JP2964673B2 - Power system failure detection circuit - Google Patents

Power system failure detection circuit

Info

Publication number
JP2964673B2
JP2964673B2 JP5581891A JP5581891A JP2964673B2 JP 2964673 B2 JP2964673 B2 JP 2964673B2 JP 5581891 A JP5581891 A JP 5581891A JP 5581891 A JP5581891 A JP 5581891A JP 2964673 B2 JP2964673 B2 JP 2964673B2
Authority
JP
Japan
Prior art keywords
phase
voltage
positive
negative
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5581891A
Other languages
Japanese (ja)
Other versions
JPH04271226A (en
Inventor
茂雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5581891A priority Critical patent/JP2964673B2/en
Publication of JPH04271226A publication Critical patent/JPH04271226A/en
Application granted granted Critical
Publication of JP2964673B2 publication Critical patent/JP2964673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電力系統の地絡事故や
線間短絡事故等の系統故障を検出する電力系統故障検出
回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power system fault detection circuit for detecting a system fault such as a ground fault or short circuit between power lines.

【0002】[0002]

【従来の技術】電力系統に接続された自励式電力変換装
置(燃料電池発電用系統連系インバータ、コージェネ
(熱電併給)用系統連系インバータ、自励式無効電力変
換装置、アクティブフィルタ等)においては、系統事故
が発生すると系統電圧の急変、位相ずれのために変換装
置にとって過電流になる可能性がある。この過電流の発
生を防止するための従来の電力系統故障検出回路として
は、図5に示すものが知られている。同図において、三
相系統電圧(相電圧)esa,esb,escは三相全波整流
回路9cにより整流され、フィルタ10cによりリプル
を除去した後、コンパレータ6cに入力される。このコ
ンパレータ6cでは系統電圧と設定値とを比較し、系統
電圧が設定値よりも低下したことをもって系統故障を検
出する。そして、図示されていないが、この故障検出信
号に基づき電力変換装置に対してパルスオフ等の処理を
行うことにより、電力変換装置の運転を停止している。
2. Description of the Related Art In a self-excited power converter connected to a power system (a grid-connected inverter for fuel cell power generation, a grid-connected inverter for cogeneration (cogeneration), a self-excited reactive power converter, an active filter, and the like). When a system fault occurs, a sudden change of the system voltage and a phase shift may cause an overcurrent for the converter. FIG. 5 shows a conventional power system failure detection circuit for preventing occurrence of this overcurrent. In the figure, three-phase system voltages (phase voltages) e sa , e sb , and e sc are rectified by a three-phase full-wave rectifier circuit 9c, and after being removed by a filter 10c, are input to a comparator 6c. The comparator 6c compares the system voltage with the set value, and detects a system failure when the system voltage falls below the set value. Then, although not shown, the operation of the power converter is stopped by performing processing such as pulse-off on the power converter based on the failure detection signal.

【0003】[0003]

【発明が解決しようとする課題】上記従来の故障検出回
路によれば、三相系統電圧が一様に低下する系統故障の
場合にはこれを正確に検出することができる。しかる
に、相によって電圧の大きさが異なり、移相ずれを起こ
した不平衡状態となる場合には、検出に遅れを生じると
いう問題があった。すなわち、整流回路9cは三相系統
電圧のピーク値付近の波形を切り出して出力を得るもの
であるため、位相により電圧がピーク値近辺ではなく低
い状態にある相で故障が起こった場合にはその電圧変化
が整流出力に現われず、電圧ピーク値付近の位相になっ
てはじめて検出されることになる。本発明は上記問題点
を解決するためになされたもので、その目的とするとこ
ろは、故障の種類に関わらず高速かつ正確に系統故障を
検出可能とした電力系統故障検出回路を提供することに
ある。
According to the above-described conventional fault detection circuit, in the case of a system fault in which the three-phase system voltage is uniformly reduced, this can be accurately detected. However, there is a problem in that when the voltage level differs depending on the phase and an unbalanced state occurs with a phase shift, detection is delayed. That is, the rectifier circuit 9c cuts out a waveform near the peak value of the three-phase system voltage to obtain an output. The voltage change does not appear in the rectified output, and is detected only when the phase is near the voltage peak value. The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a power system failure detection circuit that can quickly and accurately detect a system failure regardless of the type of failure. is there.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、電力系統の外部に新たに回路ができるよ
うな故障(1線地絡、2線地絡、3線地絡、線間短絡)
の発生時には正相電圧(平衡成分)が減少し、また、不
平衡故障(3線地絡、3相短絡、3線断線以外の故障)
の発生時は逆相電圧(不平衡成分)が増加(発生)する
ことに着目してなされたもので、三相系統電圧から対称
座標変換により正相電圧及び逆相電圧を演算し、これら
の変化に基づき系統故障を検出することを要旨とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a fault (one-wire ground fault, two-wire ground fault, three-wire ground fault, Short circuit)
In the event of occurrence, the positive-sequence voltage (balance component) decreases, and unbalance fault (fault other than three-wire ground fault, three-phase short-circuit, or three-wire disconnection)
When the occurrence of the negative phase voltage (unbalanced component) increases (occurs), the positive phase voltage and the negative phase voltage are calculated from the three-phase system voltage by symmetric coordinate conversion, and these are calculated. The gist is to detect a system failure based on the change.

【0005】すなわち、第1の発明は、三相系統電圧及
びこれらに対し各々90°の位相差をもつ電圧を用いて
対称座標変換により正相電圧及び逆相電圧の実数部及び
虚数部をそれぞれ演算する正相・逆相電圧演算手段と、
前記正相電圧の実数部及び虚数部の各二乗和と、前記逆
相電圧の実数部及び虚数部の各二乗和とに基づいて正相
電圧及び逆相電圧を直流量にそれぞれ変換する正相・逆
相電圧変換手段と、前記正相電圧の直流量が設定値より
も小さくなったこと、または、逆相電圧の直流量が設定
値よりも大きくなったことを検出して系統故障を検出す
る故障検出手段とを備えたものである。
That is, in the first invention, the real part and the imaginary part of the positive-phase voltage and the negative-phase voltage are respectively converted by symmetrical coordinate conversion using a three-phase system voltage and voltages having a phase difference of 90 ° with respect to the three-phase system voltages. Positive and negative phase voltage calculating means for calculating;
A positive phase that converts a positive-phase voltage and a negative-phase voltage into a DC amount based on the sum of squares of a real part and an imaginary part of the positive-phase voltage, and each square sum of a real part and an imaginary part of the negative-phase voltage, respectively. A negative-phase voltage converter and a system failure by detecting that the DC amount of the positive-phase voltage has become smaller than a set value or that the DC amount of the negative-phase voltage has become larger than a set value; And a failure detecting means.

【0006】第2の発明は、前記正相・逆相電圧演算手
段と、一相の系統電圧に同期した基準正弦波を前記各虚
数部に乗算して得た量と、一相の系統電圧に同期した基
準余弦波を前記各実数部に乗算して得た量とを正相電
圧、逆相電圧ごとに加算して正相電圧及び逆相電圧を直
流量にそれぞれ変換する正相・逆相電圧変換手段と、前
記故障検出手段とを備えたものである。
According to a second aspect of the present invention, there is provided the positive-phase / negative-phase voltage calculating means, an amount obtained by multiplying each imaginary part by a reference sine wave synchronized with a one-phase system voltage, and a one-phase system voltage. The reference phase cosine wave synchronized with the above is added to each real number part with an amount obtained by multiplying each of the positive phase voltage and the negative phase voltage to convert the positive phase voltage and the negative phase voltage into a DC quantity, respectively. A phase voltage converter; and the failure detector.

【0007】第3の発明は、三相系統電圧の一相の電圧
と、他の二相の電圧に対し各々90°の位相差をもつ電
圧とを用いて対称座標変換により正相電圧及び逆相電圧
の虚数部をそれぞれ演算する正相・逆相電圧演算手段
と、前記正相電圧及び逆相電圧の虚数部を整流して正相
電圧及び逆相電圧を直流量にそれぞれ変換する正相・逆
相電圧変換手段と、前記故障検出手段とを備えたもので
ある。
The third invention uses a one-phase voltage of a three-phase system voltage and a voltage having a phase difference of 90.degree. With respect to the other two-phase voltages, respectively, by performing symmetrical coordinate conversion to obtain a positive phase voltage and a reverse phase voltage. Positive-phase / negative-phase voltage calculating means for respectively calculating the imaginary part of the phase voltage, and positive-phase for rectifying the imaginary part of the positive-phase voltage and the negative-phase voltage and converting the positive-phase voltage and the negative-phase voltage into DC quantities, respectively -It is provided with a reverse phase voltage conversion means and the failure detection means.

【0008】第4の発明は、三相系統電圧の二相の電圧
と、他の一相の電圧に対し90°の位相差をもつ電圧と
を用いて対称座標変換により正相電圧及び逆相電圧の実
数部をそれぞれ演算する正相・逆相電圧演算手段と、前
記正相電圧及び逆相電圧の実数部を整流して正相電圧及
び逆相電圧を直流量にそれぞれ変換する正相・逆相電圧
変換手段と、前記故障検出手段とを備えたものである。
According to a fourth aspect of the present invention, a two-phase voltage of a three-phase system voltage and a voltage having a phase difference of 90 ° with respect to the other one-phase voltage are subjected to symmetric coordinate conversion by positive-phase voltage and negative-phase voltage. Positive-phase / negative-phase voltage calculation means for calculating the real part of the voltage, and positive-phase / negative-phase voltage for rectifying the real part of the positive-phase voltage and the negative-phase voltage to convert the positive-phase voltage and the negative-phase voltage into DC values, respectively. A negative-phase voltage converting means; and the failure detecting means.

【0009】[0009]

【作用】第1の発明によれば、正相・逆相電圧演算手段
が正相電圧及び逆相電圧の実数部及び虚数部をそれぞれ
演算し、これらの実数部及び虚数部に基づき正相・逆相
電圧変換手段が正相電圧及び逆相電圧を直流量に変換す
る。更に、故障検出手段において、上記直流量により正
相電圧の減少または逆相電圧の増加を分離して検出する
ことにより、系統故障を検出する。
According to the first aspect, the positive-phase / negative-phase voltage calculating means calculates the real part and the imaginary part of the positive-phase voltage and the negative-phase voltage, respectively, and based on the real part and the imaginary part thereof, Negative-phase voltage conversion means converts the positive-phase voltage and the negative-phase voltage into DC values. Further, the failure detection means detects a system failure by separately detecting a decrease in the positive-phase voltage or an increase in the negative-phase voltage based on the DC amount.

【0010】第2の発明によれば、正相・逆相電圧演算
手段により演算された正相電圧及び逆相電圧の実数部及
び虚数部と、一相の系統電圧に同期した基準正弦波及び
基準余弦波に基づき、正相・逆相電圧変換手段が正相電
圧及び逆相電圧を直流量に変換する。そして、第1の発
明と同様に故障検出手段が系統故障を検出する。
According to the second aspect of the invention, the real and imaginary parts of the positive and negative phase voltages calculated by the positive and negative phase voltage calculation means, the reference sine wave synchronized with the one-phase system voltage, and On the basis of the reference cosine wave, the positive-phase / negative-phase voltage conversion means converts the positive-phase voltage and the negative-phase voltage into DC values. Then, similarly to the first invention, the failure detecting means detects a system failure.

【0011】第3または第4の発明によれば、正相・逆
相電圧演算手段が正相電圧及び逆相電圧の虚数部、また
は、正相電圧及び逆相電圧の実数部を演算する。これら
の虚数部または実数部を正相・逆相電圧変換手段により
整流して直流量に変換し、第1、第2の発明と同様に故
障検出手段が系統故障を検出する。
According to the third or fourth aspect, the positive-phase / negative-phase voltage calculating means calculates the imaginary part of the positive-phase voltage and the negative-phase voltage or the real part of the positive-phase voltage and the negative-phase voltage. The imaginary part or the real part is rectified by the positive-phase / negative-phase voltage conversion means and converted into a DC amount, and the failure detection means detects a system failure as in the first and second inventions.

【0012】[0012]

【実施例】以下、図に沿って各発明の実施例を説明す
る。まず、図1は第1の発明の一実施例を示す機能ブロ
ック図であり、100は正相・逆相電圧演算手段、20
0は正相・逆相電圧変換手段、300は故障検出手段を
それぞれ示している。上記正相・逆相電圧演算手段10
0において、esab,esbc,escaは三相系統電圧(線
間電圧)であり、1a,1b,1cはこれらの電圧から
位相が各々90°進んだ電圧ecab,ecbc,eccaを生
成する移相器である。ここで三相系統電圧(線間電圧)
ab,ebc,ecaを次の数式1のように表す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. First, FIG. 1 is a functional block diagram showing an embodiment of the first invention.
Reference numeral 0 denotes a positive-phase / negative-phase voltage converter, and 300 denotes a failure detector. The positive-phase / negative-phase voltage calculating means 10
At 0, e sab , e sbc , and e sca are three-phase system voltages (line voltages), and 1a, 1b, and 1c are voltages e cab , e cbc , and e cca whose phases are respectively advanced by 90 ° from these voltages. Is a phase shifter. Where three-phase system voltage (line voltage)
e ab , e bc , and e ca are represented by the following Equation 1.

【0013】[0013]

【数1】 (Equation 1)

【0014】対称座標変換の定義から零相電圧e0、正
相電圧e1、逆相電圧e2は次の数式2によって表され
る。なお、数式2において、a及びa2は数式3及び数
式4に示す値である。
From the definition of the symmetric coordinate transformation, the zero-phase voltage e 0 , the positive-phase voltage e 1 , and the negative-phase voltage e 2 are represented by the following equation (2). In Equation 2, a and a 2 are the values shown in Equations 3 and 4.

【0015】[0015]

【数2】 (Equation 2)

【0016】[0016]

【数3】 (Equation 3)

【0017】[0017]

【数4】 (Equation 4)

【0018】ここで、eab,ebc,ecaは線間電圧であ
るため、零相電圧は零であるから次の数式5が成立す
る。
Here, since e ab , e bc , and e ca are line voltages, the zero-phase voltage is zero, so that the following equation 5 holds.

【0019】[0019]

【数5】 (Equation 5)

【0020】従って、次の数式6、数式7が得られる。Accordingly, the following equations (6) and (7) are obtained.

【0021】[0021]

【数6】 (Equation 6)

【0022】[0022]

【数7】 (Equation 7)

【0023】数式2に数式1を代入して正相電圧e1
求めると、数式8が得られる。
By substituting equation (1) into equation (2) and obtaining the positive-phase voltage e 1 , equation (8) is obtained.

【0024】[0024]

【数8】 (Equation 8)

【0025】また、数式6より数式9が、数式7より数
式10がそれぞれ得られる。
Expression 9 is obtained from Expression 6, and Expression 10 is obtained from Expression 7.

【0026】[0026]

【数9】 (Equation 9)

【0027】[0027]

【数10】 (Equation 10)

【0028】これらの数式9、数式10を数式8に代入
して整理すると、数式11、数式12、数式13が得ら
れる。
By substituting Equations 9 and 10 into Equation 8, the following Equations 11, 12 and 13 are obtained.

【0029】[0029]

【数11】 [Equation 11]

【0030】[0030]

【数12】 (Equation 12)

【0031】[0031]

【数13】 (Equation 13)

【0032】なお、上記数式11、数式12、数式13
において、e1Rはe1の実数部、e1Iはe1の虚数部を示
している。同様に、数式2に数式1を代入して逆相電圧
2を求めると、数式14が得られる。
The above equations (11), (12) and (13)
In, e 1R is the real part of e 1, e 1I shows the imaginary part of e 1. Similarly, substituting Equation 1 into Equation 2 to determine the negative-phase voltage e 2 yields Equation 14.

【0033】[0033]

【数14】 [Equation 14]

【0034】また、前記数式9、数式10を数式14に
代入して整理すると、数式15、数式16、数式17が
得られる。
By substituting Equations 9 and 10 into Equation 14, the following Equations 15, 16 and 17 are obtained.

【0035】[0035]

【数15】 (Equation 15)

【0036】[0036]

【数16】 (Equation 16)

【0037】[0037]

【数17】 [Equation 17]

【0038】なお、上記数式15、数式16、数式17
において、e2Rはe2の実数部、e2Iはe2の虚数部を示
している。
The above equations (15), (16) and (17)
In, e 2R is the real part of e 2, e 2I shows the imaginary part of e 2.

【0039】このようにして、三相系統電圧esab,e
sbc,escaから対称座標変換により平衡成分としての正
相電圧e1及び不平衡成分としての逆相電圧e2を求める
ことができる。そして、正相電圧e1の減少または逆相
電圧e2の増加を分離して検出することにより、系統故
障を高速に検出することができる。
Thus, the three-phase system voltages e sab , e
From sbc and e sca , a positive-phase voltage e 1 as an equilibrium component and a negative-phase voltage e 2 as an unbalanced component can be obtained by symmetric coordinate conversion. By separating and detecting a decrease or increase in the reverse-phase voltage e 2 of the positive-phase voltage e 1, it is possible to detect the line fault at a high speed.

【0040】すなわち、図1において、前記移相器1
a,1b,1c以後の加減算器2a〜2fと図示するゲ
インが設定されたゲイン調整器3a〜3dとは、上記数
式11〜数式13及び数式15〜数式17の演算によ
り、e1R,e1I,e2R,e2Iを求める回路であり、加減
算器2c,2d,2e,2fからe1I,e2I,e1R,e
2Rがそれぞれ出力される。ここで、e1Rとe1I、e2R
2Iは、それぞれ90°位相差の正弦波であるため、次
の数式18及び数式19により正相電圧及び逆相電圧の
直流量|e1|,|e2|に変換することができる。
That is, in FIG. 1, the phase shifter 1
The adders / subtractors 2a to 2f after a, 1b, and 1c and the gain adjusters 3a to 3d with the illustrated gains are set to e 1R and e 1I by the calculations of the above formulas 11 to 13 and formulas 15 to 17. , E 2R , e 2I , and e 1I , e 2I , e 1R , e from the adders / subtractors 2c, 2d, 2e, 2f.
2R is output respectively. Here, since e 1R and e 1I , and e 2R and e 2I are sine waves having a phase difference of 90 °, respectively, the DC amounts of the positive-phase voltage and the negative-phase voltage | e 1 | , | E 2 |.

【0041】[0041]

【数18】 (Equation 18)

【0042】[0042]

【数19】 [Equation 19]

【0043】上記数式18、数式19は、図1における
乗算器4a〜4d、加減算器2g,2h及び平方根演算
器5a,5bからなる回路により演算され、平方根演算
器5aから|e1|が、また、平方根演算器5bから|
2|が出力される。そして、後段のコンパレータ6
a,6bは、正相電圧の直流量|e1|が設定値より減
少したこと、または、逆相電圧の直流量|e2|が設定
値より増加したことを検出するためのコンパレータであ
る。これらのコンパレータ6a,6bの出力信号はOR
ゲート7に入力されており、|e1|の減少または|e2
|の増加が起こった際には瞬時にORゲート7から故障
検出信号が出力される。
Equations (18) and (19) are calculated by a circuit including the multipliers 4a to 4d, the adders / subtractors 2g and 2h and the square root calculators 5a and 5b in FIG. 1, and | e 1 | Also, from the square root calculator 5b |
e 2 | is output. Then, the comparator 6 at the subsequent stage
Reference numerals a and 6b denote comparators for detecting that the DC amount | e 1 | of the positive-phase voltage has decreased below the set value or that the DC amount | e 2 | of the negative-phase voltage has increased above the set value. . The output signals of these comparators 6a and 6b are ORed.
Is input to the gate 7 and | e 1 | decreases or | e 2
When | increases, a failure detection signal is output from the OR gate 7 instantaneously.

【0044】このように、本実施例によれば、電力系統
の外部に新たに回路ができるような故障(1線地絡、2
線地絡、3線地絡、線間短絡)の発生時には正相電圧が
減少し、また、不平衡故障(3線地絡、3相短絡、3線
断線以外の故障)の発生時は逆相電圧が増加するため、
これらの現象をコンパレータ6a,6bにより検出する
ことで高速に系統故障を検出することができる。なお、
平方根演算器5a,5bは省略することができ、この場
合は、コンパレータ6a,6bに|e12,|e22
値が入力されて設定値と比較され、故障検出を行なうこ
とになる。また、図示しないが、三相系統電圧esab
sbc,escaから位相が各々90°遅れた電圧を移相器
により生成し、これらの電圧の極性を反転した電圧と前
記三相系統電圧esab,esbc,escaとを用いて正相電
圧及び逆相電圧の実数部及び虚数部を生成してもよい。
As described above, according to the present embodiment, a failure (1 line ground fault, 2 line ground fault, 2
When a line ground fault, three-wire ground fault, short-circuit between lines occurs, the positive-phase voltage decreases. When an unbalance fault occurs (fault other than three-wire ground fault, three-phase short-circuit, or three-wire break), the reverse occurs. Because the phase voltage increases,
By detecting these phenomena by the comparators 6a and 6b, a system failure can be detected at high speed. In addition,
The square root calculators 5a and 5b can be omitted. In this case, the values of | e 1 | 2 and | e 2 | 2 are input to the comparators 6a and 6b and are compared with set values to detect a failure. become. Although not shown, the three-phase system voltage e sab ,
Voltages each having a phase delayed by 90 ° from e sbc and e sca are generated by a phase shifter, and a positive voltage is obtained using the voltages obtained by inverting the polarities of these voltages and the three-phase system voltages e sab , e sbc and e sca. The real part and the imaginary part of the phase voltage and the negative phase voltage may be generated.

【0045】次に、図2は第2の発明の一実施例を示す
機能ブロック図であり、|e1|及び|e2|を演算する
ための正相・逆相電圧変換手段200Aの構成が、図1
の回路と異なっている。なお、図1と同一の構成要素に
は同一の符号を付してある。図2において、8は一相分
の系統電圧esabに同期した基準正弦波sinωt及び
基準余弦波cosωtを発生する関数発生器であり、こ
の基準波を用いて次の数式20、数式21により|e1
|,|e2|を演算する。
Next, FIG. 2 is a functional block diagram showing an embodiment of the second invention. The structure of the positive-phase / negative-phase voltage conversion means 200A for calculating | e 1 | and | e 2 | But Figure 1
Circuit is different. The same components as those in FIG. 1 are denoted by the same reference numerals. In FIG. 2, reference numeral 8 denotes a function generator for generating a reference sine wave sinωt and a reference cosine wave cosωt synchronized with the system voltage e sab for one phase. e 1
|, | E 2 | are calculated.

【0046】[0046]

【数20】 |e1|=e1R・cosωt+e1I・sinωt| E 1 | = e 1R · cos ωt + e 1I · sin ωt

【0047】[0047]

【数21】 |e2|=e2R・cosωt+e2I・sinωt| E 2 | = e 2R · cos ωt + e 2I · sin ωt

【0048】すなわち、基準正弦波sinωt及び基準
余弦波cosωtをe1I,e2I,e1R,e2Rと共に乗算
器4a〜4dに入力し、その出力を加減算器2g,2h
に入力することにより加減算器2gから|e1|が、ま
た、加減算器2hから|e2|が出力される。そして、
前記同様にコンパレータ6a,6bによって設定値と比
較することにより、正相電圧の直流量|e1|の減少、
または逆相電圧の直流量|e2|の増加を検出してOR
ゲート7から故障検出信号が出力される。なお、関数発
生器8の入力には他相の系統電圧を取り込んでもよい。
That is, the reference sine wave sinωt and the reference cosine wave cosωt are input to multipliers 4a to 4d together with e 1I , e 2I , e 1R and e 2R , and the outputs thereof are added / subtracted by 2g and 2h.
| E 1 | from the adder / subtractor 2g and | e 2 | from the adder / subtractor 2h. And
By comparing with the set value by the comparators 6a and 6b in the same manner as described above, the DC amount | e 1 |
Or OR by detecting an increase in the DC amount | e 2 |
The gate 7 outputs a failure detection signal. The input of the function generator 8 may take in the system voltage of another phase.

【0049】次いで、図3は第3の発明の一実施例を示
す機能ブロック図であり、図1または図2と同一の構成
要素には同一の符号を付してある。この実施例は、正相
電圧e1及び逆相電圧e2の虚数部を正相電圧e1及び逆
相電圧e2の直流量に変換してその減少、増加から系統
故障を検出するものである。すなわち、前記数式13及
び数式17の演算を正相・逆相電圧演算手段100A内
の移相器1b,1c、加減算器2b,2c,2d、ゲイ
ン調整器3a,3dにより行なってe1I,e2Iを求め、
正相・逆相電圧変換手段200B内の整流回路9a,9
bにより整流してフィルタ10a,10bにより平滑し
た後、故障検出手段300内のコンパレータ6a,6b
にて|e1|の減少または|e2|の増加を検出すること
により、ORゲート7から故障検出信号を得る。
FIG. 3 is a functional block diagram showing an embodiment of the third invention, in which the same components as those in FIG. 1 or 2 are denoted by the same reference numerals. This embodiment is the reduced, it detects a system fault from increased converts the imaginary part of the positive phase voltage e 1 and negative phase voltage e 2 into a DC of positive-phase voltage e 1 and negative phase voltage e 2 is there. That is, the operations of Equations 13 and 17 are performed by the phase shifters 1b, 1c, the adders / subtractors 2b, 2c, 2d, and the gain adjusters 3a, 3d in the positive-phase / negative-phase voltage calculating means 100A, and e 1I , e. Find 2I ,
Rectifier circuits 9a and 9 in positive-phase / negative-phase voltage conversion means 200B
b and smoothed by the filters 10a and 10b, and then the comparators 6a and 6b in the failure detecting means 300.
Detects a decrease in | e 1 | or an increase in | e 2 | to obtain a failure detection signal from the OR gate 7.

【0050】更に、図4は第4の発明の一実施例を示す
機能ブロック図であり、図1ないし図3と同一の構成要
素には同一の符号を付してある。この実施例は、正相電
圧e1及び逆相電圧e2の実数部を正相電圧e1及び逆相
電圧e2の直流量に変換してその減少、増加から系統故
障を検出するものである。すなわち、前記数式12及び
数式16の演算を正相・逆相電圧演算手段100B内の
移相器1a、加減算器2a,2e,2f、ゲイン調整器
3b,3cにより行なってe1R,e2Rを求め、正相・逆
相電圧変換手段200B内の整流回路9a,9b及びフ
ィルタ10a,10bにより整流平滑した後、上記同様
に故障検出手段300に入力して故障検出信号を得るも
のである。
FIG. 4 is a functional block diagram showing an embodiment of the fourth invention, and the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals. This embodiment is the reduced, it detects a system fault from increased converts the real part of the positive phase voltage e 1 and negative phase voltage e 2 into a DC of positive-phase voltage e 1 and negative phase voltage e 2 is there. That is, the operations of Equations 12 and 16 are performed by the phase shifter 1a, the adders / subtractors 2a, 2e, 2f, and the gain adjusters 3b, 3c in the positive-phase / negative-phase voltage calculation means 100B, and e 1R and e 2R are calculated. Then, after rectification and smoothing by the rectifier circuits 9a and 9b and the filters 10a and 10b in the positive-phase / negative-phase voltage conversion means 200B, they are input to the failure detection means 300 in the same manner as described above to obtain a failure detection signal.

【0051】なお、図示しないが、数式13及び数式1
6の演算によりe1I,e2Rを求め、または数式12及び
数式17の演算によりe1R,e2Iを求めて図3、図4と
同様に正相・逆相電圧変換手段200B以後の処理を行
なうことにより、故障検出を行なうことも可能である。
Although not shown, Equations 13 and 1
6 calculated by e 1I of seeking e 2R, or e 1R by calculation of Equation 12 and Equation 17, Figure 3 seeking e 2I, the process of the positive and negative phase voltage converter 200B after the same manner as FIG. 4 By doing so, it is possible to detect a failure.

【0052】[0052]

【発明の効果】以上のように、第1ないし第4の発明に
よれば、三相系統電圧を入力として対称座標変換により
正相電圧及び逆相電圧に変換し、これらを分離して設定
値と比較することにより系統故障を検出するものである
から、地絡や線間短絡等の全てのモードにつき不平衡故
障も含めて、検出の遅れなく高速かつ正確に系統故障を
検出することができる。
As described above, according to the first to fourth aspects of the present invention, the three-phase system voltage is input and converted into a positive-phase voltage and a negative-phase voltage by symmetrical coordinate conversion, and these are separated to set values. The system fault is detected by comparing with, so that the system fault can be detected quickly and accurately without delay in detection, including the unbalance fault in all modes such as ground fault and short circuit between lines. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明の一実施例を示す機能ブロック図で
ある。
FIG. 1 is a functional block diagram showing an embodiment of the first invention.

【図2】第2の発明の一実施例を示す機能ブロック図で
ある。
FIG. 2 is a functional block diagram showing an embodiment of the second invention.

【図3】第3の発明の一実施例を示す機能ブロック図で
ある。
FIG. 3 is a functional block diagram showing an embodiment of the third invention.

【図4】第4の発明の一実施例を示す機能ブロック図で
ある。
FIG. 4 is a functional block diagram showing an embodiment of the fourth invention.

【図5】従来の技術を示す機能ブロック図である。FIG. 5 is a functional block diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1a,1b,1c 移相器 2a,2b,2c,2d,2e,2f 加減算器 3a,3b,3c,3d ゲイン調整器 4a,4b,4c,4d 乗算器 5a,5b 平方根演算器 6a,6b コンパレータ 7 ORゲート 8 関数発生器 9a,9b 整流回路 10a,10b フィルタ 100,100A,100B 正相・逆相電圧演算手段 200,200A,200B 正相・逆相電圧変換手段 300 故障検出手段 1a, 1b, 1c Phase shifter 2a, 2b, 2c, 2d, 2e, 2f Adder / subtractor 3a, 3b, 3c, 3d Gain adjuster 4a, 4b, 4c, 4d Multiplier 5a, 5b Square root calculator 6a, 6b Comparator 7 OR gate 8 Function generator 9a, 9b Rectifier circuit 10a, 10b Filter 100, 100A, 100B Positive / negative phase voltage calculating means 200, 200A, 200B Positive / negative phase voltage converting means 300 Failure detecting means

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 三相系統電圧及びこれらに対し各々90
°の位相差をもつ電圧を用いて対称座標変換により正相
電圧及び逆相電圧の実数部及び虚数部をそれぞれ演算す
る正相・逆相電圧演算手段と、前記正相電圧の実数部及
び虚数部の各二乗和と、前記逆相電圧の実数部及び虚数
部の各二乗和とに基づいて正相電圧及び逆相電圧を直流
量にそれぞれ変換する正相・逆相電圧変換手段と、前記
正相電圧の直流量が設定値よりも小さくなったこと、ま
たは、逆相電圧の直流量が設定値よりも大きくなったこ
とを検出して系統故障を検出する故障検出手段と、を備
えたことを特徴とする電力系統故障検出回路。
1. Three-phase system voltages and 90% each for these
Positive and negative phase voltage calculation means for calculating the real and imaginary parts of the positive and negative phase voltages by symmetric coordinate conversion using a voltage having a phase difference of °, and the real and imaginary parts of the positive phase voltage A positive-phase / negative-sequence voltage conversion means for converting a positive-phase voltage and a negative-phase voltage into a DC amount based on each of the square sums of the real part and the imaginary part of the negative-phase voltage, respectively, Failure detection means for detecting that the DC amount of the positive-phase voltage has become smaller than the set value, or detecting that the DC amount of the negative-phase voltage has become larger than the set value, thereby detecting a system failure. A power system failure detection circuit characterized by the above-mentioned.
【請求項2】 三相系統電圧及びこれらに対し各々90
°の位相差をもつ電圧を用いて対称座標変換により正相
電圧及び逆相電圧の実数部及び虚数部をそれぞれ演算す
る正相・逆相電圧演算手段と、一相の系統電圧に同期し
た基準正弦波を前記各虚数部に乗算して得た量と、一相
の系統電圧に同期した基準余弦波を前記各実数部に乗算
して得た量とを正相電圧、逆相電圧ごとに加算して正相
電圧及び逆相電圧を直流量にそれぞれ変換する正相・逆
相電圧変換手段と、前記正相電圧の直流量が設定値より
も小さくなったこと、または、逆相電圧の直流量が設定
値よりも大きくなったことを検出して系統故障を検出す
る故障検出手段と、を備えたことを特徴とする電力系統
故障検出回路。
2. The three-phase system voltage and for each of them 90
Positive-phase / negative-phase voltage calculating means for calculating the real part and the imaginary part of the positive-phase voltage and the negative-phase voltage by symmetric coordinate conversion using a voltage having a phase difference of °, and a reference synchronized with the one-phase system voltage. The amount obtained by multiplying each of the imaginary parts by the sine wave and the amount obtained by multiplying each of the real parts by the reference cosine wave synchronized with the one-phase system voltage are represented by a positive-phase voltage and a negative-phase voltage, respectively. Positive-phase / negative-phase voltage conversion means for adding and converting the positive-phase voltage and the negative-phase voltage into DC amounts, respectively, and that the DC amount of the positive-phase voltage is smaller than a set value, or A power system failure detection circuit, comprising: a failure detection unit that detects that a DC amount has become larger than a set value and detects a system failure.
【請求項3】 三相系統電圧の一相の電圧と、他の二相
の電圧に対し各々90°の位相差をもつ電圧とを用いて
対称座標変換により正相電圧及び逆相電圧の虚数部をそ
れぞれ演算する正相・逆相電圧演算手段と、前記正相電
圧及び逆相電圧の虚数部を整流して正相電圧及び逆相電
圧を直流量にそれぞれ変換する正相・逆相電圧変換手段
と、正相電圧の直流量が設定値よりも小さくなったこ
と、または、逆相電圧の直流量が設定値よりも大きくな
ったことを検出して系統故障を検出する故障検出手段
と、を備えたことを特徴とする電力系統故障検出回路。
3. An imaginary number of a positive-phase voltage and a negative-phase voltage by symmetric coordinate conversion using a one-phase voltage of a three-phase system voltage and voltages having a phase difference of 90 ° with respect to the other two-phase voltages. And negative-phase voltage calculating means for calculating the positive-phase and negative-phase voltages, respectively, and rectifying the imaginary part of the positive-phase and negative-phase voltages to convert the positive-phase and negative-phase voltages into DC quantities, respectively. Conversion means, and fault detection means for detecting that the DC amount of the positive-sequence voltage has become smaller than the set value, or detecting that the DC amount of the negative-sequence voltage has become larger than the set value, thereby detecting a system fault. And a power system fault detection circuit.
【請求項4】 三相系統電圧の二相の電圧と、他の一相
の電圧に対し90°の位相差をもつ電圧とを用いて対称
座標変換により正相電圧及び逆相電圧の実数部をそれぞ
れ演算する正相・逆相電圧演算手段と、前記正相電圧及
び逆相電圧の実数部を整流して正相電圧及び逆相電圧を
直流量にそれぞれ変換する正相・逆相電圧変換手段と、
正相電圧の直流量が設定値よりも小さくなったこと、ま
たは、逆相電圧の直流量が設定値よりも大きくなったこ
とを検出して系統故障を検出する故障検出手段と、を備
えたことを特徴とする電力系統故障検出回路。
4. A real part of a positive-phase voltage and a negative-phase voltage by symmetric coordinate conversion using a two-phase voltage of a three-phase system voltage and a voltage having a phase difference of 90 ° with respect to another one-phase voltage. And a positive-phase / negative-phase voltage conversion means for rectifying the real parts of the positive-phase voltage and the negative-phase voltage to convert the positive-phase voltage and the negative-phase voltage into DC values, respectively. Means,
Failure detection means for detecting that the DC amount of the positive-phase voltage has become smaller than the set value, or detecting that the DC amount of the negative-phase voltage has become larger than the set value, thereby detecting a system failure. A power system failure detection circuit characterized by the above-mentioned.
JP5581891A 1991-02-26 1991-02-26 Power system failure detection circuit Expired - Fee Related JP2964673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5581891A JP2964673B2 (en) 1991-02-26 1991-02-26 Power system failure detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5581891A JP2964673B2 (en) 1991-02-26 1991-02-26 Power system failure detection circuit

Publications (2)

Publication Number Publication Date
JPH04271226A JPH04271226A (en) 1992-09-28
JP2964673B2 true JP2964673B2 (en) 1999-10-18

Family

ID=13009530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5581891A Expired - Fee Related JP2964673B2 (en) 1991-02-26 1991-02-26 Power system failure detection circuit

Country Status (1)

Country Link
JP (1) JP2964673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947970A1 (en) * 2009-07-09 2011-01-14 Denso Corp Power converter for a rotary electric machine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433285B2 (en) * 1998-10-22 2003-08-04 株式会社日立製作所 Variable speed generator motor system
GB2455491A (en) * 2007-10-02 2009-06-17 Deepstream Technologies Ltd Real current circuit protection device
JP6419565B2 (en) * 2014-12-15 2018-11-07 株式会社日立製作所 Detection device, power conversion device, detection method using three-phase alternating current as input, and control method for power conversion device.
CN107478917B (en) * 2017-07-17 2019-10-29 国网江西省电力公司电力科学研究院 The determination method and device of a kind of area's degree of unbalancedness
EP4228139A4 (en) * 2020-10-05 2024-07-10 Toshiba Mitsubishi Electric Industrial Systems Corp Control device of power converter device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947970A1 (en) * 2009-07-09 2011-01-14 Denso Corp Power converter for a rotary electric machine

Also Published As

Publication number Publication date
JPH04271226A (en) 1992-09-28

Similar Documents

Publication Publication Date Title
US5602469A (en) Apparatus for detecting the amplitude and phase of an a.c. signal
US11774994B2 (en) Method for current limitation of a virtual synchronous machine
CN108879775B (en) Power grid unbalanced photovoltaic inverter coordination control method considering current limit value
CN111600318B (en) Current detection method for realizing target three-phase unbalance
CN109256789B (en) Three-phase unbalance adjusting device and current limiting method thereof
JP2964673B2 (en) Power system failure detection circuit
Hu et al. Transient stability margin assessment of AC/DC hybrid system with commutation failure involved
JP2003224928A (en) Digital directional relay
CN111162563B (en) Power grid voltage fast phase locking method with strong robustness
KR102200554B1 (en) Phase detecting device of system voltage
JP3015575B2 (en) Voltage drop detector
CN109802434B (en) Grid-connected current balance control system of three-phase cascade photovoltaic inverter
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
WO2023058196A1 (en) Power conversion device and control device
JP2012080666A (en) Power conversion device
JP2009050091A (en) Phase detector
EP0186513B1 (en) Control method for cycloconverter and control apparatus therefor
US20220334151A1 (en) Open-phase detection circuit and power conversion apparatus
CN111969643A (en) Differential flat control method for MMC-HVDC (modular multilevel converter-high voltage direct current) supplying power to passive network under asymmetric fault
JPWO2021090370A5 (en) Power converter
JP2007225427A (en) Power interruption detecting circuit and uninterruptible power supply unit
JP4191582B2 (en) AC voltage drop detection device
JP3505626B2 (en) Power converter and power converter controller
AU2021436071B2 (en) Power conversion device and control device
CN112909947B (en) Active power balancing method of alternating current-direct current converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

LAPS Cancellation because of no payment of annual fees