JPH0587735A - Visual range measuring instrument - Google Patents

Visual range measuring instrument

Info

Publication number
JPH0587735A
JPH0587735A JP4472791A JP4472791A JPH0587735A JP H0587735 A JPH0587735 A JP H0587735A JP 4472791 A JP4472791 A JP 4472791A JP 4472791 A JP4472791 A JP 4472791A JP H0587735 A JPH0587735 A JP H0587735A
Authority
JP
Japan
Prior art keywords
light
light receiving
light emitting
optical axis
visual range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4472791A
Other languages
Japanese (ja)
Inventor
Noriko Horibata
典子 堀端
Takashi Yoshikawa
孝 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4472791A priority Critical patent/JPH0587735A/en
Publication of JPH0587735A publication Critical patent/JPH0587735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve the measurement accuracy of a visual range measuring instrument which does not require any adjustment on its optical axis and can be easily set by preventing the influence of the contamination of the air and a lens system and deterioration of a light source, as well as optical axis misalignment due to an external force. CONSTITUTION:A light emitting section 7, first light receiving section 8 for transmitted light, and second light receiving section 9 for scattered light are integrally supported in an enclosure 1. When it becomes snowy or foggy 21 at the time of measuring a visual range, the light 20 emitted from the section 7 collides with the snow or fog 21 and transmitted light 22 decreases and the amount of scattered light 23 increases. An arithmetic processing circuit 18 finds the visual range corresponding to the concentration of the snow or fog 21 by performing arithmetic processing on the quantities of transmitted light 22 and scattered light 23. Because of the arithmetic processing, the influence of the contamination of a lens system and deterioration of the light source 10 of the light emitting section 7 can be prevented to some extent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車の運転や航空機
の運航の安全等を図るために視界を計測する視程測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a visibility measuring device for measuring a field of view for safety of driving a car or operating an aircraft.

【0002】[0002]

【従来の技術】図4は従来の視程測定装置の構成を示し
ている。
2. Description of the Related Art FIG. 4 shows the structure of a conventional visibility measuring device.

【0003】図4において、31は発光器、32は受光
器であり、これら発光器31と受光器32は光軸を共通
にし、50m〜100m離隔して地面33上に設置され
ている。
In FIG. 4, 31 is a light emitting device and 32 is a light receiving device. These light emitting device 31 and light receiving device 32 have the same optical axis and are installed on the ground 33 at a distance of 50 to 100 m.

【0004】以上の構成において、以下、その動作につ
いて説明する。発光器31から常時、発光し、受光器3
2で常時、受光する。ここで、快晴時(このときの視程
を無限大とする)の受光レベルを最大とし、雨、雪、霧
等により視界が遮られた最悪の状態を視程距離0とす
る。これらの相関の一例を表わすと図5に示すようにな
る。したがって、受光器32で受光した透過光レベル3
4から視界の状態、すなわち、視程距離を数値的に測定
することができる。
The operation of the above configuration will be described below. The light emitter 31 always emits light, and the light receiver 3
2 always receives light. Here, it is assumed that the light receiving level during fine weather (the visibility at this time is infinite) is the maximum, and the worst state in which the field of view is blocked by rain, snow, fog, or the like is 0. An example of these correlations is shown in FIG. Therefore, the transmitted light level 3 received by the light receiver 32 is
From 4, it is possible to numerically measure the visibility condition, that is, the visibility distance.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の視程測定装置では、発光器31と受光器32を50
〜100m離隔して設置するため、長期にわたって使用
する間には地震や暴風により互いの光軸に狂いが生じ、
これに伴い、図5に示す受光レベルと視程距離の相関に
誤差を生じさせる。また、大気中の汚れ、レンズ系の汚
れ、光源の劣化により透過光レベル34にそれらの影響
が与えられるため、測定精度が劣る。また、設置の際に
光軸を調整しなければならず、この調整作業が煩わしい
などの問題があった。
However, in the above-mentioned conventional visibility measuring device, the light emitting device 31 and the light receiving device 32 are arranged in the range of 50.
Since they are installed at a distance of ~ 100m, the optical axes of each other will be misaligned due to an earthquake or storm during long-term use.
Along with this, an error is caused in the correlation between the light receiving level and the visibility distance shown in FIG. Further, the transmitted light level 34 is affected by dirt in the atmosphere, dirt on the lens system, and deterioration of the light source, so that the measurement accuracy is deteriorated. Moreover, the optical axis must be adjusted at the time of installation, and there is a problem that this adjustment work is troublesome.

【0006】本発明は、このような従来の問題を解決す
るものであり、光軸の調整を不要として設置作業を容易
に行うことができ、また、地震や暴風による光軸への影
響を防止すると共に、大気中の汚れ、レンズ系の汚れ、
光源の劣化の影響を防止して測定精度を向上させること
ができるようにした視程測定装置を提供することを目的
とするものである。
The present invention solves the above-mentioned conventional problems, and the installation work can be easily performed without adjusting the optical axis, and the influence on the optical axis due to an earthquake or a windstorm can be prevented. As well as dirt in the atmosphere, dirt on the lens system,
An object of the present invention is to provide a visibility measuring device capable of preventing the influence of deterioration of a light source and improving measurement accuracy.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、一つの発光部と、この発光部と光軸が一
致するように配置され、上記発光部からの透過光を受光
する第1の受光部と、上記発光部および第1の受光部と
光軸が異なるように配置され、上記発光部から発した光
の散乱光の一部を受光する第2の受光部と、上記発光部
および第1、第2の受光部を一体的に支持する支持手段
とを備えたものである。
In order to achieve the above-mentioned object, the present invention is arranged such that one light emitting portion and an optical axis of the light emitting portion coincide with each other, and the transmitted light from the light emitting portion is received. And a second light receiving unit that is arranged such that the optical axes of the light emitting unit and the first light receiving unit are different, and that receives a part of the scattered light of the light emitted from the light emitting unit. The light emitting section and the supporting means for integrally supporting the first and second light receiving sections are provided.

【0008】[0008]

【作用】したがって、本発明によれば、発光部と受光部
を支持手段で一体的に支持するので、設置する際、光軸
の調整を不要とすることができ、また、たとえ外部から
力が加わっても発光部と受光部の光軸に相対的な狂いが
生じるのを防止することができる。また、透過光用の第
1の受光部に加えて散乱光用の第2の受光部を用い、透
過光レベルと散乱光レベルを演算処理することにより、
視程距離と受光相対値の相関を得ることができ、大気中
の汚れ、レンズ系の汚れ、光源の劣化による影響を防止
することができる。
Therefore, according to the present invention, since the light emitting portion and the light receiving portion are integrally supported by the supporting means, it is not necessary to adjust the optical axis at the time of installation, and even if an external force is applied. Even if added, it is possible to prevent relative deviation between the optical axes of the light emitting portion and the light receiving portion. Further, by using the second light receiving portion for scattered light in addition to the first light receiving portion for transmitted light and performing arithmetic processing on the transmitted light level and the scattered light level,
It is possible to obtain the correlation between the visibility distance and the relative value of received light, and to prevent the effects of dirt in the atmosphere, dirt on the lens system, and deterioration of the light source.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0010】図1(a)、(b)は本発明の一実施例に
おける視程測定装置を示し、(a)は平面図、(b)は
斜視図である。
1 (a) and 1 (b) show a visibility measuring device according to an embodiment of the present invention. FIG. 1 (a) is a plan view and FIG. 1 (b) is a perspective view.

【0011】図1(a)、(b)に示すように、筐体1
は一対の支持部2、3の基端部間が連結部4により連結
されて枠状に形成され、支持部2、3間が基部側から先
端側に至るに従い次第に幅広になり、先端部間が視程測
定のための所望の距離となるように設定されている。筐
体1は複数本の支柱5により地面6上に支持されてい
る。筐体1の支持部2、3の先端部間には対向して光軸
を共通にする発光部7と透過光用の第1の受光部8が取
り付けられ、支持部3には第1の受光部8の内側方にお
いて第1の発光部8および第1の受光部9と光軸を異に
する散乱光用の第2の受光部9が取り付けられ、これら
一つの発光部7と第1、第2の受光部8、9が筐体1に
より一体的に支持されている。発光部7には、発光ダイ
オード、またはレーザダイド等からなる光源10と、そ
の駆動回路11が組み込まれている。第1の受光部8に
は、集光レンズ12と受光素子13と検出回路14が組
み込まれている。第2の受光部9にも同様に集光レンズ
15と受光素子16と検出回路17が組み込まれてい
る。筐体1の支持部2内には演算処理回路18が設けら
れ、この演算処理回路18は第1と第2の受光部8と9
の検出回路14と17の信号を比較演算し、また、発光
部7の駆動回路11に電源を供給する。
As shown in FIGS. 1A and 1B, the housing 1
Is formed in a frame shape by connecting the base end portions of the pair of support portions 2 and 3 by the connecting portion 4, and the width between the support portions 2 and 3 is gradually widened from the base side to the tip side, and between the tip portions. Is set to a desired distance for visibility measurement. The housing 1 is supported on the ground 6 by a plurality of columns 5. A light emitting unit 7 and a first light receiving unit 8 for transmitting light, which face each other and have a common optical axis, are attached between the front ends of the supporting units 2 and 3 of the housing 1, and the supporting unit 3 has a first light receiving unit 8. Inside the light receiving unit 8, a second light receiving unit 9 for scattered light having an optical axis different from that of the first light emitting unit 8 and the first light receiving unit 9 is attached. The second light receiving portions 8 and 9 are integrally supported by the housing 1. A light source 10 including a light emitting diode or a laser diode and a drive circuit 11 for the light source 10 are incorporated in the light emitting unit 7. A condenser lens 12, a light receiving element 13, and a detection circuit 14 are incorporated in the first light receiving section 8. Similarly, a condenser lens 15, a light receiving element 16 and a detection circuit 17 are also incorporated in the second light receiving section 9. An arithmetic processing circuit 18 is provided in the supporting portion 2 of the housing 1, and the arithmetic processing circuit 18 includes the first and second light receiving portions 8 and 9.
The signals of the detection circuits 14 and 17 are compared and calculated, and power is supplied to the drive circuit 11 of the light emitting unit 7.

【0012】以上の構成において、以下、その動作につ
いて説明する。発光部7は駆動回路11の駆動により光
源10から約2KHzで変調された光線20を第1の受光
部8に向けて発射する。このように光源10から発射す
る光を約2KHzに変調することにより、太陽光や照明光
の影響を避けることができる。大気中に汚れがなけれ
ば、光線20はほとんど減衰を起こさず、第1の受光部
8の集光レンズ12で受光素子13に集光される。した
がって、この場合、第2の受光部9にはほとんど光は入
射しない。今、大気中に雪や霧21が発生した場合、光
線20は大きく減衰し、光線22となって第1の受光部
8に入射する。一方、雪や霧21によって散乱した光の
一部は光線23となって第2の受光部9に入射し、集光
レンズ15で受光素子16に集光される。
The operation of the above configuration will be described below. The light emitting unit 7 emits a light beam 20 modulated at about 2 KHz from the light source 10 toward the first light receiving unit 8 by driving the driving circuit 11. By thus modulating the light emitted from the light source 10 to about 2 KHz, it is possible to avoid the influence of sunlight and illumination light. If there is no dirt in the atmosphere, the light beam 20 is hardly attenuated and is condensed on the light receiving element 13 by the condenser lens 12 of the first light receiving unit 8. Therefore, in this case, almost no light enters the second light receiving unit 9. When snow or fog 21 occurs in the atmosphere, the light ray 20 is greatly attenuated and becomes a light ray 22 and is incident on the first light receiving unit 8. On the other hand, a part of the light scattered by the snow or fog 21 becomes a light ray 23 and is incident on the second light receiving portion 9, and is condensed on the light receiving element 16 by the condenser lens 15.

【0013】これら大気中に汚れのない状態から雪や霧
21等による透過光22の減衰と散乱光23の増加をそ
れぞれ検出回路14と17で検出したときの出力を図2
の相関図に示す。24は透過光22の変遷を、25は散
乱光23の変遷を表わす。図3は上記散乱光レベル25
と透過光レベル24を演算処理回路18で割り算処理し
た場合の結果の一例である受光相対レベル26を示す。
FIG. 2 shows the outputs when the detection circuits 14 and 17 detect the attenuation of the transmitted light 22 and the increase of the scattered light 23 due to snow or fog 21 in the state where there is no dirt in the atmosphere.
Is shown in the correlation diagram of. Reference numeral 24 represents the transition of the transmitted light 22, and 25 represents the transition of the scattered light 23. Figure 3 shows the scattered light level 25
And the received light relative level 26 which is an example of the result when the transmitted light level 24 is divided by the arithmetic processing circuit 18.

【0014】大気中に雪や霧21等が発生すれば、透過
光レベル24で示すように透過光22は減衰し、散乱光
レベル25で示すように散乱光23はあるレベルまで増
加する。この二者を演算処理回路18で演算処理するこ
とにより、視程距離と受光相対値には図3の受光相対レ
ベル26で示すようにほぼ直線の相関が得られ、したが
って、雪や霧21等の濃度に応じた正確な視程距離が測
定される。また、上記のように透過光22と散乱光23
の二者を検出することにより、視程距離の測定に際し、
集光レンズ系12、15の汚れや、光源10の劣化によ
る影響を相殺することができる。
When snow or fog 21 is generated in the atmosphere, the transmitted light 22 is attenuated as shown by the transmitted light level 24, and the scattered light 23 is increased to a certain level as shown by the scattered light level 25. By performing arithmetic processing on these two in the arithmetic processing circuit 18, a substantially linear correlation is obtained between the visibility distance and the light receiving relative value as shown by the light receiving relative level 26 in FIG. An accurate visibility distance corresponding to the density is measured. Further, as described above, the transmitted light 22 and the scattered light 23
By measuring the two of the above, when measuring the visibility distance,
It is possible to cancel the influence of the contamination of the condenser lens systems 12 and 15 and the deterioration of the light source 10.

【0015】そして、上記のような視程距離の測定に際
し、発光部7と、第1、第2の受光部8、9を筐体1に
一体的に支持しているので、現場で光軸調整を必要とせ
ず、地震や暴風等による光軸への影響を防止することが
できる。
In measuring the visibility distance as described above, since the light emitting portion 7 and the first and second light receiving portions 8 and 9 are integrally supported by the housing 1, the optical axis is adjusted on site. It is possible to prevent the influence on the optical axis due to an earthquake or a windstorm, etc.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、発
光部と受光部を支持手段で一体的に支持するので、設置
する際の光軸の調整を必要とせず、設置作業が容易とな
る。また、地震や暴風による光軸への影響を防止するこ
とができ、しかも、受光部を2個設けて透過光と散乱光
を検出するようにしているので、大気中の汚れ、レンズ
系の汚れ、光源の劣化の影響を防止することができ、し
たがって、測定精度を向上させることができる。
As described above, according to the present invention, since the light emitting portion and the light receiving portion are integrally supported by the supporting means, it is not necessary to adjust the optical axis at the time of installation, and the installation work is facilitated. Become. Further, it is possible to prevent the optical axis from being affected by an earthquake or a windstorm. Moreover, since two light receiving parts are provided to detect transmitted light and scattered light, dirt in the atmosphere and dirt in the lens system are detected. The influence of deterioration of the light source can be prevented, and therefore the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例における視程測定装
置の平面図 (b)は同視程測定装置の斜視図
FIG. 1A is a plan view of a visibility measuring apparatus according to an embodiment of the present invention, and FIG. 1B is a perspective view of the visibility measuring apparatus.

【図2】(a)は同視程測定装置により得る透過光、散
乱光のレベルと視程距離の相関図
FIG. 2 (a) is a correlation diagram of the levels of transmitted light and scattered light obtained by the visibility measuring device and the visibility distance.

【図3】同視程測定装置により得る視程距離と受光相対
値の相関図
FIG. 3 is a correlation diagram of a visibility distance and a light reception relative value obtained by the visibility measuring device.

【図4】従来の視程測定装置の側面図FIG. 4 is a side view of a conventional visibility measuring device.

【図5】同従来例により得る視程距離と受光レベルの相
関図
FIG. 5 is a correlation diagram of visibility distance and light reception level obtained by the conventional example.

【符号の説明】[Explanation of symbols]

1 筐体 7 発光部 8 第1の受光部 9 第2の受光部 18 演算処理回路 DESCRIPTION OF SYMBOLS 1 Housing 7 Light emitting part 8 First light receiving part 9 Second light receiving part 18 Arithmetic processing circuit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月21日[Submission date] September 21, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】視程測定装置により得る透過光、散乱光のレ
ベルと視程距離の相関図
FIG. 2 is a correlation diagram of the levels of transmitted light and scattered light obtained by the visibility measuring device and the visibility distance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一つの発光部と、この発光部と光軸が一
致するように配置され、上記発光部からの透過光を受光
する第1の受光部と、上記発光部および第1の受光部と
光軸が異なるように配置され、上記発光部から発した光
の散乱光の一部を受光する第2の受光部と、上記発光部
および第1、第2の受光部を一体的に支持する支持手段
とを備えた視程測定装置。
1. A light emitting section, a first light receiving section which is arranged so that its optical axis coincides with that of the light emitting section, and which receives transmitted light from the light emitting section, and the light emitting section and the first light receiving section. And a second light receiving portion that is arranged so that the optical axis is different from that of the light receiving portion and that receives a part of the scattered light of the light emitted from the light emitting portion, and the light emitting portion and the first and second light receiving portions are integrally formed. A visibility measuring device having a supporting means for supporting.
JP4472791A 1991-03-11 1991-03-11 Visual range measuring instrument Pending JPH0587735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4472791A JPH0587735A (en) 1991-03-11 1991-03-11 Visual range measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4472791A JPH0587735A (en) 1991-03-11 1991-03-11 Visual range measuring instrument

Publications (1)

Publication Number Publication Date
JPH0587735A true JPH0587735A (en) 1993-04-06

Family

ID=12699478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4472791A Pending JPH0587735A (en) 1991-03-11 1991-03-11 Visual range measuring instrument

Country Status (1)

Country Link
JP (1) JPH0587735A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311159A (en) * 2001-04-07 2002-10-23 Yoshitaka Hirano Fog sensor
JP2008157765A (en) * 2006-12-25 2008-07-10 Ccs Inc Weather measuring device
JP2010032557A (en) * 2009-11-18 2010-02-12 Ccs Inc Weather measurement apparatus
JP2010536042A (en) * 2007-08-15 2010-11-25 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド Long-path atmospheric monitoring and measuring device
KR101107793B1 (en) * 2010-06-17 2012-01-20 주식회사 오션이엔지 Telecontrol type optical visibility meter
CN102636459A (en) * 2012-04-20 2012-08-15 中国科学院遥感应用研究所 Forward scattering and transmission combined visibility measuring instrument and measuring method thereof
JP2015072179A (en) * 2013-10-02 2015-04-16 三菱重工業株式会社 Fluid composition analyzer, calorimeter, gas turbine plant with calorimeter, and gas turbine plant with calorimeter operation method
KR101525488B1 (en) * 2014-01-10 2015-06-03 한국표준과학연구원 Visibility Measurement Apparatus Using A Large-Area Surface Light Source
CN106769725A (en) * 2016-12-06 2017-05-31 武汉市普瑞思高科技有限公司 laser diode power attenuation correction method
CN107144507A (en) * 2017-07-10 2017-09-08 西石(厦门)科技有限公司 One kind can self-alignment double light path dust concentration tester
CN108758997A (en) * 2018-06-13 2018-11-06 苏州若依玫信息技术有限公司 A kind of smart home air exchange system based on signal light scattering
KR20230174491A (en) * 2022-06-21 2023-12-28 주식회사 이륜코리아 fog measurement collecting method and it system using the scattering phenomenon of the laser beam in fog and color sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311159A (en) * 2001-04-07 2002-10-23 Yoshitaka Hirano Fog sensor
JP4512841B2 (en) * 2001-04-07 2010-07-28 義隆 平野 Fog sensor
JP2008157765A (en) * 2006-12-25 2008-07-10 Ccs Inc Weather measuring device
JP2010536042A (en) * 2007-08-15 2010-11-25 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド Long-path atmospheric monitoring and measuring device
JP2010032557A (en) * 2009-11-18 2010-02-12 Ccs Inc Weather measurement apparatus
KR101107793B1 (en) * 2010-06-17 2012-01-20 주식회사 오션이엔지 Telecontrol type optical visibility meter
CN102636459A (en) * 2012-04-20 2012-08-15 中国科学院遥感应用研究所 Forward scattering and transmission combined visibility measuring instrument and measuring method thereof
JP2015072179A (en) * 2013-10-02 2015-04-16 三菱重工業株式会社 Fluid composition analyzer, calorimeter, gas turbine plant with calorimeter, and gas turbine plant with calorimeter operation method
KR101525488B1 (en) * 2014-01-10 2015-06-03 한국표준과학연구원 Visibility Measurement Apparatus Using A Large-Area Surface Light Source
CN106769725A (en) * 2016-12-06 2017-05-31 武汉市普瑞思高科技有限公司 laser diode power attenuation correction method
CN107144507A (en) * 2017-07-10 2017-09-08 西石(厦门)科技有限公司 One kind can self-alignment double light path dust concentration tester
CN108758997A (en) * 2018-06-13 2018-11-06 苏州若依玫信息技术有限公司 A kind of smart home air exchange system based on signal light scattering
KR20230174491A (en) * 2022-06-21 2023-12-28 주식회사 이륜코리아 fog measurement collecting method and it system using the scattering phenomenon of the laser beam in fog and color sensor

Similar Documents

Publication Publication Date Title
US6248989B1 (en) Tilt detecting device
JPH0587735A (en) Visual range measuring instrument
EP0353968B1 (en) Detection and display device
US4876444A (en) Protection from extraneous light for light guided vehicle
JP3793315B2 (en) Tilt detection device
JP4099485B2 (en) Apparatus and method for measuring atmospheric permeability and determining meteorological visibility
US6765223B2 (en) Sub-micron accuracy edge detector
US6043874A (en) System and method for calibrating a laser transmitter
US4403862A (en) Visibility measuring apparatus using light conductors
JP2613655B2 (en) Photoelectric switch
LT3790B (en) Measuring device for measuring size of object while periodic moving
KR19980702429A (en) Displacement measuring device
JP4546047B2 (en) Optical distance measuring device
EP0298584B1 (en) Monitoring equipment using transmitted light
CA2271797C (en) Detection system with improved noise tolerance
JPH0815414A (en) Optical radar equipment for vehicle
JPS61260113A (en) Detector for tilt angle of plane
JPH09318732A (en) Distance measuring simulator
JPH05231818A (en) Laser distance measuring device
US4884888A (en) Method and device for contactless optical measurement of distance changes
JPH1096791A (en) Raindrop detecting device
JP2000121725A (en) Distance measuring apparatus
KR0117810Y1 (en) Optical distance measurement equipment for preventing car collision
JPH10221165A (en) Light beam intensity-measuring apparatus for light beam type intrusion-detecting system
JPH08240655A (en) Method and device for processing signal