JPH0590697A - Manufacture of semiconductor laser - Google Patents
Manufacture of semiconductor laserInfo
- Publication number
- JPH0590697A JPH0590697A JP3248591A JP24859191A JPH0590697A JP H0590697 A JPH0590697 A JP H0590697A JP 3248591 A JP3248591 A JP 3248591A JP 24859191 A JP24859191 A JP 24859191A JP H0590697 A JPH0590697 A JP H0590697A
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- growth
- semiconductor laser
- crystal growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 230000012010 growth Effects 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims description 8
- 238000005253 cladding Methods 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 238000001947 vapour-phase growth Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 23
- 230000010355 oscillation Effects 0.000 abstract description 15
- 239000011701 zinc Substances 0.000 abstract description 13
- 239000002019 doping agent Substances 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 4
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 10
- 238000005530 etching Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32325—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/04—MOCVD or MOVPE
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2231—Buried stripe structure with inner confining structure only between the active layer and the upper electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3054—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザプリンタ,バー
コードリーダ等の光源に用いられる半導体レーザに関
し、特に発振波長680nm以下の可視光半導体レーザ
の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source for a laser printer, a bar code reader and the like, and more particularly to a method for manufacturing a visible light semiconductor laser having an oscillation wavelength of 680 nm or less.
【0002】[0002]
【従来の技術】従来の半導体レーザの製造方法について
以下説明する。半導体レーザの構造を図4に示す。従来
例の製造方法は、1回目の結晶成長を有機金属成長法
(以下MO−VPE法)により成長温度700〜730
℃で、n型GaAs(100)基板(1)上に発光領域
となるGa0.5 In0.5P活性層(4)をこれよりも禁
制帯幅の大きい(Al0.7 Ga0.3 )0.5 In0.5 Pク
ラッド層(3),(5)ではさんでなるダブルヘテロ構
造を構成する。2. Description of the Related Art A conventional method of manufacturing a semiconductor laser will be described below. The structure of the semiconductor laser is shown in FIG. In the manufacturing method of the conventional example, the first crystal growth is performed at a growth temperature of 700 to 730 by a metal organic growth method (hereinafter, MO-VPE method).
At 0.5 ° C., a Ga 0.5 In 0.5 P active layer (4), which becomes a light emitting region, is formed on the n-type GaAs (100) substrate (1) with an (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer having a larger forbidden band. A double hetero structure composed of (3) and (5) is formed.
【0003】次に、リッジストライプ形成用のエッチン
グマスク兼、選択成長用マスクとなる酸化膜を成膜し、
ホトレジスト法により〔0−11〕方向に酸化膜ストラ
イプを形成し、エッチングによりp型クラッド層(5)
の途中までエッチングする。Next, an oxide film is formed which serves as an etching mask for forming a ridge stripe and a mask for selective growth.
An oxide film stripe is formed in the [0-11] direction by the photoresist method, and the p-type cladding layer (5) is formed by etching.
Etch halfway.
【0004】続いて、2回目の結晶成長を行うが、酸化
膜をマスクとした選択成長を行ない、電流ブロック層
(7)を成長する。その後、酸化膜を除去した後、全面
にp型GaAsコンタクト層(8)を成長させ、電極
(9),(10)を付け従来例の半導体レーザが得られ
る。Subsequently, the crystal is grown for the second time, and selective growth is carried out using the oxide film as a mask to grow the current block layer (7). Then, after removing the oxide film, a p-type GaAs contact layer (8) is grown on the entire surface, electrodes (9) and (10) are attached, and a conventional semiconductor laser is obtained.
【0005】従来例の半導体レーザの特性のうち発振し
きい値は、p型クラッド層(5)のZnキャリア濃度に
大きく依存し、たとえば、キャリア濃度3.5×1017
cm-3で発振しきい値38mAと報告されている。この
ときの共振器長は300μmである。また、最高発振濃
度は、100℃となっており、信頼性については報告さ
れていない。この従来例は、1989年春応物予稿集8
66頁1p−ZC−4に示されている。Among the characteristics of the semiconductor laser of the conventional example, the oscillation threshold greatly depends on the Zn carrier concentration of the p-type cladding layer (5). For example, the carrier concentration is 3.5 × 10 17.
The oscillation threshold is reported to be 38 mA at cm -3 . At this time, the resonator length is 300 μm. Further, the maximum oscillation density is 100 ° C., and the reliability is not reported. This conventional example is the 1989 Spring Biography Proceedings 8
See page 66, 1p-ZC-4.
【0006】[0006]
【発明が解決しようとする課題】本発明に係わるAlG
aInP系の半導体レーザの発光領域に用いるGa0.5
In0.5 Pには、ジャパン・ジャーナル・オブ・アプラ
イド・フィジクス(Jpn.J.Appl.Phy
s.)27,p2098(1988)に報告されている
ように、MO−VPE法における結晶成長温度Tgに対
してバンドキャップEgが変化するという特徴があり、
成長温度を高くすれば、発振波長の短い半導体レーザが
得られる。しかし、成長温度を高くなるとp型クラッド
層(5)へのZnドーピングは困難になるのが一般的で
ある。また、(Aly Ga1-y )0.5 In0.5 Pにドー
ピングされたZnは拡散しやすく、温度が高いと拡散は
より進み、特に活性層へZnが入ると半導体レーザの信
頼性は悪化する。そのため、実用に耐える特性を有する
半導体レーザを得ることは難しくなるという問題があっ
た。AlG according to the present invention
Ga 0.5 used for light emitting region of aInP-based semiconductor laser
For In 0.5 P, Japan Journal of Applied Physics (Jpn. J. Appl. Phy
s. ) 27, p2098 (1988), the band cap Eg changes with the crystal growth temperature Tg in the MO-VPE method.
If the growth temperature is raised, a semiconductor laser with a short oscillation wavelength can be obtained. However, it is generally difficult to dope Zn into the p-type cladding layer (5) when the growth temperature is increased. Further, (Al y Ga 1-y ) 0.5 In 0.5 Zn doped with P is easily diffused, the temperature is high and the diffusion proceeds more, the reliability of the semiconductor laser is exacerbated especially Zn enters the active layer. Therefore, there is a problem that it is difficult to obtain a semiconductor laser having characteristics that can be used practically.
【0007】[0007]
【課題を解決するための手段】本発明の半導体レーザの
製造方法は、各半導体層の結晶成長速度を2.5μm/
h以上にする。According to the method of manufacturing a semiconductor laser of the present invention, the crystal growth rate of each semiconductor layer is 2.5 μm /
h or more.
【0008】[0008]
【作用】本発明の半導体レーザの製造方法において、結
晶成長速度を速くすることにより、p型(Aly Ga
1-y )0.5 In0.5 pクラッド層へのp型ドーパントの
ドーピング効率が増し、発振波長の短波長化を狙った高
い成長温度においても、十分なキャリア濃度が得られ、
さらに全ての結晶成長時間が短縮され、p型クラッド層
にドーピングしたドーパントの活性層への拡散も低減で
きる。In the method of manufacturing a semiconductor laser according to the present invention, by increasing the crystal growth rate, p-type (Al y Ga
1-y ) 0.5 In 0.5 p The doping efficiency of the p-type dopant in the clad layer is increased, and a sufficient carrier concentration can be obtained even at a high growth temperature aimed at shortening the oscillation wavelength.
Further, all the crystal growth time is shortened, and the diffusion of the dopant doped in the p-type cladding layer into the active layer can be reduced.
【0009】[0009]
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の効果を表わす結晶成長速度とキャリ
ア濃度の関係図である。成長条件としては、成長温度7
20℃,[ジメチルジンク]/[3族総量]=一定とし
ての結果である。このように結晶成長速度を速くするこ
とによりキャリア濃度が変わる理由として、結晶に取り
込まれるZn原子と結晶から気相へ解離するZn原子の
比率の変化するためで、結晶成長速度が速いと気相へ解
離するZnが低減されるためキャリア濃度が高くするこ
とができると考えられる。The present invention will be described below with reference to the drawings. FIG. 1 is a graph showing the relationship between the crystal growth rate and the carrier concentration, which represents the effect of the present invention. The growth conditions include a growth temperature of 7
The results are obtained at 20 ° C., [dimethyl zinc] / [total amount of Group 3] = constant. The reason why the carrier concentration is changed by increasing the crystal growth rate in this way is that the ratio of Zn atoms taken into the crystal and Zn atoms dissociated from the crystal into the vapor phase is changed. It is considered that the carrier concentration can be increased because the amount of Zn dissociated into is reduced.
【0010】図2は、図1に示した成長濃度のうち結晶
成長速度を3.5μm/hで作製した半導体レーザの断
面図である。まず、1回目の結晶成長をMO−VPE法
により成長温度720℃,成長圧力30Torrで行
う。層構造は、n型GaAs(100)基板(1)上に
Siドープn型GaAsバッファ層(2)キャリア濃度
1×1018cm-3を0.2μm,Siドープル型(Al
0.6 Ga0.4 )0.5 In0.5 Pクラッド層キャリア濃度
5×1017cm-3を1μm、アンドープGa0.5 In
0.5 P活性層(4)を0.07μm、Znドープp型
(Al0.6 Ga0.4 )0.5 In0.5 Pクラッド層
(5)、キャリア濃度5×1017cm-3を1μm,Zn
ドープp型Ga0.5 In0.5 P層(6)キャリア濃度1
×1018cm-3を0.1μm積層する。FIG. 2 is a sectional view of a semiconductor laser manufactured at a crystal growth rate of 3.5 μm / h among the growth concentrations shown in FIG. First, the first crystal growth is performed by MO-VPE method at a growth temperature of 720 ° C. and a growth pressure of 30 Torr. The layer structure is as follows: Si-doped n-type GaAs buffer layer (2) Carrier concentration 1 × 10 18 cm −3 0.2 μm on Si-doped GaAs (100) substrate (1)
0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer carrier concentration 5 × 10 17 cm −3 of 1 μm, undoped Ga 0.5 In
0.5 P active layer (4) 0.07 μm, Zn-doped p-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer (5), carrier concentration 5 × 10 17 cm −3 1 μm, Zn
Doped p-type Ga 0.5 In 0.5 P layer (6) Carrier concentration 1
× 10 18 cm −3 is laminated in a thickness of 0.1 μm.
【0011】続いて、リッジストライプ形成用のエッチ
ングマスク兼、選択成長用マスクとなるSiO2 酸化膜
を0.2μm成膜し、ホトレジスト法により〔0−1
1〕方向にSiO2 酸化膜ストライプを形成し、硫酸系
エッチング液によりp型クラッド層(5)を0.25μ
m残すエッチングを行う。リッジ幅W1 は5μmとす
る。Then, a SiO 2 oxide film is formed to a thickness of 0.2 μm to serve as an etching mask for forming the ridge stripe and a mask for selective growth.
1] direction, a SiO 2 oxide film stripe is formed, and the p-type clad layer (5) is 0.25 μm with a sulfuric acid-based etching solution.
The remaining etching is performed. The ridge width W 1 is 5 μm.
【0012】次に2回目の結晶成長をMO−VPE法に
より成長温度650℃でリッジストライプの両側にSi
O2 酸化膜をマスクとした選択成長により、Siドープ
n型GaAs電流ブロック層(7)キャリア濃度3×1
018cm-3を0.8μm成長する。そして、SiO2 酸
化膜を除去した後、3回目の結晶成長をMO−VPE法
により成長温度650℃で、全面にZnドープp型Ga
Asコンタクト層(8)キャリア濃度2−1019c
m-3,厚さ3μmを成長し、電極(9),(10)を形
成して半導体レーザが得らえる。半導体レーザの特性と
しては、共振器長350μmで発振しきい値35〜30
mA,発振波長670nm,最高発振温度110℃まで
の特性が得られた。Next, the second crystal growth was performed by MO-VPE at a growth temperature of 650 ° C. on both sides of the ridge stripe.
Si-doped n-type GaAs current block layer (7) carrier concentration 3 × 1 by selective growth using O 2 oxide film as a mask
0 18 cm −3 is grown to 0.8 μm. Then, after removing the SiO2 oxide film, the third crystal growth is performed by MO-VPE at a growth temperature of 650 DEG C. and Zn-doped p-type Ga is formed on the entire surface.
As contact layer (8) carrier concentration 2-10 19 c
A semiconductor laser is obtained by growing m −3 and a thickness of 3 μm and forming electrodes (9) and (10). The characteristics of the semiconductor laser are that the cavity length is 350 μm and the oscillation threshold is 35 to 30.
Characteristics up to mA, oscillation wavelength of 670 nm, and maximum oscillation temperature of 110 ° C. were obtained.
【0013】また、図3に示す半導体レーザは、図2と
同様の成長条件で、1回目の結晶成長で、n型GaAs
電流ブロック層(7)まで成長した後、ホトレジスト法
により、〔0−11〕方向にストライプ状の溝をリン酸
系エッチング液で形成する。続いて、2回目の結晶成長
をMO−VPE法により成長温度650℃で全面にZn
ドープp型GaAsコンタクト層(8)キャリア濃度2
×1019cm-3,厚さ3μmを成長し、電極(9),
(10)を形成して半導体レーザが得られる。半導体レ
ーザの特性としては、共振器300μmで発振しきい値
75mA,発振波長670nm,最高発振温度120℃
までの特性が得られた。The semiconductor laser shown in FIG. 3 has the same growth conditions as in FIG.
After growing up to the current blocking layer (7), stripe-shaped grooves are formed in the [0-11] direction with a phosphoric acid-based etching solution by a photoresist method. Subsequently, the second crystal growth was performed by MO-VPE at a growth temperature of 650 ° C. on the entire surface with Zn.
Doped p-type GaAs contact layer (8) Carrier concentration 2
× 10 19 cm −3 , thickness 3 μm, electrode (9),
A semiconductor laser is obtained by forming (10). The characteristics of the semiconductor laser are that the resonator has an oscillation threshold of 75 mA at 300 μm, an oscillation wavelength of 670 nm, and a maximum oscillation temperature of 120 ° C.
The characteristics up to were obtained.
【0014】[0014]
【発明の効果】以上説明したように本発明は、結晶成長
速度を2.5μm/n以上として、図1に示すように、
p型ドーパントZnのドーピング効率を改善すること
で、高い成長温度、例えば720℃でも実用に耐えられ
るレーザ特性を有する半導体レーザが得られる。その理
由は、複数回の結晶成長の間に高い温度に保持されてい
る時間が短くなるため、結晶内で拡散しやすいZnのp
型クラッド層(5)から活性層(4)への拡散を低減で
き、従来の半導体レーザよりも急峻性の良いp−n接合
が得られ、温度特性が改善される。例えば、図2に示し
た半導体レーザでは、共振器長350μmで、発振しき
い値40mA,発振波長670nm,の特性で、ケース
温度70℃,光出力5mWの定光出力試験で5000時
間以上の信頼性が得られるという効果を有する。As described above, according to the present invention, the crystal growth rate is set to 2.5 μm / n or more, as shown in FIG.
By improving the doping efficiency of the p-type dopant Zn, a semiconductor laser having laser characteristics that can withstand practical use even at a high growth temperature, for example, 720 ° C. can be obtained. The reason is that the time period during which the temperature is kept high during a plurality of crystal growths becomes short, so that Zn p that easily diffuses in the crystal is reduced.
Diffusion from the type cladding layer (5) to the active layer (4) can be reduced, a pn junction having a steeper than a conventional semiconductor laser can be obtained, and temperature characteristics are improved. For example, the semiconductor laser shown in FIG. 2 has a cavity length of 350 μm, an oscillation threshold of 40 mA, and an oscillation wavelength of 670 nm, and has a case temperature of 70 ° C. and an optical output of 5 mW. Has the effect of being obtained.
【0015】また、1回の成長時間が短くなるので、生
産性の向上も可能となる。Further, since the growth time for one cycle is shortened, the productivity can be improved.
【図1】本発明にかかわる結晶成長速度とZnキャリア
濃度の関係を示す図。FIG. 1 is a diagram showing a relationship between a crystal growth rate and a Zn carrier concentration according to the present invention.
【図2】本発明により作製した半導体レーザの断面図。FIG. 2 is a sectional view of a semiconductor laser manufactured according to the present invention.
【図3】本発明により作製した半導体レーザの断面図FIG. 3 is a sectional view of a semiconductor laser manufactured according to the present invention.
【図4】従来例の半導体レーザの断面図。FIG. 4 is a sectional view of a conventional semiconductor laser.
1 n型GaAs基板 2 n型GaAsバッファ層 3 n型(Aly Ga1-y )0.5 In0.5 Pクラッド
層(0.5≦y≦1) 4 アンドープ(Alz Ga1-z )0.5 In0.5 P活
性層(0≦z≦0.3) 5 p型(Aly Ga1-y )0.5 In0.5 Pクラッド
層(0.5≦y≦1) 6 p型Ga0.5 In0.5 P層 7 n型GaAs電流ブロック層 8 p型GaAsコンタクト層 9,10 電極1 n-type GaAs substrate 2 n-type GaAs buffer layer 3 n-type (Al y Ga 1-y ) 0.5 In 0.5 P clad layer (0.5 ≦ y ≦ 1) 4 undoped (Al z Ga 1-z ) 0.5 In 0.5 P active layer (0 ≦ z ≦ 0.3) 5 p -type (Al y Ga 1-y) 0.5 In 0.5 P cladding layer (0.5 ≦ y ≦ 1) 6 p -type Ga 0.5 an In 0.5 P layer 7 n-type GaAs current blocking layer 8 p-type GaAs contact layer 9 and 10 electrodes
Claims (1)
a1-y)0.5 In0.5 P(0.5≦y≦1)クラッド
層、(Alz Ga1-z )0.5 In0.5P(0≦z≦0.
3)活性層、p型(Aly Ga1-y )0.5 In0.5 Pク
ラッド層、p型Ga0.5 In0.5 P層を有機金属気相成
長方法により順次結晶成長して多層積層構造を形成し、
次いで多層積層構造にストライプ構造を形成する半導体
レーザの製造方法において、前記各半導体層の成長速度
を2.5μm/h以上としたことを特徴とする半導体レ
ーザの製造方法。1. A semiconductor substrate, at least n-type (Al y G
a 1-y ) 0.5 In 0.5 P (0.5 ≦ y ≦ 1) cladding layer, (Al z Ga 1-z ) 0.5 In 0.5 P (0 ≦ z ≦ 0.
3) an active layer, p-type (Al y Ga 1-y) 0.5 In 0.5 P clad layer and a p-type Ga 0.5 In 0.5 P layer are sequentially grown by metal organic vapor phase growth method to form a multilayered structure,
Next, in a method of manufacturing a semiconductor laser in which a stripe structure is formed in a multilayer laminated structure, a growth rate of each of the semiconductor layers is set to 2.5 μm / h or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3248591A JP2737477B2 (en) | 1991-09-27 | 1991-09-27 | Manufacturing method of semiconductor laser |
US07/946,757 US5298456A (en) | 1991-09-27 | 1992-09-17 | Method of manufacturing semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3248591A JP2737477B2 (en) | 1991-09-27 | 1991-09-27 | Manufacturing method of semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0590697A true JPH0590697A (en) | 1993-04-09 |
JP2737477B2 JP2737477B2 (en) | 1998-04-08 |
Family
ID=17180400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3248591A Expired - Lifetime JP2737477B2 (en) | 1991-09-27 | 1991-09-27 | Manufacturing method of semiconductor laser |
Country Status (2)
Country | Link |
---|---|
US (1) | US5298456A (en) |
JP (1) | JP2737477B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656539A (en) * | 1994-07-25 | 1997-08-12 | Mitsubishi Denki Kabushiki Kaisha | Method of fabricating a semiconductor laser |
JP3729210B2 (en) * | 1994-07-26 | 2005-12-21 | 富士通株式会社 | Manufacturing method of semiconductor device |
US5756154A (en) * | 1996-01-05 | 1998-05-26 | Motorola, Inc. | Masking methods during semiconductor device fabrication |
JPH11274637A (en) * | 1998-03-20 | 1999-10-08 | Pioneer Electron Corp | Transverse coupling distribution feedback ridge semiconductor laser and manufacture thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4566171A (en) * | 1983-06-20 | 1986-01-28 | At&T Bell Laboratories | Elimination of mask undercutting in the fabrication of InP/InGaAsP BH devices |
JPS6050983A (en) * | 1983-08-30 | 1985-03-22 | Sharp Corp | Manufacture of semiconductor laser element |
US4792958A (en) * | 1986-02-28 | 1988-12-20 | Kabushiki Kaisha Toshiba | Semiconductor laser with mesa stripe waveguide structure |
JPH02178918A (en) * | 1988-12-28 | 1990-07-11 | Toshiba Corp | Manufacture of compound semiconductor crystal layer |
US5192711A (en) * | 1989-09-18 | 1993-03-09 | Mitsubishi Denki Kabushiki Kaisha | Method for producing a semiconductor laser device |
DE69104650T2 (en) * | 1990-06-05 | 1995-03-30 | Matsushita Electric Ind Co Ltd | Method of manufacturing a semiconductor laser. |
-
1991
- 1991-09-27 JP JP3248591A patent/JP2737477B2/en not_active Expired - Lifetime
-
1992
- 1992-09-17 US US07/946,757 patent/US5298456A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US5298456A (en) | 1994-03-29 |
JP2737477B2 (en) | 1998-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3982985B2 (en) | Manufacturing method of semiconductor laser device | |
JPH0856045A (en) | Semiconductor laser device | |
JP2737477B2 (en) | Manufacturing method of semiconductor laser | |
JP2822868B2 (en) | Manufacturing method of semiconductor laser | |
US5304507A (en) | Process for manufacturing semiconductor laser having low oscillation threshold current | |
JP3254812B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP2528877B2 (en) | Semiconductor laser | |
JP2758597B2 (en) | Semiconductor laser device | |
JP3672106B2 (en) | Manufacturing method of edge growth window type semiconductor laser device | |
JPH11145553A (en) | Semiconductor laser device and manufacture thereof | |
KR100363240B1 (en) | Semiconductor laser diode and its manufacturing method | |
JP2924435B2 (en) | Semiconductor laser and method of manufacturing the same | |
JP3719705B2 (en) | Method for manufacturing compound semiconductor device | |
JPH06104534A (en) | Semiconductor laser element | |
JP2003060297A (en) | Semiconductor laser and method of manufacturing the same | |
JP3200507B2 (en) | Manufacturing method of semiconductor laser | |
JP3238971B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2500588B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP3182173B2 (en) | Method for manufacturing semiconductor laser device | |
KR100330591B1 (en) | Method of making semiconductor laser diode | |
JP2000124553A (en) | Semiconductor laser device and manufacture thereof | |
JPH04324689A (en) | Manufacture of semiconductor laser | |
KR100278629B1 (en) | Semiconductor laser diode and manufacturing method thereof | |
JPH07154026A (en) | Semiconductor laser and fabrication thereof | |
JPH02240988A (en) | Semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971209 |