JPH0587763A - Production of gas sensor - Google Patents

Production of gas sensor

Info

Publication number
JPH0587763A
JPH0587763A JP3192518A JP19251891A JPH0587763A JP H0587763 A JPH0587763 A JP H0587763A JP 3192518 A JP3192518 A JP 3192518A JP 19251891 A JP19251891 A JP 19251891A JP H0587763 A JPH0587763 A JP H0587763A
Authority
JP
Japan
Prior art keywords
gas
sensitive
pattern
photoresist
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3192518A
Other languages
Japanese (ja)
Other versions
JP3050652B2 (en
Inventor
Takashi Yamaguchi
隆司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP3192518A priority Critical patent/JP3050652B2/en
Publication of JPH0587763A publication Critical patent/JPH0587763A/en
Application granted granted Critical
Publication of JP3050652B2 publication Critical patent/JP3050652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a gas sensor reduced in power consumption by printing gas-sensitive paste to patterns formed by developing a resist to wrap the same and removing the paste other than the patterns to uniformize the thickness of the patterns and baking the patterns to finely divide a gas detection film. CONSTITUTION:An SiO2 film 4 is formed to an Si substrate 2 and electrode patterns 8 composed of Rt and heater patterns 6 are formed to be coated with a photoresist 10. The photoresist 10 is prebaked and subsequently exposed and developed to form a gas-sensitive pattern 9. Further, stannic oxide paste 12 being gas-sensitive paste is printed on the pattern 9. The stannic oxide paste 12 is wrapped and the part built up from the photoresist 10 is removed. Thereafter, the whole is baked to remove the photoresist 10 and the paste 12 is sintered to obtain a gas-sensitive thick film. The gas-sensitive pattern 9 determined by the accuracy of the photoresist 10 can be obtained and this pattern 9 is finely divided to reduce the power consumption of the gas sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明はガスセンサの製造方法に
関し、特に微細な感ガスパターンの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a gas sensor, and more particularly to a method for manufacturing a fine gas sensitive pattern.

【0002】[0002]

【従来技術】薄膜や厚膜の感ガス部を用いたガスセンサ
は周知である。このような感ガス部のパターンを感ガス
パターンと呼ぶことにすると、ガスセンサの小型化には
感ガスパターンを微細化することが不可欠である。パタ
ーンの小型化に、通常用いられる技術はエッチングであ
る。しかしながら、ガスセンサに主として用いられる酸
化第2錫や酸化インジウム等はエッチングが難しい。エ
ッチングを行わない単純な印刷では、感ガスパターンの
形状は、200μm×200μm程度が限界である。
2. Description of the Related Art A gas sensor using a thin or thick film gas sensitive portion is well known. When such a pattern of the gas sensitive portion is called a gas sensitive pattern, it is indispensable to make the gas sensitive pattern fine in order to miniaturize the gas sensor. A commonly used technique for pattern miniaturization is etching. However, it is difficult to etch stannic oxide, indium oxide, etc., which are mainly used for gas sensors. In simple printing without etching, the shape of the gas sensitive pattern is limited to about 200 μm × 200 μm.

【0003】[0003]

【発明の課題】この発明の課題は、微細な感ガスパター
ンを可能にするガスセンサの製造方法を提供することに
ある。また請求項1での副次的課題は、感ガス厚膜の厚
さを均一化することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a gas sensor which enables a fine gas sensitive pattern. Moreover, a secondary problem in claim 1 is to make the thickness of the gas-sensitive thick film uniform.

【0004】[0004]

【発明の構成】この発明は、基板上にフォトレジストを
塗布現像して、感ガスパターンを形成する工程と、感ガ
スパターンに感ガス材料のペーストを塗布し、パターン
を充填する工程と、充填した感ガスペーストをラッピン
グし、パターン以外の部分の感ガスペーストを除去する
と共に、パターン部での感ガスペーストの厚さをフォト
レジストの厚さを基準に揃える工程と、感ガスペースト
を焼成し感ガス膜を形成すると共に、フォトレジストを
除去する工程とを設けた、ガスセンサの製造方法に有
る。
According to the present invention, a step of coating and developing a photoresist on a substrate to form a gas-sensitive pattern, a step of coating a paste of a gas-sensitive material on the gas-sensitive pattern and filling the pattern, and a filling step. The gas-sensitive paste is lapped to remove the gas-sensitive paste in the portion other than the pattern, and the step of aligning the thickness of the gas-sensitive paste in the pattern portion with the thickness of the photoresist as a reference, and baking the gas-sensitive paste. A method of manufacturing a gas sensor, which comprises a step of forming a gas sensitive film and removing a photoresist.

【0005】またこの発明は、基板上にフォトレジスト
を塗布現像して、感ガスパターンを形成する工程と、感
ガスパターンに感ガス材料の薄膜を形成する工程と、フ
ォトレジストを除去して、感ガスパターン以外の部分で
の感ガス材料の薄膜を除去する工程とを設けた、ガスセ
ンサの製造方法に有る。
Further, according to the present invention, a step of coating and developing a photoresist on a substrate to form a gas-sensitive pattern, a step of forming a thin film of a gas-sensitive material on the gas-sensitive pattern, and removing the photoresist, And a step of removing a thin film of the gas-sensitive material in a portion other than the gas-sensitive pattern, the method for manufacturing a gas sensor.

【0006】[0006]

【発明の作用】フォトレジストのパターンに感ガス材料
のペーストを充填した後に、パターンをラッピングす
る。すると、パターン以外の部分での感ガス材料のペー
ストは除去され、同時にペーストの厚さはフォトレジス
トの厚さで定まる。フォトレジストのパターンは極めて
微細にすることが可能であり、例えば10μm×10μ
m程度のパターンを得ることができる。ペーストの厚さ
のばらつきは、ガスセンサ特性のばらつきとなる。しか
しペーストの厚さをフォトレジストの厚さで制御できる
ので、ガスセンサの特性を均一化できる。感ガスパター
ンの厚さと、幅や長さとの比をアスペクト比と呼ぶと、
アスペクト比はフォトレジストの感ガスパターンで定ま
る。このアスペクト比は例えば3程度とすることも可能
であり、適宜のアスペクト比を得ることができる。
The pattern of the photoresist is filled with the paste of the gas sensitive material and then the pattern is lapped. Then, the paste of the gas-sensitive material on the portion other than the pattern is removed, and at the same time, the thickness of the paste is determined by the thickness of the photoresist. The photoresist pattern can be made extremely fine, for example, 10 μm × 10 μ
A pattern of about m can be obtained. Variations in paste thickness result in variations in gas sensor characteristics. However, since the paste thickness can be controlled by the photoresist thickness, the characteristics of the gas sensor can be made uniform. When the ratio of the thickness of the gas sensitive pattern to the width and length is called the aspect ratio,
The aspect ratio is determined by the gas sensitive pattern of the photoresist. This aspect ratio can be set to about 3, for example, and an appropriate aspect ratio can be obtained.

【0007】薄膜のガスセンサの場合、(感ガス部の膜
厚として10μm以下、より具体的には5μm以下、更
に具体的には1μm以下)、リフトオフによって、所定
パターンの感ガス部を得ることができる。先ずフォトレ
ジストの感ガスパターンにスパッタリングや真空蒸着等
で感ガス材料の薄膜を形成する。次に、フォトレジスト
を溶媒と超音波振動等で除去する。するとフォトレジス
トの厚さが感ガス材料の薄膜の厚さよりも充分に大きけ
れば、感ガスパターンの感ガス材料の薄膜と他の部分で
の薄膜はフォトレジストを除去する過程で分離され、感
ガスパターンのみに薄膜が残る。感ガス材料の薄膜の厚
さが小さく、フォトレジストの厚さが大きい時には、フ
ォトレジストを焼成で除去しても、レジスト上の感ガス
材料の薄膜とパターンでの感ガス材料の薄膜は分離さ
れ、パターンにのみ感ガス材料の薄膜を残すことができ
る。
In the case of a thin film gas sensor (the film thickness of the gas sensing portion is 10 μm or less, more specifically 5 μm or less, more specifically 1 μm or less), a gas sensing portion having a predetermined pattern can be obtained by lift-off. it can. First, a thin film of a gas sensitive material is formed on a gas sensitive pattern of a photoresist by sputtering, vacuum deposition or the like. Next, the photoresist is removed with a solvent and ultrasonic vibration. Then, if the thickness of the photoresist is sufficiently larger than the thickness of the thin film of the gas-sensitive material, the thin film of the gas-sensitive material of the gas-sensitive pattern and the thin film in other parts are separated in the process of removing the photoresist, A thin film remains only in the pattern. When the thin film of the gas-sensitive material is thin and the thickness of the photoresist is large, even if the photoresist is removed by baking, the thin film of the gas-sensitive material on the resist and the thin film of the gas-sensitive material in the pattern are separated. The thin film of the gas sensitive material can be left only in the pattern.

【0008】[0008]

【実施例】実施例1 図1に実施例の製造工程を示す。最初にSi等の基板の
熱酸化やシリカ膜のスパッタリング等で、Si基板にS
iO2膜を形成する。次いで無電界メッキや全面スパッ
タリング後のドライエッチング等で、Pt等の電極パタ
ーンとヒータパターンを形成する。この後フォトレジス
トを塗布する。この状態を図3に示す。図において、2
はSi基板、4はSiO2膜、6はPtのヒータパター
ン、8はPtの電極パターン、10はフォトレジストで
ある。フォトレジスト10をプリベークした後に露光
し、現像して感ガスパターン9を形成する。この状態を
図4に示す。現像後にポストベークし、フォトレジスト
の強度を増し、感ガスペーストの酸化第2錫ペーストを
印刷する。ペーストの種類は酸化第2錫に限らず酸化イ
ンジウムや酸化タングステン、あるいは接触燃焼式ガス
センサに用いられるPt触媒添加のアルミナや、プロト
ン導電体ガスセンサに用いられるアンチモン酸、固体電
解質材料のβ−アルミナ等の任意である。この状態を図
5に示す。12は酸化第2錫の感ガスペーストで、フォ
トレジスト10よりも厚く盛り上がっている。また印刷
の精度はフォトレジストのパターン精度よりも低く、酸
化第2錫ペーストは感ガスパターン9よりも広がってい
る。次いで、酸化第2錫のペースト12をラッピングす
る。ラッピングは、例えばテフロン樹脂等の粘着性の有
る板を回転させ、フォトレジスト10よりも盛り上がっ
た部分を除くように行う。この結果、図6のように、感
ガスパターン9以外の部分のペースト12は除かれ、か
つペースト12の厚さはフォトレジスト10の厚さで揃
えられる。この後、焼成を行えばフォトレジスト10は
除去され、ペースト12は焼結して感ガス厚膜が得られ
る。この状態を図7に示す。これらの後に、Si基板2
をアンダーカットエッチングすれば、SiO2のフィル
ム4が残り、アンダーカットエッチング型のガスセンサ
が得られる。なおアンダーカットエッチングは行わなく
ても良い。
EXAMPLES Example 1 FIG. 1 shows a manufacturing process of an example. First, S is applied to the Si substrate by thermal oxidation of the substrate such as Si or sputtering of the silica film.
An iO2 film is formed. Then, an electrode pattern of Pt or the like and a heater pattern are formed by electroless plating or dry etching after overall surface sputtering. After this, a photoresist is applied. This state is shown in FIG. In the figure, 2
Is a Si substrate, 4 is a SiO2 film, 6 is a Pt heater pattern, 8 is a Pt electrode pattern, and 10 is a photoresist. The photoresist 10 is pre-baked, then exposed and developed to form the gas-sensitive pattern 9. This state is shown in FIG. After development, post-baking is performed to increase the strength of the photoresist, and stannic oxide paste, which is a gas-sensitive paste, is printed. The type of paste is not limited to stannic oxide, but indium oxide, tungsten oxide, Pt catalyst-added alumina used for catalytic combustion gas sensors, antimonic acid used for proton conductor gas sensors, β-alumina for solid electrolyte materials, etc. Is optional. This state is shown in FIG. Reference numeral 12 is a gas sensitive paste of stannic oxide, which is thicker than the photoresist 10. The printing accuracy is lower than the photoresist pattern accuracy, and the stannic oxide paste is wider than the gas sensitive pattern 9. Then, the stannic oxide paste 12 is lapped. The lapping is performed, for example, by rotating a sticky plate made of Teflon resin or the like so as to remove a portion that is higher than the photoresist 10. As a result, as shown in FIG. 6, the paste 12 except for the gas sensitive pattern 9 is removed, and the thickness of the paste 12 is made uniform with the thickness of the photoresist 10. After that, if baking is performed, the photoresist 10 is removed, and the paste 12 is sintered to obtain a gas-sensitive thick film. This state is shown in FIG. After these, Si substrate 2
Is undercut-etched, the SiO2 film 4 remains, and an undercut-etching type gas sensor is obtained. Undercut etching may not be performed.

【0009】図8により、感ガスパターン9のアスペク
ト比や形状限界等を説明する。感ガスパターン9の形状
精度は、フォトレジスト10の露光・現像の精度で定ま
り、例えば10μm幅×10μm長程度のものが容易に
得られる。アスペクト比は、図のd/wで与えられ、例
えば3程度までのものが得られる。この結果例えば10
μm幅×10μm長×30μm厚や、60μm幅×60
μm長×10μm厚の感ガスパターン9が得られる。ガ
スセンサの消費電力は、感ガスパターンの微細化により
減少するので、極めて小さな消費電力のガスセンサを得
ることができる。感ガスパターン9の厚さは、ガスセン
サの特性に大きく影響する。また厚さのばらつきは、特
性のばらつきをもたらす。実施例ではこの厚さをフォト
レジスト10の厚さを基に定め、所望のアスペクト比、
例えば0.01〜3程度、の感ガスパターン9を得るこ
とができる。
The aspect ratio and shape limit of the gas sensitive pattern 9 will be described with reference to FIG. The shape accuracy of the gas sensitive pattern 9 is determined by the accuracy of the exposure and development of the photoresist 10, and for example, the shape of about 10 μm width × 10 μm length can be easily obtained. The aspect ratio is given by d / w in the figure, and for example, up to about 3 can be obtained. As a result, for example, 10
μm width × 10 μm length × 30 μm thickness or 60 μm width × 60
A gas sensitive pattern 9 having a length of μm and a thickness of 10 μm can be obtained. The power consumption of the gas sensor is reduced due to the miniaturization of the gas-sensitive pattern, so that a gas sensor with extremely low power consumption can be obtained. The thickness of the gas sensitive pattern 9 greatly affects the characteristics of the gas sensor. Further, variations in thickness cause variations in characteristics. In the embodiment, this thickness is determined based on the thickness of the photoresist 10, and the desired aspect ratio,
For example, a gas sensitive pattern 9 of about 0.01 to 3 can be obtained.

【0010】実施例2 図2により、薄膜ガスセンサの場合の製造方法を説明す
る。実施例1と同様にし、感ガスパターン9を得る。次
に図9に示すように、真空蒸着やスパッタリング、CV
D等で感ガス材料の薄膜14を形成する。この薄膜は、
前段階の例えば金属Snの状態でも、あるいは最終状態
の例えば酸化第2錫の状態でも良い。パターン9の底部
の感ガス材料の薄膜を16、パターン9の壁面での薄膜
を18とすると、壁面の薄膜18は他の部分よりも薄
い。そこで薄膜14の厚さtがフォトレジスト10の厚
さdよりも充分に小さければ、例えば数分の1以下の厚
さであれば、フォトレジスト10を除くと薄膜14は壁
面の部分18で切断され、所望位置の薄膜16のみが残
る。
Embodiment 2 A manufacturing method for a thin film gas sensor will be described with reference to FIG. A gas sensitive pattern 9 is obtained in the same manner as in Example 1. Next, as shown in FIG. 9, vacuum deposition, sputtering, CV
The thin film 14 of the gas sensitive material is formed by D or the like. This thin film is
For example, the state of metal Sn in the previous stage or the state of stannic oxide in the final state may be used. When the thin film of the gas sensitive material at the bottom of the pattern 9 is 16 and the thin film at the wall surface of the pattern 9 is 18, the thin film 18 on the wall surface is thinner than other portions. Therefore, if the thickness t of the thin film 14 is sufficiently smaller than the thickness d of the photoresist 10, for example, if it is a fraction or less, the thin film 14 is cut at the wall portion 18 except the photoresist 10. Then, only the thin film 16 at the desired position remains.

【0011】このためには、例えば溶媒と超音波振動と
でフォトレジスト10を除去する。するとこれに同時
に、不要部の薄膜14はリフトオフされ、薄膜16のみ
が残る。薄膜16の厚さtとフォトレジスト10の厚さ
dの比が更に小さい時は、焼成によりフォトレジスト1
0を除去しても、不要部の薄膜14が除去される。感ガ
スパターン9のみに薄膜16を形成した後に、所望によ
り焼成等で薄膜16の特性を制御し、アンダーカットエ
ッチングでSi基板2を除く。
For this purpose, the photoresist 10 is removed by, for example, a solvent and ultrasonic vibration. Then, at the same time, the unnecessary portion of the thin film 14 is lifted off, and only the thin film 16 remains. When the ratio between the thickness t of the thin film 16 and the thickness d of the photoresist 10 is smaller, the photoresist 1 is baked.
Even if 0 is removed, the unnecessary portion of the thin film 14 is removed. After forming the thin film 16 only on the gas-sensitive pattern 9, the characteristics of the thin film 16 are controlled by baking or the like, if desired, and the Si substrate 2 is removed by undercut etching.

【0012】[0012]

【発明の効果】この発明では、フォトレジストの精度で
定まる感ガスパターンを得ることができ、感ガスパター
ンを微細化し、ガスセンサの消費電力を減少できる。ま
た請求項1の場合、厚膜型ガスセンサの膜厚を制御しか
つ均一化することができる。
According to the present invention, it is possible to obtain a gas-sensitive pattern which is determined by the precision of the photoresist, make the gas-sensitive pattern fine, and reduce the power consumption of the gas sensor. Further, according to claim 1, the film thickness of the thick film gas sensor can be controlled and made uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の工程図FIG. 1 is a process chart of an embodiment

【図2】 第2の実施例の工程図FIG. 2 is a process chart of the second embodiment.

【図3】 実施例のフォトレジスを塗布した状態を示
す断面図
FIG. 3 is a cross-sectional view showing a state where the photoresist of Example is applied.

【図4】 実施例のフォトレジス現像後の状態を示す
断面図
FIG. 4 is a cross-sectional view showing a state after photoresist development of an example.

【図5】 実施例の感ガスペースト印刷後の状態を示
す断面図
FIG. 5 is a sectional view showing a state after printing the gas-sensitive paste according to the embodiment.

【図6】 実施例の感ガスペーストラッピング後の状
態を示す断面図
FIG. 6 is a cross-sectional view showing a state after the gas-sensitive paste lapping of the example.

【図7】 実施例の感ガスペースト焼成後の状態を示
す断面図
FIG. 7 is a cross-sectional view showing a state after firing the gas-sensitive paste of the example.

【図8】 実施例の感ガスペーストのアスペクト比を
示す断面図
FIG. 8 is a sectional view showing the aspect ratio of the gas-sensitive paste of Example.

【図9】 第2の実施例でのリフトオフ工程を示す断
面図
FIG. 9 is a cross-sectional view showing a lift-off process in the second embodiment.

【符号の説明】[Explanation of symbols]

2 Si基板 4 SiO2膜 6 ヒータパターン 8 電極パターン 9 感ガスパターン 10 フォトレジスト 12 感ガスペースト 2 Si substrate 4 SiO2 film 6 Heater pattern 8 Electrode pattern 9 Gas sensitive pattern 10 Photoresist 12 Gas sensitive paste

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にフォトレジストを塗布現像し
て、感ガスパターンを形成する工程と、 感ガスパターンに感ガス材料のペーストを塗布し、パタ
ーンを充填する工程と、 充填した感ガスペーストをラッピングし、パターン以外
の部分の感ガスペーストを除去すると共に、パターン部
での感ガスペーストの厚さをフォトレジストの厚さを基
準に揃える工程と、 感ガスペーストを焼成し感ガス膜を形成すると共に、フ
ォトレジストを除去する工程とを設けた、ガスセンサの
製造方法。
1. A step of applying a photoresist on a substrate to develop the gas-sensitive pattern, a step of applying a paste of a gas-sensitive material to the gas-sensitive pattern and filling the pattern, and a filled gas-sensitive paste. And remove the gas-sensitive paste in the area other than the pattern, and align the thickness of the gas-sensitive paste in the pattern with the photoresist thickness as a reference. A method for manufacturing a gas sensor, the method including the step of forming the gas sensor and the step of removing the photoresist.
【請求項2】 基板上にフォトレジストを塗布現像し
て、感ガスパターンを形成する工程と、 感ガスパターンに感ガス材料の薄膜を形成する工程と、 フォトレジストを除去して、感ガスパターン以外の部分
での感ガス材料の薄膜を除去する工程とを設けた、ガス
センサの製造方法。
2. A step of coating and developing a photoresist on a substrate to form a gas-sensitive pattern, a step of forming a thin film of a gas-sensitive material on the gas-sensitive pattern, and a step of forming a gas-sensitive pattern by removing the photoresist. And a step of removing a thin film of the gas-sensitive material in a portion other than the above.
JP3192518A 1991-07-05 1991-07-05 Gas sensor manufacturing method Expired - Fee Related JP3050652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3192518A JP3050652B2 (en) 1991-07-05 1991-07-05 Gas sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3192518A JP3050652B2 (en) 1991-07-05 1991-07-05 Gas sensor manufacturing method

Publications (2)

Publication Number Publication Date
JPH0587763A true JPH0587763A (en) 1993-04-06
JP3050652B2 JP3050652B2 (en) 2000-06-12

Family

ID=16292620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3192518A Expired - Fee Related JP3050652B2 (en) 1991-07-05 1991-07-05 Gas sensor manufacturing method

Country Status (1)

Country Link
JP (1) JP3050652B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140092208A (en) 2013-01-15 2014-07-23 가부시키가이샤 아도테크 엔지니어링 Exposure device of indium tin oxide pattern
JP2014173947A (en) * 2013-03-07 2014-09-22 Fuji Electric Co Ltd Porous structure, method for producing porous structure, and gas sensor
EP4016065A1 (en) * 2020-12-21 2022-06-22 Infineon Technologies AG Method for manufacturing an electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140092208A (en) 2013-01-15 2014-07-23 가부시키가이샤 아도테크 엔지니어링 Exposure device of indium tin oxide pattern
JP2014173947A (en) * 2013-03-07 2014-09-22 Fuji Electric Co Ltd Porous structure, method for producing porous structure, and gas sensor
EP4016065A1 (en) * 2020-12-21 2022-06-22 Infineon Technologies AG Method for manufacturing an electronic component
US11728073B2 (en) 2020-12-21 2023-08-15 Infineon Technologies Ag Method for manufacturing an electronic component

Also Published As

Publication number Publication date
JP3050652B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
JPS62245509A (en) Manufacture of thin film magnetic head
WO2003026368A1 (en) Method for forming image on object surface including circuit substrate
JP3050652B2 (en) Gas sensor manufacturing method
JP2000146511A (en) Strain gauge
JP2007010361A (en) Voltage drive element
EP0877417A1 (en) Method for fabrication of electrodes and other electrically-conductive structures
US3987214A (en) Method of forming conductive coatings of predetermined thickness by vacuum depositing conductive coating on a measuring body
JP2007019370A (en) Method for manufacturing semiconductor device, semiconductor manufacturing apparatus and program
JPS626510A (en) Manufacture of surface acoustic wave device
JP2580681B2 (en) Method for manufacturing semiconductor device
JP2508230B2 (en) Electrode pattern forming method
JP3382038B2 (en) Manufacturing method of surface acoustic wave device
JP2699924B2 (en) Ceramic substrate and method of manufacturing the same
JPH0666047B2 (en) Tablet and manufacturing method
JPH02137224A (en) Formation of fine pattern
JPS58100434A (en) Method for forming spacer for lift off
JPS62204532A (en) Manufacture of ultrafine structure device
JPS5812337B2 (en) Bisai pattern no toumeimakunokeiseihouhouhou
JPH04364726A (en) Pattern formation
JP2002009571A (en) Manufacturing method for resonator or filter
JPH06237136A (en) Manufacture of electronic component
JPH07209116A (en) Pressure sensor
JP2533088B2 (en) Method of manufacturing thermal head
JPH01304457A (en) Pattern forming method
JPS6257114B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees