JPH0640705B2 - Digital reverse power protection relay - Google Patents

Digital reverse power protection relay

Info

Publication number
JPH0640705B2
JPH0640705B2 JP62262890A JP26289087A JPH0640705B2 JP H0640705 B2 JPH0640705 B2 JP H0640705B2 JP 62262890 A JP62262890 A JP 62262890A JP 26289087 A JP26289087 A JP 26289087A JP H0640705 B2 JPH0640705 B2 JP H0640705B2
Authority
JP
Japan
Prior art keywords
voltage
current
power
protection relay
reverse power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62262890A
Other languages
Japanese (ja)
Other versions
JPH01107623A (en
Inventor
源三郎 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62262890A priority Critical patent/JPH0640705B2/en
Publication of JPH01107623A publication Critical patent/JPH01107623A/en
Publication of JPH0640705B2 publication Critical patent/JPH0640705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電力系統の並列運転に適用するディジタル型
逆電力保護継電器に関するものである。
The present invention relates to a digital reverse power protection relay applied to parallel operation of a power system.

〔従来の技術〕[Conventional technology]

従来、この種ディジタル型逆電力保護継電器として、第
3図に示すものがあった。
Conventionally, as this kind of digital reverse power protection relay, there is one shown in FIG.

図において、1は電力会社より電力を受電する引込線、
2は電流検出用の変流器、3は受電しゃ断器、4は電圧
検出用の変成器、5は需要家の負荷、6は需要家の発電
機しゃ断器、7は需要家の発電機である。また10はデ
ィジタル型逆電力保護継電器で変流器2からの電流入力
端子11、変成器4からの電圧入力端子12を有し、変
流器2からの電流を電流・電圧変換回路13によって適
当な電圧に変換する。14は変成器4からの電圧を適当
な電圧値に変換する電圧変換回路、15及び16はサン
プリング定理から制限される周波数帯を除去するアナロ
グフイルター回路、17は入力を一定間隔毎にサンプリ
ングして順次A/D変換するA/D変換回路、18はサ
ンプリング量を用いて後述の演算を実行する演算回路、
19はディジタル型逆電力保護継電器10の出力端子を
示す。
In the figure, 1 is a service line that receives power from a power company,
2 is a current detecting current transformer, 3 is a power receiving breaker, 4 is a voltage detecting transformer, 5 is a load of the customer, 6 is a generator breaker of the customer, and 7 is a generator of the customer. is there. A digital reverse power protection relay 10 has a current input terminal 11 from the current transformer 2 and a voltage input terminal 12 from the transformer 4, and the current from the current transformer 2 is appropriately supplied by a current / voltage conversion circuit 13. Convert to a proper voltage. Reference numeral 14 is a voltage conversion circuit for converting the voltage from the transformer 4 into an appropriate voltage value, 15 and 16 are analog filter circuits for removing the limited frequency band from the sampling theorem, and 17 is for sampling the input at regular intervals. An A / D conversion circuit for sequentially performing A / D conversion, an operation circuit 18 for executing an operation described later using a sampling amount,
Reference numeral 19 denotes an output terminal of the digital reverse power protection relay 10.

次に第4図を参照し、動作について説明する。まず第4
図は逆電力保護継電器の特性を示すモデル図で、V
変成器4から導入されるA相の相電圧、IA(R)は変
流器2から導入されるA相の相電流で受電系統から電力
を受電している。A相の相電流IA(R)のベクトルは
A相の相電圧Vと同相方向に図示すべきであるが、次
に述べる逆電力を検出する為に電流成分の極性を逆にし
て導入している。
Next, the operation will be described with reference to FIG. First 4th
The figure is a model diagram showing the characteristics of the reverse power protection relay, where V A is the phase voltage of the A phase introduced from the transformer 4, and I A (R) is the phase current of the A phase introduced from the current transformer 2. Power is being received from the power receiving system. The vector of the phase current I A (R) of the A phase should be illustrated in the same phase direction as the phase voltage V A of the A phase, but the polarity of the current component is reversed to be introduced in order to detect the reverse power described below. is doing.

また、IA(S)は需要家側から受電系統へ電流が流出
する流出電流を示し、これは、受電系統側の送配電線系
統の事故で受電系統側の電源が喪失した場合、あるい
は、系統が連系している状態で、負荷の変化により需要
家の発電電力が余剰となった場合等に発生する。
In addition, IA (S) represents the outflow current that flows out from the consumer side to the power receiving system. This is when the power source on the power receiving system side is lost due to an accident in the power transmission and distribution line system on the power receiving system side, or This occurs when the power generated by a customer becomes surplus due to a change in load while the grid is connected.

そしてPsは、前記流出電流IA(S)により電力が流
出する逆電力の許容値を示し該逆電力の許容値Ps以上
の逆電力が発生すると、これを逆電力保護継電器で検出
して、第3図の受電しゃ断器3を引外し並列運転を解列
するものである。
And Ps shows the allowable value of the reverse electric power which electric power flows out by the said outflow current IA (S) , and when reverse electric power more than the allowable value Ps of this reverse electric power generate | occur | produces, this is detected by the reverse electric power protection relay, The electric power breaker 3 of FIG. 3 is tripped to disconnect the parallel operation.

また、θは位相角でA相の相電圧Vと、A相の相電流
A(R)の相差角を示している。
Further, θ is a phase angle and indicates a phase difference angle between the phase voltage V A of the A phase and the phase current I A (R) of the A phase.

次に第5図によりディジタル型逆電力保護継電器の原理
について説明する。まず、サンプリング間隔をωT(ω
T=90°)とした時の電圧vと電流iのサンプリング
値をv,i,v−1,i−1とするとv×i
−1×i−1の演算を演算回路18で行なうことにより
有効電力成分が得られる。
Next, the principle of the digital reverse power protection relay will be described with reference to FIG. First, the sampling interval is ωT (ω
When the sampling values of the voltage v and the current i when T = 90 °) are v 0 , i 0 , v −1 , i −1 , v 0 × i 0 +
The active power component is obtained by performing the operation of v −1 × i −1 by the arithmetic circuit 18.

すなわち、v,i,v−1,i−1は、次のように
表わされる。
That is, v 0 , i 0 , v -1 , i -1 are expressed as follows.

=Vsinωt i=Isin(ωt−θ) v−1=Vsin(ωt−90°) i−1=Isin(ωt−90°−θ) これらを互いに代入して式を展開すると、次の(1)式
が得られる。
v 0 = V A sinωt i 0 = I A sin (ωt-θ) v -1 = V A sin (ωt-90 °) i -1 = I A sin (ωt-90 ° -θ) by substituting them with one another When the formula is expanded by the following formula, the following formula (1) is obtained.

×i+v−1×i−1=Vcosθ……(I) ここで、Vcosθは有効電力成分が得られたこと
になる。
v 0 × i 0 + v −1 × i −1 = V A I A cos θ (I) Here, the active power component is obtained for V A I A cos θ.

尚、上記原理は昭和61年1月発行の電気協同研究,第
41巻第4号の第4−1−3表中方式Cで記述されてい
る。
The above principle is described in Method C in Table 4-1-3 of Electric Cooperative Research, Vol. 41, No. 4, published in January, 1986.

このようにして演算した得られた電力値が第4図で記述
した逆電力の許容値Psを上回ったか否かを次の(2)
式により判定することによって逆電力検出が可能とな
る。
Whether the obtained power value calculated in this way exceeds the allowable value Ps of the reverse power described in FIG.
The reverse power detection can be performed by making the determination using the formula.

尚、ここで電力を受電している時には(1)式のθが9
0°≦θ≦270°であることから(1)式の演算結果
は負の値となるため(2)式から不動作となることが判
る。
In addition, when electric power is being received here, θ in the equation (1) is 9
Since 0 ° ≦ θ ≦ 270 °, the operation result of the expression (1) is a negative value, and it is understood from the expression (2) that the operation is not performed.

そこで需要家側から受電系統への電力流出を極力少なく
抑えようとする場合には逆電力の許容値Psを小さな値
に設定することになる。しかし、通常、電力流出が生じ
る場合の電圧は定格電圧を保っているので、僅かの逆電
力を検出しようとすると微少な電流値を取込んで前記
(1)式の演算を行なうことになる。
Therefore, in order to suppress the power outflow from the consumer side to the power receiving system as small as possible, the allowable value Ps of reverse power is set to a small value. However, since the rated voltage is usually maintained when the power outflow occurs, a minute current value is taken in to detect the slight reverse power and the calculation of the equation (1) is performed.

しかしながら微少な電流では、第3図のアナログフイル
ター回路15,16の出力に発生している電子回路素子
の直流ドリフト電圧が無視できない。
However, with a very small current, the DC drift voltage of the electronic circuit elements generated at the outputs of the analog filter circuits 15 and 16 in FIG. 3 cannot be ignored.

ここで、直流ドリフト電圧をkとすると電流iのサンプ
リング値i,i−1は i=Isin(ωt−θ)+k i−1=Isin(ωt−90°−θ)+k で表わされるため、これらを(1)式に代入すると、
(3)式となる。
Here, the sampling value i 0 of the current i when the DC drift voltage and k, i -1 is i 0 = I A sin (ωt -θ) + k i -1 = I A sin (ωt-90 ° -θ) + k Substituting these into equation (1),
Equation (3) is obtained.

(3)式より逆電力の許容値Psが小さい時には検出す
る流出電流IA(S)も小さくなるので2項目の誤差要
因は無視できないものである。
According to the equation (3), when the allowable value Ps of the reverse power is small, the outflow current I A (S) to be detected also becomes small, so the error factors of the two items cannot be ignored.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来のディジタル型逆電力保護継電器は以上のように構
成されているので、逆電力の許容値Psを極力小さく抑
えて検出しようとすると流出電流Isも小さくなって逆
電力を検出する場合の弊害として電子回路素子の直流ド
リフトにより誤差が発生し逆電力継電器の精度が大幅に
低下するという問題点があった。
Since the conventional digital reverse power protection relay is configured as described above, if an attempt is made to detect the allowable value Ps of the reverse power while keeping it as small as possible, the outflow current Is also becomes small, which is an adverse effect when the reverse power is detected. There has been a problem that an error occurs due to the DC drift of the electronic circuit element and the accuracy of the reverse power relay is significantly reduced.

この発明は、上記のような問題点を解消するためになさ
れたもので需要家系統から流出する僅かな逆電力を検出
する場合でも電子回路素子の直流ドリフト電圧の影響を
受けない高精度のディジタル型逆電力保護継電器を得る
ことを目的とする。
The present invention has been made in order to solve the above problems, and is a high-precision digital circuit which is not affected by a DC drift voltage of an electronic circuit element even when detecting a slight reverse power flowing out from a customer system. The purpose is to obtain a type reverse power protection relay.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るディジタル型逆電力保護継電器は電圧v
と電流iのサンプリング値より得られる有効電力成分
と、その半サイクル前の電圧vと電流iのサンプリング
値とから得られる有効電力成分の算術和平均値を演算回
路の後段に設けた算術和平均回路によって求めることに
よって直流ドリフト電圧の影響をなくするようにしたも
のである。
The digital reverse power protection relay according to the present invention has a voltage v
And the arithmetic sum average of the active power component obtained from the sampling value of the current i and the arithmetic sum average value of the active power component obtained from the sampling value of the voltage v and the current i of the half cycle before the arithmetic sum average. It is designed to eliminate the influence of the DC drift voltage by using a circuit.

〔作用〕[Action]

この発明におけるディジタル型逆電力保護継電器は演算
回路で演算した有効電力成分と、その時点から半サイク
ル前の有効電力成分の演算結果の算術和平均値を算術和
平均回路によって求めることによって直流ドリフト電圧
に起因する誤差項を零にする。
The digital reverse power protection relay according to the present invention is a DC drift voltage obtained by calculating the arithmetic sum average value of the active power component calculated by the arithmetic circuit and the arithmetic result of the active power component half cycle before that point by the arithmetic sum average circuit. The error term caused by is set to zero.

〔発明の実施例〕Example of Invention

以下この発明の実施例を図について説明する。図中、第
3図と同一の部分は同一の符号をもつて図示した第1図
において、20はある時点の有効電力成分と、その時点
から半サイクル前の有効電力との算術和平均を求める算
術和平均回路、100は本発明のディジタル型逆電力保護
継電器である。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as those in FIG. 3 have the same reference numerals, and in FIG. 1, 20 is the arithmetic sum average of the active power component at a certain time point and the active power half cycle before that time point. Arithmetic and average circuit 100 is a digital reverse power protection relay of the present invention.

また、第2図は、本発明の原理を説明するための波形図
でサンプリング間隔をωT(ωT=90°)とした時の電
圧vと電流iのサンプリング値を図示したものである。
Further, FIG. 2 is a waveform diagram for explaining the principle of the present invention, and illustrates the sampling values of the voltage v and the current i when the sampling interval is ωT (ωT = 90 °).

次に動作について説明する。まず第2図において電流成
分に直流ドリフト電圧kを考慮すると各々のサンプリン
グ値は次式で表わされる。
Next, the operation will be described. First, considering the DC drift voltage k in the current component in FIG. 2, each sampling value is expressed by the following equation.

v0=VAsinωt i0=IAsin(ωt-θ)+k v-1=VAsin(ωt-90゜) i-1=IAsin(ωt-90゜−θ)+k v-2=VAsin(ωt-180゜) i-2=IAsin(ωt-180゜−θ)+
k v-3=VAsin(ωt-270゜) i-3=IAsin(ωt-270゜−θ)+k ここで、電圧vと電流iのサンプリング値v
−1,i,i−1から有効電力を求めPとすると
前記(3)式と同一演算の為、次式となる。
v 0 = V A sin ωt i 0 = I A sin (ωt-θ) + k v −1 = V A sin (ωt-90 °) i −1 = I A sin (ωt-90 ° −θ) + k v -2 = V A sin (ωt-180 °) i -2 = I A sin (ωt-180 ° −θ) +
k v -3 = V A sin (ωt-270 °) i -3 = I A sin (ωt-270 ° -θ) + k Here, the sampling value v 0 of the voltage v and the current i,
When the active power is calculated from v −1 , i 0 , i −1 and is P 1 , the following equation is obtained because the same operation as the equation (3) is performed.

次に有効電力Pを求めるのに使用したサンプリング値
から半サイクル前のサンプリング値v−2,v−3,i
−2,i−3から有効電力を求めPとすると が得られる。
Next, the sampling values v −2 , v −3 , i half cycle before the sampling value used to obtain the active power P 1
-2 , i −3, and the active power is calculated as P 2 Is obtained.

得られた結果の有効電力PとPとを算術和平均回路
20によって算術和平均すると直流ドリフト電圧kの誤
差要因の項が消去されて次の(4)式が得られる。
When the active powers P 1 and P 2 obtained as a result are arithmetically averaged by the arithmetic sum averaging circuit 20, the term of the error factor of the DC drift voltage k is eliminated and the following equation (4) is obtained.

(P+P)/2=Vcosθ……(4) この(4)式の結果と逆電力の許容値Psとを次の(5)式に
より判定することで直流ドリフト電圧の影響を受けない
ディジタル型逆電力保護継電器が得られる。
(P 1 + P 2 ) / 2 = V A I A cos θ (4) The result of this equation (4) and the allowable value Ps of the reverse power are determined by the following equation (5) to determine the DC drift voltage. An unaffected digital reverse power protection relay is obtained.

尚、上記実施例では有効電力をVcosθで記述し
たが、3相交流の場合の有効電力は3Vcosθで
ある為、3倍の定数を掛けて処置されることは言うまで
もない。
Although the active power is described as V A I A cosθ in the above embodiment, it is needless to say that the active power in the case of three-phase AC is 3V A I A cos θ, which is multiplied by a constant of 3. Yes.

また、上記実施例では参考文献として電気協同研究、第
41号4号の第4−1−3表中の方式Cについて、その
改善策を記述したが、他の方式についても同様の考えで
半サイクル前の演算結果の算術和平均を求める方法を採
用することで特性改善が出来ることは言うまでもない。
Further, in the above-mentioned embodiment, the improvement measures are described for the method C in Table 4-1-3 of No. 41, No. 4, No. 41, No. 4, as a reference, but the same idea is applied to other methods. It goes without saying that the characteristics can be improved by adopting the method of obtaining the arithmetic sum average of the operation results before the cycle.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば或る時点で演算した有
効電力成分とその時点から半サイクル前の有効電力成分
との算術和平均値を算術和平均回路によって求め直流ド
リフト電圧に起因する誤差項を零にするように構成した
ので、直流ドリフトの影響を受けない高精度の継電器が
得られる効果がある。
As described above, according to the present invention, the arithmetic sum average circuit obtains the arithmetic sum average value of the active power component calculated at a certain time point and the active power component half cycle before that time, and the error caused by the DC drift voltage is obtained. Since the term is set to zero, there is an effect that a highly accurate relay that is not affected by DC drift can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のディジタル型逆電力保護継電器の構
成を示すブロック図、第2図は第1図を説明するための
電圧、電流波形図、第3図は従来の逆電力保護継電器が
適用される電力系統の説明図、第4図は一般的な逆電力
保護継電器の特性図、第5図は従来のディジタル量を使
用して電力量を求める逆電力保護継電器の原理図であ
る。 図において、15,16はアナログフイルタ回路、17
はA/D変換回路、18は演算回路、20は算術和平均
回路である。 なお、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram showing a configuration of a digital type reverse power protection relay of the present invention, FIG. 2 is a voltage and current waveform diagram for explaining FIG. 1, and FIG. 3 is a conventional reverse power protection relay. FIG. 4 is an explanatory view of an applied power system, FIG. 4 is a characteristic diagram of a general reverse power protection relay, and FIG. 5 is a principle diagram of a conventional reverse power protection relay that obtains a power amount by using a digital amount. In the figure, 15 and 16 are analog filter circuits, and 17
Is an A / D conversion circuit, 18 is an arithmetic circuit, and 20 is an arithmetic sum averaging circuit. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アナログフィルタ回路を介して取り込んだ
電力需要家系統の電圧と電流をサンプリングしてアナロ
グディジタル変換するA/D変換回路と、このA/D変
換回路からの出力値を用いて演算を実行して有効電力成
分を得る演算回路とを有するディジタル型逆電力保護継
電器において、前記電圧と電流とのサンプリング値に基
づく前記A/D変換回路の出力値を演算して得た有効電
力成分、及び前記電圧と電流とのサンプリングをしたそ
の時点から半サイクル前に得た有効電力成分との算術平
均値を求める算術和平均回路を具備したことを特徴とす
るディジタル型逆電力保護継電器。
Claim: What is claimed is: 1. An A / D converter circuit for sampling the voltage and current of an electric power consumer system taken in through an analog filter circuit and converting the voltage into a digital signal, and an operation using an output value from the A / D converter circuit. In the digital reverse power protection relay, the active power component obtained by calculating the output value of the A / D conversion circuit based on the sampling value of the voltage and the current , And a digital type reverse power protection relay which is provided with an arithmetic sum averaging circuit for obtaining an arithmetic mean value of the active power components obtained half cycle before the sampling of the voltage and the current.
JP62262890A 1987-10-20 1987-10-20 Digital reverse power protection relay Expired - Lifetime JPH0640705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262890A JPH0640705B2 (en) 1987-10-20 1987-10-20 Digital reverse power protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262890A JPH0640705B2 (en) 1987-10-20 1987-10-20 Digital reverse power protection relay

Publications (2)

Publication Number Publication Date
JPH01107623A JPH01107623A (en) 1989-04-25
JPH0640705B2 true JPH0640705B2 (en) 1994-05-25

Family

ID=17382039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262890A Expired - Lifetime JPH0640705B2 (en) 1987-10-20 1987-10-20 Digital reverse power protection relay

Country Status (1)

Country Link
JP (1) JPH0640705B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674118B2 (en) * 2005-05-26 2011-04-20 株式会社長府製作所 Power detection device
JP6192051B2 (en) * 2014-03-25 2017-09-06 大倉電気株式会社 Power system reverse power flow monitoring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116935A (en) * 1984-11-12 1986-06-04 株式会社東芝 Reverse power protective device
CH669956A5 (en) * 1985-07-13 1989-04-28 Sandoz Ag

Also Published As

Publication number Publication date
JPH01107623A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
JPH0656402B2 (en) Method and device for identifying ground fault location
JP2010213513A (en) Method and device for estimating generator output
JPH0772740B2 (en) Power detector
RU99122161A (en) DEVICE FOR COMPARING TWO SIGNALS, DEVICE AND METHOD FOR FORMING NON-STATIONARY SIGNALS
JP2003224928A (en) Digital directional relay
JPH06105266B2 (en) Digital protection relay
JPH0640705B2 (en) Digital reverse power protection relay
JP2964673B2 (en) Power system failure detection circuit
JP3287121B2 (en) Voltage drop detection circuit
JPH05297030A (en) Detection method of voltage drop
JP3850184B2 (en) Electricity meter
KR930004574B1 (en) Missed phase detecting circuit of 3 phase power-supply
JP3958255B2 (en) Phase synchronization detection circuit in generator
JPH0737997B2 (en) Electricity detector
CN110412364B (en) Software-based phase loss detection method
JPH0974660A (en) Harmonic detector
JP4176709B2 (en) AC / DC bidirectional converter
JP3483621B2 (en) AC electricity change detection method
JP2633637B2 (en) Symmetrical protection relay
JP2598889Y2 (en) Three-phase AC measuring device
JP2682930B2 (en) Digital relay device
JPH07134148A (en) Mthod and device for measuring positive phase component and negative phase component of power and reactive power in three phase system
JPH0767226B2 (en) Digital protection relay
JP2733397B2 (en) Undervoltage relay device with current compensation
JPH0668512B2 (en) Amplitude value calculator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14