JPH0588508B2 - - Google Patents

Info

Publication number
JPH0588508B2
JPH0588508B2 JP61238501A JP23850186A JPH0588508B2 JP H0588508 B2 JPH0588508 B2 JP H0588508B2 JP 61238501 A JP61238501 A JP 61238501A JP 23850186 A JP23850186 A JP 23850186A JP H0588508 B2 JPH0588508 B2 JP H0588508B2
Authority
JP
Japan
Prior art keywords
active material
electrode
tab
electrode base
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61238501A
Other languages
Japanese (ja)
Other versions
JPS6394558A (en
Inventor
Takeo Hamamatsu
Makoto Kanbayashi
Kazuaki Ozaki
Masahito Tomita
Kensuke Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61238501A priority Critical patent/JPS6394558A/en
Publication of JPS6394558A publication Critical patent/JPS6394558A/en
Publication of JPH0588508B2 publication Critical patent/JPH0588508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はアルカリ蓄電池などに用いられる電池
用電極の製造法に関するものであつて、更に詳し
くは発泡ニツケル、金属繊維焼結体などの三次元
多孔金属板を用いた電極基体からの活物質除去方
法に関するものである。
[Detailed Description of the Invention] (a) Field of Industrial Application The present invention relates to a method for manufacturing battery electrodes used in alkaline storage batteries, etc. The present invention relates to a method for removing an active material from an electrode substrate using an original porous metal plate.

(ロ) 従来の技術 アルカリ蓄電池に用いる電極は従来カルボニル
ニツケル焼結体にニツケル塩、カドミウム塩など
の溶液を含浸し、アルカリ処理により活物質化す
る焼結式製法が主流であつた。しかし、近年コス
ト低減と高エネルギー密度化を計る目的で金属繊
維焼結体、発泡ニツケルなどの三次元多孔金属板
にペースト状の活物質を直接充填する非焼結式製
法が検討されている。この種の非焼結式電極の製
法においては基体が集電機能、活物質保持機能及
び極板形状保持機能を有しているため、焼結式極
板では不可欠のパンチングメタルなどの芯体を使
う必要がない。
(b) Prior Art Conventionally, electrodes used in alkaline storage batteries have been manufactured by a sintering method in which a carbonyl nickel sintered body is impregnated with a solution of nickel salt, cadmium salt, etc., and then converted into an active material by alkali treatment. However, in recent years, with the aim of reducing costs and increasing energy density, non-sintering production methods have been studied in which a paste-like active material is directly filled into a three-dimensional porous metal plate such as a sintered metal fiber or nickel foam. In this type of non-sintered electrode manufacturing method, the substrate has a current collecting function, an active material retention function, and an electrode plate shape retention function. There's no need to use it.

ところで焼結式極板では、芯体の一部を電池端
子へ接続される集電タブとして利用することがで
きるが、前記非焼結式極板においては芯体を有し
ていないので別途集電タブを取付ける必要があり
且この取付けに難点がある。つまり基体が90%以
上の高多孔度のものであるため、集電タブの溶接
が難しく、機械的強度、電導度が低くなるもので
あつた。尚、実際に行なわれている集電タブの取
り付け方法は、活物質充填前に集電タブとなる金
属板をスポツト溶接するか、特開昭57−80672号
公報に記載されたようにあらかじめ集電タブ溶接
部をプレスして多孔度を下げ活物質が充填されな
いようにしておき、一連の充填等の工程が終了し
た後、集電タブ溶接部の表面に付着した活物質を
ブラツシングにより除去し、しかる後集電タブを
スポツト溶接するものである。しかし前者は活物
質充填以降の生産性を著しく低下させるという問
題点があり、また後者は工程的に複雑であるうえ
生産性が低く活物質の除去が不十分になりやすく
溶接の信頼性が低下するという問題点がある。
By the way, in a sintered electrode plate, a part of the core can be used as a current collection tab connected to the battery terminal, but in the non-sintered electrode plate, since it does not have a core, it must be collected separately. It is necessary to install an electric tab, and this installation is difficult. In other words, since the base body has a high porosity of 90% or more, it is difficult to weld the current collecting tab, and the mechanical strength and electrical conductivity are low. In addition, the actual method of attaching the current collector tab is to spot-weld the metal plate that will become the current collector tab before filling the active material, or to attach the current collector tab in advance as described in JP-A-57-80672. The welded area of the current collector tab is pressed to reduce the porosity and prevent it from being filled with active material, and after a series of steps such as filling are completed, the active material adhering to the surface of the welded area of the current collecting tab is removed by brushing. After that, the current collecting tab is spot welded. However, the former has the problem of significantly reducing productivity after filling the active material, and the latter has a complex process, low productivity, and tends to result in insufficient removal of the active material, reducing welding reliability. There is a problem with that.

(ハ) 発明が解決しようとする問題点 活物質を充填した三次元多孔金属板よりなる電
極基体からの集電タブ取付けのための所定部分の
活物質除去方法を改良し、高い生産性と優れた信
頼性を有する電池用電極の製造法を提供するもの
である。
(c) Problems to be solved by the invention The method for removing active material from a predetermined portion for attaching a current collector tab from an electrode base made of a three-dimensional porous metal plate filled with active material has been improved, and high productivity and excellent performance have been achieved. The present invention provides a method for manufacturing a battery electrode with high reliability.

(ニ) 問題点を解決するための手段 この発明は電池用電極の製造法において、三次
元多孔金属板よりなる電極基体の孔中に活物質を
充填させた後、高圧で噴射された液体により前記
電極基体から所定部分の活物質を除去し、ついで
前記所定部分に集電タブを溶接することを要旨と
するものである。また活物質を充填した前記基体
を加圧後、高圧で噴射された液体による活物質の
除去操作を行うことも可能である。
(d) Means for Solving the Problems This invention is a method for manufacturing electrodes for batteries, in which an active material is filled into the pores of an electrode base made of a three-dimensional porous metal plate, and then a liquid is injected at high pressure. The gist of this method is to remove a predetermined portion of the active material from the electrode base, and then weld a current collecting tab to the predetermined portion. It is also possible to pressurize the substrate filled with the active material and then remove the active material using a liquid injected at high pressure.

(ホ) 作用 本発明の製造法によれば、高圧で噴射された液
体により、三次元多孔金属板よりなる電極基体の
孔中に充填された活物質を浸食し、脱落させるこ
とで、集電タブ取付けのための所定部分のみの活
物質除去を行なうことができる。また噴射された
液体により活物質の除去並びに基体の洗浄が行な
われるので、異物の残存も少なく集電タブの溶接
が強固となる。
(E) Effect According to the production method of the present invention, the active material filled in the pores of the electrode base made of a three-dimensional porous metal plate is eroded and dropped by the liquid injected at high pressure, so that the current collection The active material can be removed only from a predetermined portion for tab attachment. In addition, since the active material is removed and the base is cleaned by the jetted liquid, there is little foreign matter remaining and the welding of the current collecting tab becomes strong.

(ヘ) 実施例 この発明についての一実施例を第1図に基づい
て説明する。
(F) Embodiment An embodiment of this invention will be described based on FIG. 1.

1は非焼結式ニツケル電極であり、繊維径5〜
50μ、孔径5〜200μ、多孔度90%を有するニツケ
ル繊維焼結体を用いて厚さを1.0mm程度とし、こ
れを水酸化ニツケルとポリテトラフルオロエチレ
ンのスラリー中に浸漬し、引き上げと同時にスリ
ツトで基体表面の余剰スラリーを取り除いて基体
へ活物質を充填し、乾燥後プレスを行ない0.8mm
の厚さに調整したものである。
1 is a non-sintered nickel electrode with a fiber diameter of 5~
A nickel fiber sintered body with a diameter of 50μ, a pore diameter of 5 to 200μ, and a porosity of 90% is used to make it approximately 1.0mm thick. It is immersed in a slurry of nickel hydroxide and polytetrafluoroethylene, and simultaneously pulled and slit. The excess slurry on the surface of the substrate is removed, the active material is filled into the substrate, and after drying, it is pressed to 0.8mm.
The thickness was adjusted to .

このニツケル電極に集電タブ取付け部を形成す
るために、液体噴射ノズル2を電極基体1に押し
当てて0.5秒、水圧1.8Kg/cm2の条件にて水を噴射
した。水は電極基体1から押し出した活物質とと
もに噴射液排出口3より排出される。そして活物
質を除去した電極基体の部分に集電タブをスポツ
ト溶接により接合し、完成電極を得た。
In order to form a current collecting tab attachment portion on this nickel electrode, the liquid jet nozzle 2 was pressed against the electrode base 1 and water was jetted for 0.5 seconds at a water pressure of 1.8 kg/cm 2 . The water is discharged from the injection liquid discharge port 3 together with the active material extruded from the electrode base 1. Then, a current collector tab was joined by spot welding to the part of the electrode base from which the active material had been removed, to obtain a completed electrode.

第2図は噴射水圧と、活物質の除去率並びに集
電タブの接合強度との関係を示した図である。活
物質の除去率は水の噴射時間を0.5秒と固定し、
噴射水圧を種々変化させたときのものであつて、
活物質の除去量を、完全に除去したものを100と
して表わしたものである。これより水圧が1Kg/
cm2よりも小さいと活物質の除去効果は小さいが、
0.3Kg/cm2で50%、1Kg/cm2で90%の活物質が除
去され、2Kg/cm2でほとんど完全に除去が行なわ
れる。
FIG. 2 is a diagram showing the relationship between the water injection pressure, the active material removal rate, and the bonding strength of the current collector tab. The removal rate of the active material is determined by fixing the water injection time to 0.5 seconds.
This is when the injection water pressure is varied in various ways,
The amount of active material removed is expressed as 100 when the active material is completely removed. From this the water pressure is 1Kg/
If it is smaller than cm 2 , the active material removal effect is small;
At 0.3 Kg/cm 2 50% of the active material is removed, at 1 Kg/cm 2 90% of the active material is removed, and at 2 Kg/cm 2 almost completely removed.

一方、噴射水圧と集電タブの接合強度の関係を
検討してみると、第2図より水圧が増加するに伴
い集電タブの接合強度が低下している。これは水
圧が増加すると基体の損傷が大きくなるためであ
る。したがつて水圧をあまり大きくするのは好ま
しくないが、0.8Kg/cm2以下の時には、残存活物
質が多く、十分な接合強度が得られなかつた。
On the other hand, when examining the relationship between the jetting water pressure and the bonding strength of the current collecting tabs, it can be seen from FIG. 2 that as the water pressure increases, the bonding strength of the current collecting tabs decreases. This is because as water pressure increases, damage to the substrate increases. Therefore, it is not preferable to increase the water pressure too much, but when the water pressure is 0.8 Kg/cm 2 or less, there is a large amount of residual active material and sufficient bonding strength cannot be obtained.

以上の結果より前述の厚み0.8mmの非焼結式ニ
ツケル電極において0.5秒間水を噴射する場合、
1.5〜2.5Kg/cm2の水圧が好ましいが、集電タブ取
り付け部の大きさや形状に応じて液体の噴射圧力
や噴射時間を種々変えてやれば活物質の除去が効
果的に行なわれる。また電池サイズに応じた大き
さに切断された電極基体を用いても何ら支障なく
実施しうる。尚、実施例に示したように電極基体
に活物質を充填し加圧した後活物質除去を行つた
場合には電極の高エネルギー密度化が計れる。
From the above results, when spraying water for 0.5 seconds on the non-sintered nickel electrode with a thickness of 0.8 mm,
Although a water pressure of 1.5 to 2.5 Kg/cm 2 is preferable, the active material can be effectively removed by varying the liquid jetting pressure and jetting time depending on the size and shape of the current collecting tab attachment part. Further, the present invention can be carried out without any problem even if an electrode substrate cut into a size corresponding to the battery size is used. Incidentally, when the active material is removed after the electrode base is filled with the active material and pressurized as shown in the examples, it is possible to increase the energy density of the electrode.

(ト) 発明の効果 本発明の製造法によれば、集電タブ取付けのた
めの所定部分のみの活物質除去を行なうことが可
能となり、且集電タブ取付けが容易となり、しか
も強力に溶接できるので、生産性に優れるもので
ありその工業的価値はきわめて大きい。
(G) Effects of the Invention According to the manufacturing method of the present invention, it is possible to remove the active material only from a predetermined portion for attaching the current collector tab, and the attachment of the current collector tab is facilitated, and moreover, strong welding is possible. Therefore, it has excellent productivity and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における液体噴射装
置の模式図であり、第2図は噴射水圧と、活物質
の除去率並びに集電タブの接合強度との関係を示
した図である。 1……活物質を充填した電極基体、2……液体
噴射ノズル、3……噴射液排出口。
FIG. 1 is a schematic diagram of a liquid injection device according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the injection water pressure, the active material removal rate, and the bonding strength of the current collector tab. 1... Electrode base filled with active material, 2... Liquid injection nozzle, 3... Injection liquid outlet.

Claims (1)

【特許請求の範囲】 1 三次元多孔金属板よりなる電極基体の孔中に
活物質を充填させた後、高圧で噴射された液体に
より前記電極基体から所定部分の活物質を除去
し、ついで前記所定部分に集電タブを溶接するこ
とを特徴とする電池用電極の製造法。 2 活物質を充填した前記電極基体を加圧後、高
圧で噴射された液体による活物質の除去操作を行
なうことを特徴とする特許請求の範囲第1項記載
の電池用電極の製造法。
[Scope of Claims] 1. After filling the pores of an electrode base made of a three-dimensional porous metal plate with an active material, a predetermined portion of the active material is removed from the electrode base by a liquid sprayed at high pressure, and then the A method for manufacturing a battery electrode, which comprises welding a current collecting tab to a predetermined portion. 2. The method for manufacturing a battery electrode according to claim 1, wherein after pressurizing the electrode base filled with the active material, the active material is removed using a liquid injected at high pressure.
JP61238501A 1986-10-07 1986-10-07 Production of electrode for cell Granted JPS6394558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61238501A JPS6394558A (en) 1986-10-07 1986-10-07 Production of electrode for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61238501A JPS6394558A (en) 1986-10-07 1986-10-07 Production of electrode for cell

Publications (2)

Publication Number Publication Date
JPS6394558A JPS6394558A (en) 1988-04-25
JPH0588508B2 true JPH0588508B2 (en) 1993-12-22

Family

ID=17031185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61238501A Granted JPS6394558A (en) 1986-10-07 1986-10-07 Production of electrode for cell

Country Status (1)

Country Link
JP (1) JPS6394558A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657522A (en) * 1996-05-14 1997-08-19 Duracell Inc. Coiled electrode assemblies and methods of producing same
DE69813164T2 (en) * 1997-12-22 2003-10-23 Japan Storage Battery Co Ltd Process for the production of a porous electrode filled with active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482632A (en) * 1977-12-14 1979-07-02 Matsushita Electric Ind Co Ltd Method of producing anode plate for alkaline storage battery
JPS5514685A (en) * 1978-07-18 1980-02-01 Matsushita Electric Ind Co Ltd Preparation of electrode for cell
JPS5887764A (en) * 1981-11-19 1983-05-25 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for battery
JPS62206763A (en) * 1986-03-06 1987-09-11 Yuasa Battery Co Ltd Manufacture of electrode plate for alkaline battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482632A (en) * 1977-12-14 1979-07-02 Matsushita Electric Ind Co Ltd Method of producing anode plate for alkaline storage battery
JPS5514685A (en) * 1978-07-18 1980-02-01 Matsushita Electric Ind Co Ltd Preparation of electrode for cell
JPS5887764A (en) * 1981-11-19 1983-05-25 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for battery
JPS62206763A (en) * 1986-03-06 1987-09-11 Yuasa Battery Co Ltd Manufacture of electrode plate for alkaline battery

Also Published As

Publication number Publication date
JPS6394558A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
JP4292436B2 (en) Metal porous body, method for producing the same and battery current collector using the same
JPH0588508B2 (en)
JP2009163976A (en) Nonwoven fabric substrate for battery, and its manufacturing method
JPH04123757A (en) Preparation of nickel electrode
WO2004095620A1 (en) Alkali storage battery and method of producing the same
JP2708123B2 (en) Manufacturing method of paste electrode
JPS6224906B2 (en)
JPH10172539A (en) Electrode for storage battery and its manufacture
CN100416722C (en) Activated carbon deposited nickel oxide as super capacitor anode material and preparing method
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JPH09199137A (en) Electrode for storage battery
JPH1055802A (en) Electrode for alkaline secondary battery and manufacture thereof
JPH04345754A (en) Manufacture of battery having spiral electrode
JPS59111261A (en) Manufacture of plate for alkaline storage battery
JP2000195511A (en) Electrode, manufacture of electrode, and battery
JPH08255611A (en) Manufacture of plate for battery
JP2000195511A5 (en)
JP2765905B2 (en) Manufacturing method of battery electrode
JPS5810378A (en) Manufacture of air cell
JPH0429187B2 (en)
JPH10223216A (en) Manufacture of electrode for cell
JP2022108573A (en) Manufacturing method for positive electrode plate of alkali storage battery
JP3489380B2 (en) Electrode for cylindrical battery and method for producing the same
JPH0963575A (en) Manufacture of electrode plate for battery
JPS634553A (en) Manufacture of paste type nickel positive electrode