JPH0588768B2 - - Google Patents

Info

Publication number
JPH0588768B2
JPH0588768B2 JP61005740A JP574086A JPH0588768B2 JP H0588768 B2 JPH0588768 B2 JP H0588768B2 JP 61005740 A JP61005740 A JP 61005740A JP 574086 A JP574086 A JP 574086A JP H0588768 B2 JPH0588768 B2 JP H0588768B2
Authority
JP
Japan
Prior art keywords
light
radiation grating
diffracted
reflecting
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61005740A
Other languages
Japanese (ja)
Other versions
JPS62163925A (en
Inventor
Tetsuji Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP574086A priority Critical patent/JPS62163925A/en
Priority to GB8700784A priority patent/GB2185314B/en
Priority to DE3700906A priority patent/DE3700906C2/en
Publication of JPS62163925A publication Critical patent/JPS62163925A/en
Priority to US07/608,629 priority patent/US5036192A/en
Publication of JPH0588768B2 publication Critical patent/JPH0588768B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリーエンコーダーに関し、特に
円周上に例えば透光部と反射部の格子模様を複数
個、周期的に刻んだ放射格子を回転物体に取付
け、該放射格子に例えばレーザーからの光束を照
射し、該放射格子からの回折光を利用して、放射
格子若しくは回転物体の回転速度や回転速度の変
動量等の回転状態を光電的に検出するロータリー
エンコーダーに良好に適用できるものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rotary encoder, and particularly relates to a rotary encoder, in which a radiation grating in which a plurality of grid patterns of, for example, transparent parts and reflective parts are periodically carved on the circumference of a rotating object is used. The radiation grating is irradiated with a beam of light from, for example, a laser, and the diffracted light from the radiation grating is used to photoelectrically measure the rotational state of the radiation grating or rotating object, such as the rotational speed or the amount of variation in rotational speed. This can be well applied to a rotary encoder for detection.

(従来の技術) 従来よりフロツピーデスクの駆動等のコンピユ
ーター機器、プリンター等の事務機器、あるいは
NC工作機械さらにはVTRのキヤプステンモータ
ーや回転ドラム等の回転機構の回転速度や回転速
度の変動量を検出する為の手段として光電的なロ
ータリーエンコーダーが利用されてきている。
(Prior art) Computer equipment such as floppy desk drives, office equipment such as printers, or
Photoelectric rotary encoders have been used as a means to detect the rotational speed and variation in rotational speed of rotating mechanisms such as NC machine tools and VTR capsten motors and rotating drums.

光電的なロータリーエンコーダーは回転軸に連
絡した円板の周囲に透光部と遮光部を等間隔に設
けた、所謂メインスケールとこれに対応してメイ
ンスケールと等しい間隔で透光部と遮光部とを設
けた所謂固定のインデツクススケールとの双方の
スケールを投光手段と受光手段で挾んで対向配置
した所謂インデツクススケール方式の構成を採つ
ている。この方法はメインスケールの回転に伴つ
て双方のスケールの透光部と遮光部の間隔に同期
した信号が得られ、この信号を周波数解析して回
転軸の回転速度の変動を検出している。この為双
方のスケールの透光部と遮光部とのスケール間隔
を細かくすればする程、検出精度を高めることが
できる。しかしながらスケール間隔を細かくする
と回折光の影響で受光手段からの出力信号のS/
N比が低下し検出精度が低下してしまう欠点があ
つた。この為メインスケールの透光部と遮光部の
格子の総本数を固定させ、透光部と遮光部の間隔
を回折光の影響を受けない程度まで拡大しようと
するとメインスケールの円板の直径が増大し更に
厚さも増大し装置全体が大型化し、この結果被検
回転物体への負荷が大きくなつてくる等の欠点が
あつた。
A photoelectric rotary encoder has a so-called main scale in which transparent parts and light-shielding parts are provided at equal intervals around a disc connected to the rotation axis, and correspondingly transparent parts and light-shielding parts are provided at equal intervals to the main scale. A so-called fixed index scale is provided, and a so-called index scale system is adopted in which both scales are placed facing each other with a light emitting means and a light receiving means sandwiched between them. In this method, as the main scale rotates, a signal is obtained that is synchronized with the interval between the light-transmitting part and the light-blocking part of both scales, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. Therefore, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the higher the detection accuracy can be. However, when the scale interval is made finer, the S/ of the output signal from the light receiving means is
There was a drawback that the N ratio decreased and the detection accuracy decreased. For this reason, if you fix the total number of gratings in the light-transmitting part and light-blocking part of the main scale, and try to increase the distance between the light-transmitting part and the light-blocking part to the extent that it is not affected by diffracted light, the diameter of the main scale disc will increase. This increases the size and thickness of the device, making the entire device larger, resulting in disadvantages such as an increase in the load on the rotating object to be tested.

(発明が解決しようとする問題点) 本発明は被検回転物体の負荷が小さく装置全体
の小型化が容易でしかも回転状態を高精度に検出
することのできるロータリーエンコーダーの提供
を目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide a rotary encoder that has a small load on a rotating object to be inspected, is easy to miniaturize the entire device, and is capable of detecting a rotational state with high precision.

(問題点を解決するための手段) 可干渉性の光束を発生する光源と、該光源から
出射した2つの光束をそれぞれ反射手段によつて
反射させて光路を逆行させることにより相対的な
回転を測定されるべき被測定物体に連結される円
板状の放射格子上にそれぞれ2回入射させるよう
に配置された光学系と、該放射格子からの2つの
回折光の干渉光を検出する受光手段とを有し、該
受光手段の検出結果により前記円板の相対的回転
状態を求めるロータリーエンコーダーにおいて、
前記2つの光束それぞれの前記放射格子上への入
射位置を前記放射格子の回転中心に関して略点対
称にすると共に、前記反射手段は前記放射格子か
らの特定次数の回折光の出射方向に光方向を略一
致させたレンズ手段と、該レンズ手段の焦点面近
傍の前記特定の次数の回折光のみを反射させる反
射面とを有していることである。
(Means for solving the problem) A light source that generates a coherent light beam and two light beams emitted from the light source are each reflected by a reflecting means to reverse the optical path, thereby achieving relative rotation. an optical system arranged to make the light incident twice on each disc-shaped radiation grating connected to the object to be measured; and a light receiving means for detecting interference light of the two diffracted lights from the radiation grating. A rotary encoder which obtains the relative rotational state of the disk based on the detection result of the light receiving means,
The incident position of each of the two light beams onto the radiation grating is made substantially point symmetrical with respect to the rotation center of the radiation grating, and the reflecting means directs the light direction in the direction of output of the diffracted light of a specific order from the radiation grating. The present invention includes lens means that are substantially coincident with each other, and a reflecting surface that reflects only the diffracted light of the specific order near the focal plane of the lens means.

この他本発明の特徴は実施例において記載され
ている。
Other features of the invention are described in the Examples.

(実施例) 第1図は本発明の一実施例の光学系の概略図で
ある。
(Embodiment) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.

同図において1はレーザー等の可干渉性の光
源、2はコリメーターレンズ、31,32は偏光ビ
ームスプリツターで、レーザー1からの直線偏光
に対して、その偏光軸が45゜となるように配置さ
れている。41〜45は各々1/4波長板、51〜54
は各々シリンドリカルレンズ、6は円板上に例え
ば透光部と反射部の格子模様を等角度で設けた放
射格子、7は不図示の被検回転物体の回転軸であ
る。91,92は反射鏡、10は1/2波長板、11
はビームスプリツター、121,122は偏光板、
131,132は受光素子である。141,142
集光性の凸レンズ、151,152は凸レンズ14
,142の焦点位置近傍に配置された反射鏡で、
その前面に、光束を制限するマスタ161,162
が設けられている。
In the figure, 1 is a coherent light source such as a laser, 2 is a collimator lens, and 3 1 and 3 2 are polarization beam splitters, whose polarization axis is 45 degrees with respect to the linearly polarized light from laser 1. It is arranged like this. 4 1 to 4 5 are each 1/4 wavelength plate, 5 1 to 5 4
are cylindrical lenses, 6 is a radiation grating in which, for example, a lattice pattern of transparent parts and reflective parts is provided at equal angles on a disk, and 7 is a rotation axis of a rotating object to be tested (not shown). 9 1 and 9 2 are reflecting mirrors, 10 is a 1/2 wavelength plate, 11
is a beam splitter, 12 1 and 12 2 are polarizing plates,
13 1 and 13 2 are light receiving elements. 14 1 and 14 2 are convex lenses with condensing properties, and 15 1 and 15 2 are convex lenses 14
1 , 14 A reflecting mirror placed near the focal position of 2 ,
In front of it are masters 16 1 , 16 2 that limit the luminous flux.
is provided.

本実施例では凸レンズ141、反射鏡151、マ
スク161より反射手段の一部である光学系を構
成している。
In this embodiment, a convex lens 14 1 , a reflecting mirror 15 1 , and a mask 16 1 constitute an optical system that is part of the reflecting means.

次に第1図のロータリーエンコーダーの動作を
説明する。レーザー1より放射された光束は、コ
リメーターレンズ2によつて略平行光束となつて
偏光ビームスプリツター31に入射し、略等光量
で透過、反射される。このうち、透過光束は、1/
4波長板、41を通過して円偏光となり、シリンド
リカルレンズ51を介して、放射格子6上の位置
M1を線状照射する。
Next, the operation of the rotary encoder shown in FIG. 1 will be explained. The light beam emitted from the laser 1 is turned into a substantially parallel light beam by the collimator lens 2, enters the polarizing beam splitter 31 , and is transmitted and reflected in substantially equal amounts. Of these, the transmitted luminous flux is 1/
It passes through a 4-wave plate, 4 1 , becomes circularly polarized light, and passes through a cylindrical lens 5 1 to a position on the radiation grating 6.
Linear irradiation of M 1 .

ここでシリンドリカルレンズ51は、光束を放
射格子6の放射方向と直交する方向に線状照射す
るように必要に応じて配置されている。このよう
に線状照射することにより、放射格子6上での光
束の照射部分に相当する透光部と反射部の格子模
様のピツチ誤差を軽減することができる。
Here, the cylindrical lens 5 1 is arranged as necessary so as to linearly irradiate the luminous flux in a direction perpendicular to the radiation direction of the radiation grating 6 . By performing the linear irradiation in this manner, it is possible to reduce the pitch error in the grid pattern between the light transmitting portion and the reflecting portion corresponding to the irradiated portion of the light beam on the radiation grating 6.

放射格子6上の位置M1に線状照射されて回折
された特定次数の回折光は、シリンドリカルレン
ズ52によつて略平行光束となり光学系の一部で
ある凸レンズ141に入射する。第2図は本実施
例における反射手段の一部である光学系の概略図
であり、第2図より理解されるように凸レンズ1
1の光軸は入射する特定次数の回折光の進行方
向と略一致しており、反射鏡151は凸レンズ1
1の略焦点面に配置されている。この為凸レン
ズ141に平行で入射した光束はマスク161を介
し反射鏡151上に集光する。集光された光束は、
反射されて元の光路を戻つて放射格子6上の位置
M1を再照射する。そしてM1で再回折された光束
は、1/4波長板41を通つて偏光ビームスプリツタ
ー31で反射され、1/4波長板42を介して反射鏡
1で反射され、再び1/4波長板42を介して偏光
ビームスプリツター31を透過する。そして1/2波
長板10によつて偏光方位が90゜回転して偏光ビ
ームスプリツター32で反射され、1/4波長板45
を介して、ビームスプリツター11で分割され偏
光板121,122を介して受光素子131,132
で受光される。
The diffracted light of a specific order, which is linearly irradiated onto the position M 1 on the radiation grating 6 and diffracted, becomes a substantially parallel light beam by the cylindrical lens 5 2 and enters the convex lens 14 1 which is a part of the optical system. FIG. 2 is a schematic diagram of an optical system that is a part of the reflecting means in this embodiment, and as can be understood from FIG. 2, the convex lens 1
The optical axis of 4 1 substantially coincides with the traveling direction of the incident diffracted light of a specific order, and the reflecting mirror 15 1 is a convex lens 1
4 It is arranged approximately at the focal plane of 1 . Therefore, the light flux that is parallel to the convex lens 14 1 is focused on the reflecting mirror 15 1 via the mask 16 1 . The focused luminous flux is
It is reflected and returns to the original optical path to a position on the radiation grating 6.
Re-irradiate M1 . The light beam re-diffracted by M1 passes through a quarter-wave plate 41 , is reflected by a polarizing beam splitter 31 , passes through a quarter-wave plate 42 , is reflected by a reflecting mirror 91 , and is again The light is transmitted through the polarizing beam splitter 3 1 via the 1/4 wavelength plate 4 2 . Then, the polarization direction is rotated by 90 degrees by the 1/2 wavelength plate 10, reflected by the polarizing beam splitter 32 , and then reflected by the 1/4 wavelength plate 45.
The light is split by the beam splitter 11 and sent to the light receiving elements 13 1 , 13 2 via the polarizing plates 12 1 , 12 2 .
The light is received by

一方、レーザー1から放射されて、偏光ビーム
スプリツター31で反射された光束は、1/2波長板
10を通つて、偏光ビームスプリツター32を透
過し、1/4波長板43を介して反射鏡92で反射さ
れて、偏光ビームスプリツター32で反射され、
1/4波長板44、シリンドリカルレンズ53を介し
て、放射格子6上の位置M2を線状照射する。
On the other hand, the light beam emitted from the laser 1 and reflected by the polarizing beam splitter 3 1 passes through the 1/2 wavelength plate 10 , passes through the polarizing beam splitter 3 2 , and passes through the 1/4 wavelength plate 4 3 . It is reflected by the reflecting mirror 9 2 through the polarizing beam splitter 3 2 ,
A position M 2 on the radiation grating 6 is linearly irradiated via a quarter-wave plate 4 4 and a cylindrical lens 5 3 .

ここで位置M1とM2は、被検回転物体の回転中
心に対して、略点対称な位置関係にある。
Here, the positions M 1 and M 2 have a substantially symmetrical positional relationship with respect to the rotation center of the rotating object to be tested.

位置M2で回折された光束のうち、特定次数の
回折光L2は、回折光L1と同様にしてシリンドリ
カルレンズ54によつて略平行光束となり凸レン
ズ142に入射し、光束制限マスク162を介して
反射鏡152上に集光される。集光された光束は
反射されて元の光路を戻つて放射格子6上の点
M2を再照射する。そして点M2で再回折された光
束は元の光路を戻り、偏光ビームスプリツター3
を透過して、位置M1での回折光L1と重なり合つ
て、受光素子131,132で受光される。被検回
転物体が回転すると、位置M1での回折光L1は、
Δ=rωsinθn/λだけ周波数シフトする。ここで
rは、回転中心からM1までの距離、ωは、角速
度、θnは、m次回折光L1の回折角度、λはレー
ザー1の波長である。
Among the light beams diffracted at the position M2 , the diffracted light L2 of a specific order becomes a substantially parallel light beam by the cylindrical lens 54 in the same manner as the diffracted light L1 , and enters the convex lens 142 , and enters the light beam limiting mask 16. The light is focused onto a reflecting mirror 152 through a mirror 152 . The focused light beam is reflected and returns to the original optical path to a point on the radiation grating 6.
Reirradiate with M2 . The light beam re-diffracted at point M2 returns to the original optical path and enters the polarizing beam splitter 3.
2 , the light is overlapped with the diffracted light L 1 at the position M 1 and received by the light receiving elements 13 1 and 13 2 . When the rotating object to be tested rotates, the diffracted light L 1 at position M 1 becomes
The frequency is shifted by Δ=rωsinθ n /λ. Here, r is the distance from the center of rotation to M 1 , ω is the angular velocity, θ n is the diffraction angle of the m-th order diffracted light L 1 , and λ is the wavelength of the laser 1 .

回折光L1は反射手段で反射されて、位置M1
再回折されるので、受光素子131,132に入射
するときは2Δだけ周波数シフトしている。一
方、位置M2での回折光L2が、受光素子131,1
2に入射するときは、同様にして、−2Δだけ周
波数シフトしている。
Since the diffracted light L 1 is reflected by the reflecting means and re-diffracted at the position M 1 , the frequency is shifted by 2Δ when it enters the light receiving elements 13 1 and 13 2 . On the other hand, the diffracted light L 2 at the position M 2 is transmitted to the light receiving elements 13 1 , 1
3 2 , the frequency is shifted by -2Δ in the same way.

従つて、受光素子131,132からの出力信号
の周波数は4Δとなる。また、位置M1,M2での
格子模様のピツチをPとすると、回折条件から、
sinθn=mλ/Pだから、受光素子の出力信号の周
波数はF=4Δ=4mrω/Pとなる。
Therefore, the frequency of the output signals from the light receiving elements 13 1 and 13 2 is 4Δ. Also, if the pitch of the lattice pattern at positions M 1 and M 2 is P, then from the diffraction conditions,
Since sinθ n =mλ/P, the frequency of the output signal of the light receiving element is F=4Δ=4mrω/P.

放射格子6の格子模様の総本数をN、等角度ピ
ツチをΔとすれば、P=rΔ,Δ=2π/Nよ
り、F=2mNω/πとなる。いま、時間Δtの間
での受光素子の出力信号の波数をn、Δtの間で
の放射格子6の回転角をθとすれば、n=FΔt,
θ=ωΔtより、n=2mNθ/π…(1)となり、受光
素子の出力信号の波数nをカウントすることによ
り放射格子6の回転角θを(1)式によつて求めるこ
とができる。このように構成されている第1図の
実施例では、回折光を利用しているために、放射
格子6は小径で微細な格子を用いることが可能で
あり、従つて、装置全体としても小径となり、被
検回転物体への負荷も小さくなるという特徴を有
している。又本実施例では回折光L1,L2を位置
M1,M2に再照射するための反射手段として、凸
レンズ141,142と反射鏡151,152を利用
することによりコーナーキユーブ反射鏡を用いた
場合と同様の機能を果している。
If the total number of grid patterns of the radiation grating 6 is N and the equiangular pitch is Δ, then from P=rΔ and Δ=2π/N, F=2mNω/π. Now, if the wave number of the output signal of the light receiving element during time Δt is n, and the rotation angle of the radiation grating 6 during Δt is θ, then n=FΔt,
Since θ=ωΔt, n=2mNθ/π (1), and by counting the wave number n of the output signal of the light-receiving element, the rotation angle θ of the radiation grating 6 can be determined by equation (1). In the embodiment shown in FIG. 1 configured in this way, since diffracted light is used, it is possible to use a small-diameter fine grating for the radiation grating 6, and therefore the entire device can have a small diameter. Therefore, the load on the rotating object to be tested is also reduced. In addition, in this example, the diffracted lights L 1 and L 2 are
By using convex lenses 14 1 and 14 2 and reflecting mirrors 15 1 and 15 2 as a reflecting means for re-irradiating M 1 and M 2 , the same function as when corner cube reflecting mirrors are used is achieved. .

すなわち、放射格子6への入射光束の波長が周
囲の温度変化によつて変化したり、また、被検回
転物体の回転中心と、放射格子6の回転中心とが
一致していなくて、放射格子6上の光束入射位置
M1,M2での格子模様のピツチが、放射格子6が
回転することによつて変化する場合、回折光L1
L2の回折角が変化する。
In other words, the wavelength of the light beam incident on the radiation grating 6 may change due to changes in the surrounding temperature, or the rotation center of the rotating object to be tested and the rotation center of the radiation grating 6 may not coincide with each other. Light flux incidence position on 6
When the pitch of the lattice pattern in M 1 and M 2 changes as the radiation grating 6 rotates, the diffracted light L 1 ,
The diffraction angle of L 2 changes.

しかしながら本実施例によれば反射手段の光学
系を前述の如く構成することにより凸レンズ14
,142に入射した光束を反射鏡151,152
反射させた後、入射したときと等しい角度で凸レ
ンズ141,142から出射させて元の光路を戻す
ことができる。さらに、反射鏡前面に設けた光束
制限マスク161,162によつて、凸レンズ14
,142に入射する、0次の回折光など、特定次
数の回折光L1,L2以外の回折光を除去すること
ができる。このことによつて、放射格子6と、反
射手段141,142,151,152,161,16
との距離を縮めることが可能となる。たとえば、
放射格子6の、位置M1,M2における格子模様の
ピツチが10μm、入射光束の波長が0.83μmの場
合、凸レンズ141,142として、半径3mmの平
凸マイクロレンズを用いて、1次の回折光を放射
格子6に再照射させようとすると、0次の回折光
は、1次の回折光に対して4.8゜の角度でマイクロ
レンズ141,142に入射するから、光束制限マ
スク161,162の開口として、(マイクロレン
ズの焦点距離=6mm)×(tan4.8゜)=0.5mm以下の半
径の開口を設ければ、0次の回折光が除去でき
る。このとき、放射格子6から反射鏡151,1
2までの距離は、15mm程度あれば十分である。
また、凸レンズ141,142、反射鏡151,1
2、光束制限マスク161,162はいずれも容
易に製作可能であり、例えばコーナーキユーブ反
射鏡を用いた場合に比べ低コストになるという利
点がある。
However, according to this embodiment, by configuring the optical system of the reflecting means as described above, the convex lens 14
After the light beams incident on the light beams 1 and 14 2 are reflected by the reflecting mirrors 15 1 and 15 2 , the light beams can be outputted from the convex lenses 14 1 and 14 2 at the same angle as when they were incident, and the original optical path can be returned. Furthermore, the convex lens 14 is
It is possible to remove diffracted lights other than the diffracted lights L 1 and L 2 of specific orders, such as 0th-order diffracted lights that are incident on L 1 and L 2 . This allows the radiation grating 6 and the reflecting means 14 1 , 14 2 , 15 1 , 15 2 , 16 1 , 16
It becomes possible to shorten the distance between the two . for example,
When the pitch of the grid pattern at the positions M 1 and M 2 of the radiation grating 6 is 10 μm and the wavelength of the incident light beam is 0.83 μm, plano-convex microlenses with a radius of 3 mm are used as the convex lenses 14 1 and 14 2 to When trying to reirradiate the radiation grating 6 with the diffracted light, the 0th order diffracted light enters the microlenses 14 1 and 14 2 at an angle of 4.8° with respect to the 1st order diffracted light, so the light flux limiting mask is used. If the apertures of 16 1 and 16 2 have a radius of (focal length of microlens = 6 mm) x (tan 4.8°) = 0.5 mm or less, the 0th order diffracted light can be removed. At this time, from the radiation grating 6 to the reflecting mirrors 15 1 , 1
5. A distance of about 15 mm is sufficient.
In addition, convex lenses 14 1 , 14 2 and reflecting mirrors 15 1 , 1
5 2 and the light flux limiting masks 16 1 and 16 2 can both be easily manufactured, and have the advantage of being lower in cost than, for example, a case where a corner cube reflecting mirror is used.

尚本実施例において反射鏡151,152を平面
鏡の代わりに凸レンズ141,142の節点を曲率
中心とする凹面鏡より構成しても良い。又反射手
段の光学系を第3図に示すように凸レンズ、マス
クそして反射鏡を一体化して構成すれば装置全体
が簡素化されるので好ましい。
In this embodiment, the reflecting mirrors 15 1 and 15 2 may be constructed of concave mirrors having the centers of curvature at the nodes of the convex lenses 14 1 and 14 2 instead of plane mirrors. Furthermore, it is preferable to construct the optical system of the reflecting means by integrating a convex lens, a mask, and a reflecting mirror as shown in FIG. 3, since this simplifies the entire apparatus.

同図において181は集光レンズ、182は反射
面、183はマスクである。
In the figure, 18 1 is a condenser lens, 18 2 is a reflective surface, and 18 3 is a mask.

さらに、第4図のように、第3図のレンズを屈
折率分布型レンズ、たとえば商品名セルフオツク
マイクロレンズ(日本板硝子(株)製)として、その
平面端面の中心部のみに反射鏡を蒸着しておけ
ば、製造が容易となり、装置も小型、簡便とな
る。
Furthermore, as shown in Fig. 4, the lens shown in Fig. 3 is made into a gradient index lens, for example, a self-occurring microlens (trade name: manufactured by Nippon Sheet Glass Co., Ltd.), and a reflecting mirror is deposited only at the center of its flat end face. By doing so, manufacturing becomes easy, and the device becomes small and simple.

第4図において、191は屈折率分布型レンズ、
192は反射部(裏面鏡)である。
In Fig. 4, 19 1 is a gradient index lens;
19 2 is a reflecting part (back mirror).

尚、本発明に用いる回折格子は遮光部と透光部
から成る所謂振幅型の回折格子、互いに屈折率が
異なる部分からなる位相型の回折格子等が用いら
れる。特に位相型の回折格子(位相格子)は例え
ば透明円盤の円周部にレリーフ型の凹凸パターン
を形成することによつて得ることが出来、スタン
パ、エンボス等で大量生産が可能であり有効であ
る。又、反射型の位相格子は凹凸パターンに蒸着
等の反射膜を形成することにより容易に作成でき
る。
The diffraction grating used in the present invention may be a so-called amplitude type diffraction grating consisting of a light shielding part and a light transmitting part, a phase type diffraction grating consisting of parts having mutually different refractive indexes, or the like. In particular, phase-type diffraction gratings (phase gratings) can be obtained, for example, by forming a relief-type uneven pattern on the circumference of a transparent disk, and are effective because they can be mass-produced using stampers, embossing, etc. . Further, a reflective phase grating can be easily created by forming a reflective film such as vapor deposition on a concavo-convex pattern.

本実施例では透過回折光を利用した場合につい
て述べたが、反射回折光を利用しても同様に本発
明の目的を達成することができる。
In this embodiment, a case has been described in which transmitted diffracted light is used, but the object of the present invention can be similarly achieved by using reflected diffracted light.

(発明の効果) 以上のように本発明によれば焦点面に反射面を
配置した光学系を有する反射手段を用いることに
より被検回転物体の負荷が小さく、装置全体の小
型化を図つた高精度のロータリーエンコーダーを
達成することができる。
(Effects of the Invention) As described above, according to the present invention, by using a reflecting means having an optical system in which a reflecting surface is arranged at the focal plane, the load on the rotating object to be inspected is small, and the entire apparatus can be miniaturized. The precision of rotary encoder can be achieved.

更には、2つの光束それぞれの放射格子上への
入射位置を放射格子の回転中心に関して略点対称
にすることによつて、例えば外乱によつて相対回
転に「ぶれ」が生じ、放射格子が回転中心に対し
て偏心した状態になつた場合も、その偏心は回転
中心に対して略点対称な位置に入射する2光束そ
れぞれに(回転方向から見て)互いに逆の誤差成
分を与える為、これらより発する2つの回折光を
互いに干渉させることにより、誤差成分を相殺す
ることができ、且つまた放射格子からの特定次数
の回折光の出射方向に光軸方向を略一致させたレ
ンズ手段と、レンズ手段の焦点面近傍の前記特定
の次数の回折光のみを反射させる反射面とを有す
る反射手段によつて、不要回折光を効果的に除去
できるようにし、特にたとえ装置の振動等によつ
てこの反射手段位置が変化しても光束の出射光路
変動は最小限に抑えられるので、より外乱に強い
ロータリーエンコーダーが実現する。
Furthermore, by making the incident positions of the two light beams on the radiation grating approximately point symmetrical with respect to the rotation center of the radiation grating, for example, disturbances can cause a "shake" in the relative rotation, and the radiation grating can be rotated. Even if the eccentricity occurs with respect to the center, the eccentricity gives opposite error components to each of the two light beams that are incident on positions that are approximately symmetrical with respect to the rotation center (as viewed from the rotation direction). a lens means capable of canceling out error components by causing two diffracted lights emitted from the radiation grating to interfere with each other, and whose optical axis direction substantially coincides with the emission direction of the diffracted light of a specific order from the radiation grating; By means of a reflecting means having a reflecting surface that reflects only the diffracted light of the specific order near the focal plane of the means, unnecessary diffracted light can be effectively removed. Even if the position of the reflecting means changes, fluctuations in the output optical path of the luminous flux can be minimized, resulting in a rotary encoder that is more resistant to external disturbances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図、
第2図は第1図の一部分の説明図、第3図、第4
図は本発明の他の実施例の一部分の説明図であ
る。図中1は光源、2はコリメーターレンズ、3
,32は偏光ビームスプリツター、41〜45は1/
4波長板、51〜54はシリンドリカルレンズ、6
は放射格子、7は回転軸、91,92は反射鏡、1
1,122は偏光板、131,132は受光素子、
141,142は凸レンズ、151,152は反射
鏡、161,162は光束制限マスクである。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention;
Figure 2 is an explanatory diagram of a part of Figure 1, Figures 3 and 4.
The figure is a partial explanatory diagram of another embodiment of the present invention. In the figure, 1 is the light source, 2 is the collimator lens, and 3
1 and 3 2 are polarizing beam splitters, 4 1 to 4 5 are 1/
4 wavelength plate, 5 1 to 5 4 are cylindrical lenses, 6
is a radiation grating, 7 is a rotation axis, 9 1 and 9 2 are reflecting mirrors, 1
2 1 and 12 2 are polarizing plates, 13 1 and 13 2 are light receiving elements,
14 1 and 14 2 are convex lenses, 15 1 and 15 2 are reflecting mirrors, and 16 1 and 16 2 are light flux limiting masks.

Claims (1)

【特許請求の範囲】[Claims] 1 可干渉性の光束を発生する光源と、該光源か
らの出射した2つの光束をそれぞれ反射手段によ
つて反射させて光路を逆行させることにより相対
的な回転を測定されるべき被測定物体に連結され
る円板状の放射格子上にそれぞれ2回入射させる
ように配置された光学系と、該放射格子からの2
つの回折光の干渉光を検出する受光手段とを有
し、該受光手段の検出結果により前記円板の相対
的回転状態を求めるロータリーエンコーダーにお
いて、前記2つの光束それぞれの前記放射格子上
への入射位置を前記放射格子の回転中心に関して
略点対称にすると共に、前記反射手段は前記放射
格子からの特定次数の回折光の出射方向に光軸方
向を略一致させたレンズ手段と、該レンズ手段の
焦点面近傍の前記特定の次数の回折光のみを反射
させる反射面とを有していることを特徴とするロ
ータリーエンコーダー。
1. A light source that generates a coherent light beam, and two light beams emitted from the light source are each reflected by a reflecting means to reverse the optical path to the object to be measured whose relative rotation is to be measured. An optical system is arranged so that the light is incident twice on each connected disc-shaped radiation grating, and two beams from the radiation grating are arranged.
and a light receiving means for detecting interference light of two diffracted lights, and the rotary encoder determines the relative rotational state of the disk based on the detection result of the light receiving means, wherein each of the two light beams is incident on the radiation grating. The reflecting means includes a lens means whose position is approximately symmetrical with respect to the center of rotation of the radiation grating, and whose optical axis direction substantially coincides with the direction in which diffracted light of a specific order is emitted from the radiation grating; A rotary encoder comprising: a reflecting surface that reflects only the diffracted light of the specific order near the focal plane.
JP574086A 1986-01-14 1986-01-14 Rotary encoder Granted JPS62163925A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP574086A JPS62163925A (en) 1986-01-14 1986-01-14 Rotary encoder
GB8700784A GB2185314B (en) 1986-01-14 1987-01-14 Encoder
DE3700906A DE3700906C2 (en) 1986-01-14 1987-01-14 Encryptor
US07/608,629 US5036192A (en) 1986-01-14 1990-11-06 Rotary encoder using reflected light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP574086A JPS62163925A (en) 1986-01-14 1986-01-14 Rotary encoder

Publications (2)

Publication Number Publication Date
JPS62163925A JPS62163925A (en) 1987-07-20
JPH0588768B2 true JPH0588768B2 (en) 1993-12-24

Family

ID=11619496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP574086A Granted JPS62163925A (en) 1986-01-14 1986-01-14 Rotary encoder

Country Status (1)

Country Link
JP (1) JPS62163925A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615741A (en) * 1984-06-18 1986-01-11 市倉 寛 Production of nutrition enriched food

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615741A (en) * 1984-06-18 1986-01-11 市倉 寛 Production of nutrition enriched food

Also Published As

Publication number Publication date
JPS62163925A (en) 1987-07-20

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
JPS626119A (en) Rotary encoder
GB2187282A (en) Rotary encoder
JP3977126B2 (en) Displacement information detector
JPS62200225A (en) Rotary encoder
JPS62200224A (en) Rotary encoder
JPH0588768B2 (en)
JPH0462003B2 (en)
JPH0462004B2 (en)
JPH0781883B2 (en) encoder
JPH07117426B2 (en) Optical encoder
JPS62163919A (en) Rotary encoder
JPS62200226A (en) Rotary encoder
JPH045142B2 (en)
JPS62200222A (en) Rotary encoder
JPS62204126A (en) Encoder
JPH0462002B2 (en)
JPH07119623B2 (en) Displacement measuring device
JPS62163918A (en) Rotary encoder
JPS62200223A (en) Encoder
JPH0466293B2 (en)
JPS62201313A (en) Rotary encoder
JPS62200221A (en) Rotary encoder
JPH0466294B2 (en)
JPS62200219A (en) Encoder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees