JPH0587583B2 - - Google Patents

Info

Publication number
JPH0587583B2
JPH0587583B2 JP59260454A JP26045484A JPH0587583B2 JP H0587583 B2 JPH0587583 B2 JP H0587583B2 JP 59260454 A JP59260454 A JP 59260454A JP 26045484 A JP26045484 A JP 26045484A JP H0587583 B2 JPH0587583 B2 JP H0587583B2
Authority
JP
Japan
Prior art keywords
steel
hot
strength
mold
temperature strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59260454A
Other languages
Japanese (ja)
Other versions
JPS61139652A (en
Inventor
Hiroshi Kaede
Shinya Fukunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP26045484A priority Critical patent/JPS61139652A/en
Publication of JPS61139652A publication Critical patent/JPS61139652A/en
Publication of JPH0587583B2 publication Critical patent/JPH0587583B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高温強度が優れると同時に窒化性の優
れた熱間鍛造型に用いられる析出硬化型熱間工具
鋼に関するものである。析出硬化型熱間工具鋼は
焼入れた後、析出硬化温度より低い温度(約400
℃)で焼もどしを施し、切削による金型製作が可
能な硬さとする同時に金型として必要な強度が得
られる硬す(HRC36〜44)にして、熱間鍛造型と
して使用時、被加工材の熱により鍛造型の温度が
上昇することにより徐々に析出硬化し、鍛造型の
の表層硬さが上昇し、高寿命が得られることを特
徴とする熱間工具鋼である。 (従来技術と発明が解決しようとする問題点) 近年、熱間鍛造の高速化、自動化が図られるに
つれ、鍛造金型の耐久性、信頼性の向上の要請が
強まつている。高速化によつては、鍛造金型の表
層温度の上昇が大きくなり、従来型材よりも熱間
強度が高く耐摩耗性の優れた型材が要求されてい
る。また自動化に伴つて、ヒートチエツクの発生
による鍛造品の金型への張り付きの少ない型材が
要求される。 このような要求に対して、従来熱間耐摩耗性の
優れた析出硬化型熱間工具鋼として、0.2%C−
3%Ni−3%Mo鋼(以下3Ni−3Moと称する)
が多用されているが、金型の耐久性、信頼性がさ
らに要求されている現況では、高温強度が不足し
不満足なものとなつている。また従来材の3Ni−
3Mo鋼は耐摩耗性を付与する目的で施される窒
化処理に際し、窒化層硬さが低く即ち窒化による
硬化を充分に発揮できない欠点がある。 (問題点を解決するための手段) 本発明はこのような従来型材の欠点を改良した
ものであり、3Ni−3Mo鋼の高温強度を高めるこ
とにより、熱間耐摩耗性および耐ヒートチエツク
性が優れると同時に高い窒化硬さの得られる型材
を開発し、鍛造金型の高寿命化を達成したもので
ある。 発明者は鍛造金型の損耗現象を詳細に調査した
結果、鍛造金型の表層温度は700℃に達し、金型
の損耗形態である摩耗、ヒートチエツクが高温強
度の大小と相関のあることを見出し、高温強度が
耐摩耗性、耐ヒートチエツク性の指標となるとの
知見を得た。 そこで発明者は高温強度を指標として、合金元
素の多元配置実験により広汎かつ詳細な調査を行
つた結果以下に述べる知見を得、本発明欄の開発
に成功した。 熱間強度の高い析出硬化型熱間型材を得るには
Ni,Cr,Mo,Vの適量の組合わせが必要であ
り、Mo,Vは第1,2図に見られるように熱間
(700℃)強度に対して適量存在させ、かつ、上
限、下限を厳しく制限する必要がある。また、第
3図に見られるようにCrを増加させると熱間強
度が低下するが、反面、Crは第4図に示される
ように窒化硬さを向上させるには最も効果的な元
素で、またCrは第5図に示したように同時に酸
化に対する抵抗に効果があり、さらに、第6図に
見られるように析出硬化型材として必要な強度を
得るための焼入れ、照もどし硬さには一定量の含
有が必要である。またNiは第7図に示したよう
に増加させると熱間強度が低下するが、反面焼入
れ性および靭性を向上させるので一定量の含有が
必要である。 Wは高温強度の向上に殆ど効果がなく、かつ靭
性を低下させ、さらに熱伝導率を上昇させ大きな
ヒートチエツクを発生しやすくするので有害であ
る。 Nb,Ti,Zr,Taは少量の含有で高温強度を
高めめる効果があり、この効果は二種以上組合わ
せるとさらに効果がある。また焼入れに際して結
晶粒の粗大化を防止し、靭性を向上させる効果が
ある。 以上のように本発明鋼は高温強度、析出効果型
熱間工具鋼として必要な硬さ、焼入性、靭性、耐
酸化性について各種合金元素の影響を研究した結
果、優れた高温強度の得られる最適成分範囲を見
出し、鍛造作業の高速化、自動化に対応しうる熱
間鍛造型用析出硬化型熱間工具鋼の開発に成功し
たものである。 以下に本発明鋼について詳述する。 第1発明鋼は、重量比にしてC0.10〜0.24%、
Si1.00%以下、Mn2.00%以下、Ni1.15〜1.67%、
Cr1.00〜3.50%、Mo1.50〜2.50%、V0.30〜0.75
%を含有したもので、第2発明鋼は第1発明鋼に
0.50%以下のNb,Zrのうち一種ないし二種を含
有させ第1発明鋼の熱間耐摩耗性および靭性をさ
らに向上させたもので、本発明鋼は熱間鍛造用鋼
として優れた特性を有するものである。 以下に本発明鋼の成分限定理由について説明す
る。 Cは熱間鍛造型として必要な硬さを得るととも
に炭化物を形成して高温強度を向上せしめ、熱間
耐摩耗性を付与するために必要な元素であり、こ
の効果を得るには0.10%以上の含有が必要であ
り、その下限を0.10%とした。しかしながら、
0.24%を越えると焼入れ、焼もどし硬さが高くな
り切削による型加工が困難になるとともに、炭化
物が増加することにより、靭性が低下し金型に割
れが発生し易くなるのでその上限を0.24%とし
た。 Siは耐酸化性を向上させるので適宜含有させる
のであるが、1.00%を越えると熱間強度が低下し
本発明鋼の性能を害するので、その上限を1.00%
とした。 Mnは焼入性を高めるために必要な元素である
が、含有量が多くなると焼入れ、焼もどし硬さが
高くなり切削による型加工が困難になるので、そ
の上限を2.00%とした。 Niは靭性を向上させるとともに焼入性を増す
元素で、かつ緻密な酸化被膜を生成させるに有効
な元素でもあり、1.15%以上の含有が必要であ
り、その下限を1.15%とした。しかしながら含有
量が多くなると熱間強度が低下するので、その上
限を1.67%とした。 Crは炭化物を形成し、高温強度を高めて熱間
耐摩耗性を向上させるとともに、焼入性、耐酸化
性の向上に有効な元素であり、少なくとも1.00%
の含有が必要であり、その下限を1.00%とした。
しかしながら含有量が増し、3.50%を越えると焼
入れ、焼もどし硬さが過度に高くなり切削による
型加工が困難になるので、その上限を3.50%とし
た。 Moは炭化物を形成し高温強度を高めて熱間耐
摩耗性を向上させる元素であり少なくとも1.50%
以上の含有が必要であり、その下限を1.50%とし
た。しかしながら含有量が2.50%を越えるとかえ
つて高温強度が低下するとともに、靭性を低下す
るのでその上限を2.50%とした。 Vは炭化物を形成し高温強度を高めて熱間耐摩
耗性を向上させるために特に有効な元素であり少
なくとも0.30%以上の含有が必要であり、その下
限を0.30%とした。しかしながら含有量が0.75%
を越えると急激に高温強度が低下するとともに、
靭性も低下するので、その上限を0.75%とした。 Nb,Zrは少量で高温強度を高めるのに有効な
元素であるとともに焼入れに際してオーステナイ
ト結晶粒の粗大化を防止し靭性を向上させるのに
有効な元素であり、しかも複合して二種以上含有
させるとさらに効果が大きい。しかしながら0.50
%を越えて含有させると焼入れに際して固溶し難
い炭化物を生成し、必要な焼入れ、焼もどし硬さ
が得られなくなるので、その上限を0.50%とし
た。 (実施例) 次に本発明鋼の特徴を従来鋼、比較鋼と比べて
実施例をもつて明らかにする。 第1表はこれらの供試鋼の化学成分を示すもの
である。
(Field of Industrial Application) The present invention relates to a precipitation hardening type hot work tool steel used for hot forging dies that has excellent high temperature strength and nitriding properties. Precipitation hardening hot work tool steel is heated at a temperature lower than the precipitation hardening temperature (approximately 400°C) after quenching.
It is hardened to a hardness that allows mold production by cutting (H R C36 to 44) and has the strength required for molds. This hot work tool steel is characterized by gradual precipitation hardening as the temperature of the forging die rises due to the heat of the workpiece, increasing the surface hardness of the forging die and providing a long life. (Problems to be Solved by Prior Art and the Invention) In recent years, as hot forging has become faster and more automated, there has been an increasing demand for improvements in the durability and reliability of forging dies. As speed increases, the surface temperature of forging dies increases, and there is a need for mold materials with higher hot strength and superior wear resistance than conventional mold materials. Additionally, with automation, there is a need for mold materials that are less likely to stick to the die of forged products due to heat checks. In response to these demands, 0.2%C-
3%Ni-3%Mo steel (hereinafter referred to as 3Ni-3Mo)
However, in the current situation where molds are required to have greater durability and reliability, they lack high-temperature strength and are unsatisfactory. In addition, the conventional material 3Ni−
When 3Mo steel is subjected to nitriding treatment for the purpose of imparting wear resistance, it has a drawback in that the hardness of the nitrided layer is low, that is, the hardening by nitriding cannot be sufficiently achieved. (Means for Solving the Problems) The present invention improves the drawbacks of the conventional shape material, and improves hot wear resistance and heat check resistance by increasing the high temperature strength of 3Ni-3Mo steel. We have developed a mold material that is both excellent and has high nitriding hardness, and have achieved a long lifespan for forging dies. As a result of a detailed investigation of the wear and tear phenomenon of forging dies, the inventor found that the surface temperature of forging dies reaches 700℃, and that abrasion and heat check, which are forms of die wear, are correlated with the magnitude of high-temperature strength. We found that high-temperature strength is an indicator of wear resistance and heat check resistance. Therefore, the inventor conducted extensive and detailed research using high-temperature strength as an indicator through multi-dimensional arrangement experiments of alloying elements, obtained the knowledge described below, and succeeded in developing the present invention section. How to obtain precipitation-hardened hot-formed materials with high hot strength
A combination of appropriate amounts of Ni, Cr, Mo, and V is required, and as shown in Figures 1 and 2, Mo and V must be present in appropriate amounts for hot (700℃) strength, and have upper and lower limits. need to be strictly limited. In addition, as shown in Figure 3, increasing Cr reduces hot strength, but on the other hand, as shown in Figure 4, Cr is the most effective element for improving nitriding hardness. Furthermore, as shown in Figure 5, Cr is effective in resisting oxidation, and as shown in Figure 6, Cr has a constant hardness during quenching and illumination to obtain the strength required for precipitation hardened materials. It is necessary to contain a certain amount. Further, as shown in FIG. 7, when Ni is increased, the hot strength decreases, but on the other hand, it improves hardenability and toughness, so it is necessary to include a certain amount. W has little effect on improving high-temperature strength, and is harmful because it lowers toughness and increases thermal conductivity, making it easy to cause a large heat check. Nb, Ti, Zr, and Ta have the effect of increasing high-temperature strength when contained in small amounts, and this effect is even more effective when two or more types are combined. It also has the effect of preventing coarsening of crystal grains during hardening and improving toughness. As described above, the steel of the present invention has excellent high-temperature strength as a result of researching the effects of various alloying elements on the hardness, hardenability, toughness, and oxidation resistance required for high-temperature strength and precipitation-effect hot work tool steel. By finding the optimal range of ingredients for hot forging, we succeeded in developing a precipitation-hardening hot-work tool steel for hot forging dies that can be used to speed up and automate forging operations. The steel of the present invention will be explained in detail below. The first invention steel has C0.10 to 0.24% by weight,
Si1.00% or less, Mn2.00% or less, Ni1.15-1.67%,
Cr1.00~3.50%, Mo1.50~2.50%, V0.30~0.75
%, the second invention steel is different from the first invention steel.
The hot wear resistance and toughness of the first invention steel are further improved by containing 0.50% or less of one or two of Nb and Zr, and the invention steel has excellent properties as a steel for hot forging. It is something that you have. The reason for limiting the composition of the steel of the present invention will be explained below. C is an element necessary to obtain the hardness required for a hot forging die, form carbides, improve high-temperature strength, and impart hot wear resistance, and to obtain this effect, it must be at least 0.10%. The lower limit was set at 0.10%. however,
If it exceeds 0.24%, the hardness during quenching and tempering will increase, making it difficult to process the mold by cutting, and due to the increase in carbides, the toughness will decrease and cracks will easily occur in the mold, so the upper limit should be set at 0.24%. And so. Si improves oxidation resistance, so it should be included as appropriate; however, if it exceeds 1.00%, the hot strength will decrease and the performance of the steel of the present invention will be impaired, so the upper limit should be set at 1.00%.
And so. Mn is an element necessary to improve hardenability, but as the content increases, hardening and tempering hardness increases and mold processing by cutting becomes difficult, so the upper limit was set at 2.00%. Ni is an element that improves toughness and hardenability, and is also an effective element for forming a dense oxide film, so it must be contained at 1.15% or more, and the lower limit was set at 1.15%. However, as the content increases, the hot strength decreases, so the upper limit was set at 1.67%. Cr is an element that forms carbides, increases high-temperature strength and improves hot wear resistance, and is an effective element for improving hardenability and oxidation resistance, and contains at least 1.00%
The lower limit was set at 1.00%.
However, if the content increases and exceeds 3.50%, the hardness after quenching and tempering becomes excessively high, making mold processing by cutting difficult, so the upper limit was set at 3.50%. Mo is an element that forms carbides, increases high temperature strength, and improves hot wear resistance, and has a content of at least 1.50%.
The lower limit was set at 1.50%. However, if the content exceeds 2.50%, the high-temperature strength and toughness will decrease, so the upper limit was set at 2.50%. V is a particularly effective element for forming carbides, increasing high-temperature strength, and improving hot wear resistance, and must be contained in an amount of at least 0.30%, with the lower limit being 0.30%. However, the content is 0.75%
If the temperature exceeds
Since toughness also decreases, the upper limit was set at 0.75%. Nb and Zr are elements that are effective in increasing high-temperature strength in small amounts, as well as preventing coarsening of austenite crystal grains during quenching and improving toughness. The effect is even greater. However 0.50
If the content exceeds 0.5%, carbides that are difficult to dissolve in solid form will be generated during quenching, making it impossible to obtain the necessary quenching and tempering hardness, so the upper limit was set at 0.50%. (Example) Next, the characteristics of the steel of the present invention will be clarified by comparing it with conventional steel and comparative steel using examples. Table 1 shows the chemical composition of these test steels.

【表】 第1表においてA鋼は従来鋼で3Ni−3Mo鋼、
B〜E鋼は比較鋼である。F〜J,M,P,Q鋼
は本発明鋼でF〜J鋼は第1発明鋼、M,P,Q
は第2発明鋼である。 第2表は第1表の供試鋼A〜J,M,P,Qの
型寿命、ヒートチエツクの発生状況、高温強度、
シヤルピー衝撃値について示したものである。 型寿命については、300Kg鋼塊から100×150×
200(mm)の型素材に鍛造し、焼なましを施し、つ
いで1025℃で3時間保持した後空冷し、400℃で
5時間保持した後空冷した材料から切削により型
加工し、この金型を用いて熱間鍛造し、シヨツト
数を測定したものである。 高温強度については、型寿命を測定した金型か
ら引張試験片を切出加工し700℃で引張試験を行
い評価したものである。 ヒートチエツクの発生状況は、鍛造後の型面部
を切断し割れの大きさでもつて評価したものであ
る。 シヤルピー衝撃値については、型寿命を測定し
た金型からJIS3号試験片を切出加工し常温で試験
し評価したものである。
[Table] In Table 1, A steel is conventional steel, 3Ni-3Mo steel,
B to E steels are comparative steels. F~J, M, P, Q steels are the invention steels, F~J steels are the first invention steels, M, P, Q
is the second invention steel. Table 2 shows the mold life, heat check occurrence status, high temperature strength, and
This shows the Shalpy impact value. Regarding mold life, 100×150× from 300Kg steel ingot
A 200 (mm) mold material was forged, annealed, then held at 1025℃ for 3 hours and then air cooled, and then held at 400℃ for 5 hours and then air cooled.The material was then machined by cutting. The number of shots was measured using hot forging. High-temperature strength was evaluated by cutting out a tensile test piece from the mold used to measure the mold life and performing a tensile test at 700°C. The occurrence of heat checks was evaluated by cutting the mold surface after forging and evaluating the size of cracks. The Shalpy impact value was evaluated by cutting out a JIS No. 3 test piece from the mold whose mold life was measured and testing it at room temperature.

【表】 第2表から明らかなように、従来鋼であるA鋼
は3.12%のNi、3.18%のMoを含有することによ
り高温引張強さが39.3Kgf/mm2と低いものであ
り、型寿命も4055シヨツトと低いものである。ま
た比較鋼B,Dについては高温引張強さが51.0Kg
f/mm2、52.1Kgf/mm2と従来鋼に比べて若干向上
しているが、シヨツト数は6321シヨツト、6170シ
ヨツトとまだ満足し得るものではない。さらにC
鋼についてはWを1.25%含有していることにより
シヤルピー衝撃値が3.1Kgf/cm2と低く、ヒート
チエツクの発生が顕著であり、型寿命も欠けの発
生により3716シヨツトと低いものである。 これに対し、本発明鋼であるF〜J,M,P,
O鋼は適量のCr,Mo,Vなどを含有させるとと
もにCr,Mo,Vの上限を厳しく規制したことに
より高温引張強さについては59.8〜62.4f/mm2と従
来鋼および比較鋼であるB,D,E鋼に比べて優
れた高温強度を有するものであり、型寿命におい
ても8295〜9572シヨツトとすぐれていることがわ
かる。さらに靭性についてもシラルピー衝撃が
5.8〜6.6Kgf・m/cm2と優れ、比較鋼Cが欠けを
発生したのに比べて実用面においても優れてい
る。 また、前記供試鋼のうちA,G鋼について、
420℃×15Hr,N2:H2=Ar=1:2:2,
3TOOrという条件でイオン窒化処理を施した鍛
造型を作製した。この鍛造型を用いて熱間鍛造
し、そのシヨツト数を測定した結果、従来鋼であ
るA鋼のシヨツト数が5248であるのに対して、本
発明鋼であるG鋼は12372シヨツト、Q鋼は13880
シヨツトとA鋼に比べて優れた型寿命を有してお
り、本発明鋼は、窒化性についても優れた析出硬
化型熱間工具鋼である。 (発明の効果) 上述のように、本発明鋼は熱間鍛造の高速化、
自動化に対応しうる優れた高温強度、靭性が得ら
れるCr,Mo,Vなどの最適成分範囲を見出した
もので、従来鋼である3Ni−3Mo鋼に比べて高温
強度を大幅に向上させたもので、熱間鍛造型用鋼
として高い実用性を有するものである。
[Table] As is clear from Table 2, steel A, which is a conventional steel, has a low high-temperature tensile strength of 39.3 Kgf/mm 2 because it contains 3.12% Ni and 3.18% Mo. The lifespan is also low at 4055 shots. In addition, the high temperature tensile strength of comparative steels B and D is 51.0 kg.
f/mm 2 and 52.1 Kgf/mm 2 , which is slightly improved compared to conventional steel, but the number of shots is 6321 shots and 6170 shots, which is still not satisfactory. Further C
As for the steel, since it contains 1.25% W, the sharpy impact value is as low as 3.1 Kgf/cm 2 , the occurrence of heat checks is significant, and the mold life is as low as 3716 shots due to the occurrence of chipping. On the other hand, the steels of the present invention, F~J, M, P,
O steel contains appropriate amounts of Cr, Mo, V, etc., and the upper limits of Cr, Mo, and V are strictly regulated, resulting in a high temperature tensile strength of 59.8 to 62.4 f/mm 2 , which is higher than conventional steel and comparative steel B. It can be seen that the steel has superior high-temperature strength compared to , D, and E steels, and has an excellent mold life of 8295 to 9572 shots. Furthermore, regarding toughness, silarpy impact
It is excellent at 5.8 to 6.6 Kgf·m/cm 2 , and is also superior in practical terms compared to Comparative Steel C, which suffered from chipping. In addition, regarding A and G steels among the test steels,
420℃×15Hr, N2 : H2 =Ar=1:2:2,
A forging die was fabricated with ion nitriding treatment under the conditions of 3TOOr. As a result of hot forging using this forging die and measuring the number of shots, the conventional steel A steel had 5248 shots, while the invention steel G steel had 12372 shots, and the Q steel had 12372 shots. is 13880
The steel of the present invention is a precipitation hardening type hot work tool steel that has superior mold life compared to shot and A steels, and also has excellent nitriding properties. (Effects of the invention) As mentioned above, the steel of the present invention can speed up hot forging,
The optimal range of components such as Cr, Mo, and V has been found to provide excellent high-temperature strength and toughness that can be applied to automation, and the high-temperature strength has been significantly improved compared to the conventional 3Ni-3Mo steel. Therefore, it has high practicality as a steel for hot forging dies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図はV,Mo,Cr,Niの合金
元素について高温強度、窒化硬さ、耐酸化性およ
び焼入れ、焼もどし硬さに及ぼす影響について示
したものであり、第1,2,3,7図はV,
Mo,Cr,Ni含有量と高温強度との関係を示した
線図で、第4図はCr含有量と窒化硬さとの関係
を示した線図で第5図はCr含有量と酸化増量と
の関係を示した線図で、第6図はCr含有量と焼
入れ、焼もどし硬さとの関係を示した線図であ
る。
Figures 1 to 7 show the effects of alloying elements V, Mo, Cr, and Ni on high temperature strength, nitriding hardness, oxidation resistance, and hardening and tempering hardness. , 3 and 7 are V,
This is a diagram showing the relationship between Mo, Cr, and Ni contents and high temperature strength. Figure 4 is a diagram showing the relationship between Cr content and nitriding hardness, and Figure 5 is a diagram showing the relationship between Cr content and oxidation weight gain. Figure 6 is a diagram showing the relationship between Cr content and hardening and tempering hardness.

Claims (1)

【特許請求の範囲】 1 重量比にしてC0.10〜0.24%、Si1.00%以下、
Mn2.00以下、Ni1.15〜1.67%、Cr1.00〜3.50%、
Mo1.50〜2.50%、V0.30〜0.75%を含有して、残
部Feならびに不純物元素からなることを特徴と
する析出硬化型熱間工具鋼。 2 重量比にしてC0.10〜0.24%、Si1.00%以下、
Mn2.00以下、Ni1.15〜1.67%、Cr1.00〜3.50%、
Mo1.50〜2.50%、V0.30〜0.75%と、さらに
Nb0.50%以下、Zr0.50%以下のうち一種ないし
二種を含有して、残部Feならびに不純物元素か
らなることを特徴とする析出硬化型熱間工具鋼。
[Claims] 1. C0.10 to 0.24%, Si 1.00% or less by weight,
Mn2.00 or less, Ni1.15~1.67%, Cr1.00~3.50%,
Precipitation hardening hot work tool steel containing 1.50 to 2.50% Mo and 0.30 to 0.75% V, with the remainder consisting of Fe and impurity elements. 2 C0.10-0.24% by weight, Si1.00% or less,
Mn2.00 or less, Ni1.15~1.67%, Cr1.00~3.50%,
Mo1.50~2.50%, V0.30~0.75% and more
Precipitation hardening hot work tool steel characterized by containing one or two of Nb 0.50% or less and Zr 0.50% or less, with the remainder consisting of Fe and impurity elements.
JP26045484A 1984-12-10 1984-12-10 Precipitation hardening type hot tool steel Granted JPS61139652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26045484A JPS61139652A (en) 1984-12-10 1984-12-10 Precipitation hardening type hot tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26045484A JPS61139652A (en) 1984-12-10 1984-12-10 Precipitation hardening type hot tool steel

Publications (2)

Publication Number Publication Date
JPS61139652A JPS61139652A (en) 1986-06-26
JPH0587583B2 true JPH0587583B2 (en) 1993-12-17

Family

ID=17348167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26045484A Granted JPS61139652A (en) 1984-12-10 1984-12-10 Precipitation hardening type hot tool steel

Country Status (1)

Country Link
JP (1) JPS61139652A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2748448C1 (en) * 2020-06-03 2021-05-25 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Case-harden heat-resistant steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129315A (en) * 1974-09-06 1976-03-12 Hitachi Metals Ltd SEKISHUTSUKOKAGATANETSUKANKOGUKO
JPS5193716A (en) * 1975-02-17 1976-08-17 SEKISHUTSUKOKAGATANETSUKANKOGUKO
JPS5310527A (en) * 1976-07-15 1978-01-31 Matsushita Electric Works Ltd Roof backing
JPS5534687A (en) * 1978-09-04 1980-03-11 Hitachi Metals Ltd Precipitation hardening type hot working tool steel
JPS5635756A (en) * 1979-08-30 1981-04-08 Kobe Steel Ltd Precipitation hardening type hot working tool steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129315A (en) * 1974-09-06 1976-03-12 Hitachi Metals Ltd SEKISHUTSUKOKAGATANETSUKANKOGUKO
JPS5193716A (en) * 1975-02-17 1976-08-17 SEKISHUTSUKOKAGATANETSUKANKOGUKO
JPS5310527A (en) * 1976-07-15 1978-01-31 Matsushita Electric Works Ltd Roof backing
JPS5534687A (en) * 1978-09-04 1980-03-11 Hitachi Metals Ltd Precipitation hardening type hot working tool steel
JPS5635756A (en) * 1979-08-30 1981-04-08 Kobe Steel Ltd Precipitation hardening type hot working tool steel

Also Published As

Publication number Publication date
JPS61139652A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
US6562153B1 (en) Strain-induced type martensitic steel having high hardness and having high fatigue strength
JPS59179762A (en) Cold tool steel
JPS5853709B2 (en) As-forged high-strength forging steel
EP0459547B1 (en) Precipitation-hardenable tool steel
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JP2001303173A (en) Steel for carburizing and carbo-nitriding
JP3915284B2 (en) Non-tempered nitriding forged parts and manufacturing method thereof
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
US6558483B2 (en) Cu precipitation strengthened steel
JPH0555585B2 (en)
JPH0587583B2 (en)
JP2665009B2 (en) High strength martensitic stainless steel and method for producing the same
JP2755301B2 (en) Tool steel for hot working
JPH04154936A (en) Precipitation hardening nitriding steel
JP4302480B2 (en) High hardness steel with excellent cold workability
JP4577936B2 (en) Method for producing martensitic stainless steel with excellent strength, ductility and toughness
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP2003055734A (en) Austenitic tool steel having excellent machinability and method for producing austenitic tool
JPH02125840A (en) Tool steel for hot working
JPH0244891B2 (en)
JPH0718378A (en) Steel for hot die
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
JPH0557350B2 (en)
JPH10298709A (en) Tool steel for hot working excellent in wear resistance, and tool steel product
JP2784128B2 (en) Precipitation hardening type hot work tool steel