをデジタル演算するこ
とにより、前記電力系統の保護を行う電流補償付不足電
圧リレー装置において、電圧整定値及びインピーダンス
整定値を予め設定し、上記電圧ベクトルの絶対値≦電圧
整定値であるか判定する第1判定手段と、上記電流ベク
トル電圧とベクトルの合成量の絶対値と電流ベクトルの
絶対値の比≦電圧整定値であるか判定する第3判定手段
と、上記電流ベクトルと電圧ベクトルの合成量≧0であ
るか判定する第2判定手段と、電圧ベクトルの絶対値≦
インピーダンス整定値と電流ベクトルの合成量の絶対値
と電圧整定値の加算値であるか判定する第4判定手段
と、上記第1判定手段、或は第2ないし第4判定手段の
何れか一方で判定結果が出力された時、電力系統の不足
電圧を検出する不足電圧検出手段とを備えたことを特徴
とする電流補償不足電圧リレー装置。
1. A voltage settling value in an undervoltage relay device with current compensation for protecting the power system by digitally calculating a vector of a voltage of the power system and a current vector phase-shifted by a line angle of a transmission line. And first setting means for setting the impedance settling value to determine whether the absolute value of the voltage vector ≦ the voltage settling value, and the ratio of the absolute value of the combined amount of the current vector voltage and the vector and the absolute value of the current vector. ≦ Third determination means for determining whether it is a voltage set value, second determination means for determining whether the combined amount of the current vector and the voltage vector ≧ 0, and an absolute value of the voltage vector ≦
One of the fourth determination means for determining whether it is the sum of the absolute value of the combined amount of the impedance set value and the current vector and the voltage set value, the first determination means, or the second to fourth determination means. An undervoltage relay device for current compensation, comprising: an undervoltage detection unit that detects an undervoltage of a power system when a determination result is output.
JP3272019A 1991-09-24 1991-09-24 Undervoltage relay device with current compensation Expired - Lifetime JP2733397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272019A JP2733397B2 (en) 1991-09-24 1991-09-24 Undervoltage relay device with current compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272019A JP2733397B2 (en) 1991-09-24 1991-09-24 Undervoltage relay device with current compensation

Publications (2)

Publication Number Publication Date
JPH0591646A true JPH0591646A (en) 1993-04-09
JP2733397B2 JP2733397B2 (en) 1998-03-30

Family

ID=17508002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272019A Expired - Lifetime JP2733397B2 (en) 1991-09-24 1991-09-24 Undervoltage relay device with current compensation

Country Status (1)

Country Link
JP (1) JP2733397B2 (en)

Also Published As

Publication number Publication date
JP2733397B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US4281386A (en) Systems for detecting faults in electric power systems
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
US5365396A (en) Negative sequence directional element for a relay useful in protecting power transmission lines
CN109950862A (en) Self-adaptive current fixed value setting method
US5710542A (en) Method of measuring the A.C. current in a conductor in an A.C. power transmission network
EP0214483B1 (en) Method for measuring distance in digital distance relays
JPH10322887A (en) Grounding distance relay
JPH0591646A (en) Under voltage relay device with current compensator
JP5359543B2 (en) Accident phase sorting device
JPS6019491Y2 (en) short circuit overcurrent relay
JP2017005868A (en) Distance relay device and transmission line protection method
JP2002135969A (en) Digital protective relay
JP3191527B2 (en) One-phase disconnection continuous monitoring method
KR0179744B1 (en) Electric relay
JP2633637B2 (en) Symmetrical protection relay
JPH0365016A (en) Ground fault detector for distribution line
JPH08126187A (en) Protection of digital protective relay
JP3763345B2 (en) Ratio differential relay
JP2616285B2 (en) Zero-phase current detector
JP3483621B2 (en) AC electricity change detection method
JP2000166082A (en) Short-circuit directional relay
JP3531388B2 (en) Protection relay method for cogeneration interconnection
JPH0854428A (en) Method for judging overload at load offsetting in load offset automatic switcher
EP0577228A1 (en) Apparatus for providing distance protection and distance measurement for a high voltage transmission line
JPH0640705B2 (en) Digital reverse power protection relay

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091226

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 14