JPH0587575B2 - - Google Patents

Info

Publication number
JPH0587575B2
JPH0587575B2 JP7719790A JP7719790A JPH0587575B2 JP H0587575 B2 JPH0587575 B2 JP H0587575B2 JP 7719790 A JP7719790 A JP 7719790A JP 7719790 A JP7719790 A JP 7719790A JP H0587575 B2 JPH0587575 B2 JP H0587575B2
Authority
JP
Japan
Prior art keywords
aluminum
alumina
short fibers
preform
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7719790A
Other languages
Japanese (ja)
Other versions
JPH03274233A (en
Inventor
Hajime Hata
Shuji Manabe
Masanori Nagafune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP7719790A priority Critical patent/JPH03274233A/en
Publication of JPH03274233A publication Critical patent/JPH03274233A/en
Publication of JPH0587575B2 publication Critical patent/JPH0587575B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はアルミナ系短繊維を強化材としたアル
ミニウム系金属基複合材料に関するものである。 〔従来の技術〕 金属材料の中でアルミニウム及びアルミニウム
合金は、比重が小さく易加工性、低価格のため航
空機、自動車、建材をはじめとして種々の用途に
使用されている。 そして近時これらアルミニウム系金属の機械的
特性を向上させるために、高強度、高弾性を有す
る炭化ケイ素、窒化ケイ素、炭素、アルミナ系、
6チタン酸カリウム等の短繊維を、強化材として
金属との複合化を図ろうとする開発が盛んに進め
られている。 これらのうち6チタン酸カリウム短繊維は、溶
融アルミニウムと反応するため強化材としては不
向きである。9Al2O3・2B2O3で示されるホウ酸ア
ルミニウム短繊維は、溶融剤を用いる液相法で合
成できるため、製造コストが気相法でしか合成で
きない炭化珪素、窒化珪素より低く、且つアルミ
ナ成分が多く含まれ、溶融アルミニウム金属に対
して安定であるので、アルミニウム系金属用の強
化材として適している。 〔発明が解決しようとする課題〕 しかしながら、ホウ酸アルミニウム短繊維はア
ルミナ成分を87%有しているものの、残りの
B2O3成分が複合化の際反応するため、特にマグ
ネシウムを含むアルミニウム合金をマトリツクス
として用いた際に問題が生じる。 即ち、B2O3成分とマグネシウムとが反応して
ホウ素と酸化マグネシウムとになり、後者と短繊
維中のアルミナ成分または複合化した時にアルミ
ニウム金属が酸化されて生ずるアルミナと反応し
てスピネルを生成する。 このスピネル生成は微量であるため基本的な強
度発現には支障はないが、本来硬度を向上するた
めにアルミニウム金属中に添加しているマグネシ
ウム金属がこれによつて消失して、期待される硬
度が得られないという難点がある。 最も工業化に適している複合化の方法は、溶湯
鍛造法である。これは短繊維による予備成型体を
作製し、これに溶融アルミニウムを圧入する方法
である。 予備成型体は、通常短繊維をポリビニールアル
コール等の有機バインダー及びシリカゾル等の無
機バインダーを数%溶解または分散させた水等に
分散し、これを濾過または濃縮したのち加圧して
製作される。有機系バインダーは成型性を向上さ
せるために、また無機系バインダーは得られた予
備成型体を加熱焼成して、アルミニウムの圧入に
十分耐える強度を付与するために添加される。 しかし有機系のバインダーは予備成型体の焼成
の際に消失するので全く問題は無いが、無機系の
バインダーはシリカ系のものが主であるため、前
述のように、マグネシウムを含むアルミニウム合
金の場合は、複合化の際に酸化還元反応が起つて
スピネルを生成し、マトリツクス合金相からマグ
ネシウムが消失する不具合を生じる。 本発明方法は、このような問題を解決したアル
ミナ系短繊維強化金属基複合材料及びその製造方
法を提供するものである。 〔課題を解決するための手段〕 本発明者等は、このような事情に鑑み鋭意試験
研究を重ねた結果、9Al2O3・2B2O3の組成を持つ
ホウ酸アルミニウム短繊維を1200〜1600℃に加熱
し、B2O3成分が揮発させたアルミナ成分の多い
アルミナ系短繊維は、原料のホウ酸アルミニウム
短繊維と同じ形状を保持したまま式9Al2O3
XB2O3(但し式中Xは0.01以上であり且つ2.0未満
の数値を表わす)で示される組成を持つアルミナ
系短繊維に変換でき、且つこの短繊維をアルミニ
ウム系金属の強化材として用いた場合に所期の目
的を達成しうることを見い出し、本発明を完遂し
たものである。 本発明によれば、原料として使用する
9Al2O3・2B2O3の組成を持つ短繊維は、既に明ら
かになつている製法で得られるものでよく、ま
た、2Al2O3・B2O3のような短繊維でも加熱途中
でB2O3が揮発して、9Al2O3・2B2O3が生成する
ので原料として使用することが可能である。 加熱により生成する本発明において使用される
アルミナ系短繊維は、原料のホウ酸アルミニウム
短繊維と同じであり、繊維径0.1〜10μm、繊維長
1〜500μmの範囲のものが好適である。 本発明の実施態様を具体的に説明すると、原料
短繊維の有機系のバインダーを数%含む水、また
は有機溶媒に添加分散してスラリーとしたのち、
吸引濾過もしくは濃縮後加圧して予備成型体を形
成し、これを大気中約800℃で加熱して複合化の
際に障害となる有機バインダーの脱脂を行い、
B2O3を揮発させるために予備成型体を1200〜
1800℃の温度で、30分〜8時間加熱する。 これらの加熱処理条件を変えることにより短繊
維中のAl2O3/B2O3比を変化させることが可能で
ある。即ち温度が高い程、また加熱時間が長い程
アルミナの含有率は増大する。 この加熱処理に当たつては、減圧下、真空下で
加熱すれば、大気中に比べ、加熱温度を低くする
ことが可能である。 このようにして得られた予備成型体中の短繊維
は原料であるホウ酸アルミニウム短繊維と形状的
に殆ど差は認められない。 加熱によつて生じる重量の減少は、得られたア
ルミナ系短繊維の原子吸光光度計によるAlとB
のモル比の測定結果に基づき、B2O3分の揮発に
よると認められた。 またX線回折の結果によれば、得られたアルミ
ナ系短繊維は9Al2O3・2B2O3とα−アルミナの回
折パターンが確認されているが、電子線回折では
1本の短繊維から両者の存在が確認できるので、
B2O3分の揮発性の点から繊維の中心部は
9Al2O3・2B2O3、表面層がα−アルミナ化してい
るものと推定でき、そして加熱の条件を変えるこ
とによつて両者の比率を制御することが可能であ
る。 このようにして得られる予備成型体を約800℃
に余熱して200〜500℃に保持した金型にセツト
し、直ちに溶融したアルミニウムまたはアルミニ
ウム合金を、300〜2000Kgf/cm2の圧力で圧入溶
浸することにより、目的とするアルミニウム系金
属基複合材を得ることができる。 以上は9Al2O3・2B2O3の組成を持つホウ酸アル
ミニウム短繊維の予備成型体を造つたのち、アル
ミナ分の多い短繊維に変換する方法であるが、マ
グネシウムを含まないマトリツクス合金を用いる
場合は、複合化の際にマグネシウムが消失する問
題を生じないので、前述の条件で加熱処理して得
たアルミナ成分の多いアルミナ系短繊維に、無機
質、有機質バインダーを加えて、前述の方法に従
つて予備成型体を形成することも可能である。 以下実施例及び比較例によつて、本発明を具体
的に説明する。 実施例 1 繊維径約1μm、繊維長10〜30μmの組成式が
9Al2O3・2B2O3で示されるホウ酸アルミニウム短
繊維(商品名「アルボレツクスG」四国化成工業
(株)製)400gを、予め20gのポリビニルアルコール
を溶解した4の水に分散させ、超音波を照射し
ながら20分間撹拌して均一に分散したスラリーを
調整する。次にこれを水分約10%まで濃縮して内
容物を取り出し、内径10cmのシリンダー形状の塩
化ビニル製型に入れ、内容物の高さが8cmになる
まで塩化ビニル製のピストンで圧縮して短繊維予
備成型体を作る。脱型した予備成型体を150℃に
て2時間乾燥させ、更に800℃で1時間加熱して
ポリビニルアルコールを焼失させる。 この時点における短繊維体積分率(Vf)は、
約20%である。 上記予備成型体を次表に示した条件で加熱処理
して、B2O3成分を揮発除去及び焼結を行い、ア
ルミナ成分の多い機械的強度の高い予備成型体に
変換する。 このようにして得られた予備成型体中の短繊維
は、原料のホウ酸アルミニウム短繊維と形状的に
殆ど差は認められなかつた。 次に、300℃に保つた内径12cmのシリンダー形
状の金型の底面中心部に800℃で予備加熱した予
備成型体を置き、800℃で溶融させたアルミニウ
ム伸展材(JIS A6061合金)を注湯し、素早く金
型上部ピストンで加圧して溶融アルミニウム合金
を予備成型体に浸透させる。この時の圧力は800
Kg/cm2であり、約1分以内に溶湯は浸透が終了し
凝固するので、脱型して複合材を得た。 このようにして得られた複合化を半円柱状に切
断し、マグネシウム欠乏部の大きさを測定した。 通常の複合化はマグネシウム欠乏による偏析異
常部分が溶湯の最終圧入部位に存在するが、本例
によれば、マグネシウム欠乏による偏析異常部分
は、大幅に減少するかあるいは完全に消失してい
た。
[Industrial Application Field] The present invention relates to an aluminum-based metal matrix composite material using alumina-based short fibers as a reinforcing material. [Prior Art] Among metal materials, aluminum and aluminum alloys have a low specific gravity, are easy to process, and are inexpensive, so they are used in various applications including aircraft, automobiles, and building materials. Recently, in order to improve the mechanical properties of these aluminum-based metals, silicon carbide, silicon nitride, carbon, alumina-based metals, which have high strength and high elasticity,
BACKGROUND ART Developments are actively underway to combine short fibers such as potassium hexatitanate with metals as reinforcing materials. Among these, potassium hexatitanate short fibers are not suitable as a reinforcing material because they react with molten aluminum. Aluminum borate short fibers represented by 9Al 2 O 3・2B 2 O 3 can be synthesized by a liquid phase method using a melting agent, so the manufacturing cost is lower than that of silicon carbide and silicon nitride, which can only be synthesized by a gas phase method. Since it contains a large amount of alumina and is stable against molten aluminum metal, it is suitable as a reinforcing material for aluminum-based metals. [Problem to be solved by the invention] However, although aluminum borate short fibers have an alumina component of 87%, the remaining
Since the B 2 O 3 component reacts during compositing, problems arise especially when an aluminum alloy containing magnesium is used as a matrix. That is, the B 2 O 3 component and magnesium react to form boron and magnesium oxide, and the latter reacts with the alumina component in short fibers or alumina produced by oxidation of aluminum metal when composited, producing spinel. do. Since this spinel formation is in a small amount, it does not interfere with basic strength development, but the magnesium metal that is originally added to aluminum metal to improve hardness disappears and the expected hardness is reduced. The problem is that it cannot be obtained. The compounding method most suitable for industrialization is the molten metal forging method. This is a method in which a preformed body of short fibers is prepared and molten aluminum is press-fitted into it. The preform is usually produced by dispersing short fibers in water or the like in which several percent of an organic binder such as polyvinyl alcohol and an inorganic binder such as silica sol are dissolved or dispersed, filtering or concentrating the mixture, and then applying pressure. The organic binder is added in order to improve moldability, and the inorganic binder is added in order to heat and sinter the obtained preform to give it sufficient strength to withstand press-fitting of aluminum. However, organic binders disappear when the preform is fired, so there is no problem at all, but inorganic binders are mainly silica-based, so as mentioned above, in the case of aluminum alloys containing magnesium, When compounded, an oxidation-reduction reaction occurs to produce spinel, causing a problem in which magnesium disappears from the matrix alloy phase. The method of the present invention provides an alumina-based short fiber-reinforced metal matrix composite material that solves these problems and a method for producing the same. [Means for Solving the Problems] In view of the above circumstances, the inventors of the present invention have conducted intensive research and testing, and have found that aluminum borate short fibers having a composition of 9Al 2 O 3 and 2B 2 O 3 are The alumina-based short fibers with a high alumina component, which are heated to 1600℃ and the B 2 O 3 component is volatilized, retain the same shape as the raw material aluminum borate short fibers and have the formula 9Al 2 O 3 .
It can be converted into alumina-based short fibers having the composition represented by The present invention has been completed by discovering that the intended purpose can be achieved in some cases. According to the invention, used as raw material
Short fibers with a composition of 9Al 2 O 3・2B 2 O 3 can be obtained by already known manufacturing methods, and short fibers such as 2Al 2 O 3・B 2 O 3 can also be obtained during heating. B 2 O 3 evaporates and 9Al 2 O 3 .2B 2 O 3 is produced, which can be used as a raw material. The alumina-based short fibers used in the present invention produced by heating are the same as the raw material aluminum borate short fibers, and preferably have a fiber diameter of 0.1 to 10 μm and a fiber length of 1 to 500 μm. To specifically explain the embodiment of the present invention, after adding and dispersing raw short fibers in water or an organic solvent containing several percent of an organic binder to form a slurry,
After suction filtration or concentration, pressure is applied to form a preform, which is then heated in the atmosphere at approximately 800°C to degrease the organic binder that becomes an obstacle during compounding.
1200~1200 to volatilize the B2O3
Heat at a temperature of 1800℃ for 30 minutes to 8 hours. By changing these heat treatment conditions, it is possible to change the Al 2 O 3 /B 2 O 3 ratio in the short fibers. That is, the higher the temperature and the longer the heating time, the higher the alumina content. In this heat treatment, heating under reduced pressure or vacuum allows the heating temperature to be lower than that in the air. The short fibers in the preform thus obtained have almost no difference in shape from the raw material aluminum borate short fibers. The decrease in weight caused by heating was determined by the atomic absorption spectrophotometry of the obtained alumina short fibers.
Based on the measurement results of the molar ratio of B 2 O, it was recognized that this was due to the volatilization of 3 minutes of B 2 O. Furthermore, according to the results of X-ray diffraction, the obtained alumina-based short fibers have a diffraction pattern of 9Al 2 O 3 2B 2 O 3 and α-alumina, but electron diffraction shows that only one short fiber Since the existence of both can be confirmed from
The center of the fiber from the volatile point of B 2 O 3 min is
It can be assumed that the surface layer of 9Al 2 O 3 .2B 2 O 3 is α-aluminated, and it is possible to control the ratio of both by changing the heating conditions. The preformed body obtained in this way is heated to approximately 800°C.
The mold is preheated to 200 to 500℃ and immediately infiltrated with molten aluminum or aluminum alloy at a pressure of 300 to 2000 kgf/cm 2 to form the desired aluminum-based metal matrix composite. material can be obtained. The above method involves making a preform of aluminum borate short fibers with a composition of 9Al 2 O 3 2B 2 O 3 and then converting them into short fibers with a high alumina content. When used, the problem of magnesium disappearing during compounding does not occur, so inorganic and organic binders are added to alumina-based short fibers with a high alumina content obtained by heat treatment under the above-mentioned conditions, and the above-mentioned method is used. It is also possible to form a preform according to. The present invention will be specifically explained below using Examples and Comparative Examples. Example 1 The composition formula with a fiber diameter of approximately 1 μm and a fiber length of 10 to 30 μm is
Aluminum borate short fibers represented by 9Al 2 O 3 and 2B 2 O 3 (product name: “Alborex G”, Shikoku Kasei Kogyo Co., Ltd.)
Co., Ltd., is dispersed in water in which 20 g of polyvinyl alcohol has been dissolved in advance, and stirred for 20 minutes while irradiating ultrasonic waves to prepare a uniformly dispersed slurry. Next, this is concentrated to about 10% water content, the contents are taken out, placed in a cylinder-shaped vinyl chloride mold with an inner diameter of 10 cm, and compressed with a vinyl chloride piston until the height of the contents reaches 8 cm. Make a fiber preform. The demolded preform is dried at 150°C for 2 hours, and further heated at 800°C for 1 hour to burn off the polyvinyl alcohol. The short fiber volume fraction (Vf) at this point is
It is about 20%. The above preformed body is heat-treated under the conditions shown in the following table to volatilize and remove the B 2 O 3 component and sinter, converting it into a preformed body with high mechanical strength and high alumina content. The short fibers in the preform thus obtained had almost no difference in shape from the raw aluminum borate short fibers. Next, the preformed body preheated at 800°C was placed in the center of the bottom of a cylindrical mold with an inner diameter of 12cm kept at 300°C, and the aluminum extensible material (JIS A6061 alloy) melted at 800°C was poured into the mold. Then, quickly apply pressure with the piston at the top of the mold to infiltrate the molten aluminum alloy into the preform. The pressure at this time is 800
Kg/cm 2 , and the molten metal finished penetrating and solidified within about 1 minute, so it was removed from the mold to obtain a composite material. The composite thus obtained was cut into semi-cylindrical shapes, and the size of the magnesium deficient area was measured. In normal compounding, an abnormal segregation area due to magnesium deficiency exists at the final injection site of the molten metal, but in this example, the abnormal segregation area due to magnesium deficiency was significantly reduced or completely disappeared.

【表】 実施例 2 繊維径約2μm、繊維長20〜60μmの組成式が
9Al2O3・2B2O3で示されるホウ酸アルミニウム短
繊維を用い、実施例1と同様にスラリー調整、成
型、バインダーの脱脂を行い、B2O3を揮発させ
るために、真空中1250℃の温度で4時間加熱処理
をしてAl2O3/B2O3=9:0.5の組成を持つアル
ミナ短繊維が自己焼結した予備成型体を形成し
た。 この時の重量減少率は9.2%であり、もとの短
繊維の形状を保持していた。この加熱処理予備成
型体を例1と同様な方法でJIS A6061合金を用い
て複合化した結果、マグネシウムの欠乏相は皆無
であつた。 実施例 3 繊維径約0.5μm、繊維長10〜20μmの組成式が
2Al2O3・B2O3で示されるホウ酸アルミニウム短
繊維を用い、実施例1と同様にスラリー調整、成
型、バインダー脱脂を行つたのち、B2O3を揮発
させるために1600の温度で1時間加熱処理をし
て、Al2O3/B2O3=9:0.5の組成を持つアルミ
ナ短繊維が自己焼結した予備成型体を作製した。
この時の重量減少率は22.6%であり、もとの短繊
維の形状を保持していた。この加熱処理予備成型
体を例1と同様な方法でJIS A6061合金を用いて
複合化した結果、マグネシウムの欠乏相は皆無で
あつた。 実施例 4 実施例1と同じホウ酸アルミニウム短繊維を用
い、その100gを坩堝に入れて1500℃の温度で4
時間加熱して、Al2O3/B2O3=9:0.2の組成を
持つアルミナ短繊維を得る。 この短繊維を予めポリビニルアルコール5g及
びシリカゾルの30%水溶液4c.c.を溶解した1の
水に分散させ、超音波を照射しながら20分間撹拌
して均一に分散したスラリーを調整する。次にこ
れを水分約10%にまで濃縮して内容物を取り出
し、内径10cmのシリンダー形状の塩化ビニル製型
に入れ、内容物の高さが2cmになるまで塩化ビニ
ル製のピストンで圧縮して予備成型体を形成し
た。 脱型した予備成型体を150℃の温度で2時間乾
燥し、次いで800℃で1時間加熱してポリビニル
アルコールを焼失させ、さらにシリカゾルをゲル
化焼結させて、機械的強度の高い予備成型体とし
た。この時の短繊維体積分率(Vf)は約20%で
あつた。 引き続き実施例1と同様にマトリツクス合金と
してアルミニウム伸展材JIS A2014を用いて複合
化し、T4熱処理を行つたのち、500℃で熱間押出
を行い直径12mmの線材を造つた。この複合化の引
張強度は44Kg/mm2、ヤング率は8.7ton/mm2であつ
た。アルミニウム伸展材A2014のみを同様に処理
した場合の引張強度及びヤング率の値はそれぞれ
37Kg/mm2及び7.5ton/mm2であり、短繊維を複合化
したものに相当の補強効果が確認できた。 発明の効果 本発明によれば、マトリツクス金属の特性を活
かしたアルミニウム系金属基複合材料を造ること
が可能であり、各種金属部品用材料として使用可
能である。
[Table] Example 2 The composition formula for fiber diameter of approximately 2 μm and fiber length of 20 to 60 μm is
Using aluminum borate short fibers represented by 9Al 2 O 3 and 2B 2 O 3 , slurry preparation, molding, and degreasing of the binder were performed in the same manner as in Example 1 . A preformed body in which short alumina fibers having a composition of Al 2 O 3 /B 2 O 3 =9:0.5 was self-sintered was formed by heat treatment at a temperature of 4 hours. The weight reduction rate at this time was 9.2%, and the original short fiber shape was maintained. When this heat-treated preform was composited using JIS A6061 alloy in the same manner as in Example 1, there was no magnesium-deficient phase. Example 3 The composition formula with a fiber diameter of approximately 0.5 μm and a fiber length of 10 to 20 μm is
Using aluminum borate short fibers represented by 2Al 2 O 3・B 2 O 3 , slurry preparation, molding, and binder degreasing were carried out in the same manner as in Example 1, and then the temperature was heated to 1600 °C to volatilize B 2 O 3 . A preformed body in which short alumina fibers having a composition of Al 2 O 3 /B 2 O 3 =9:0.5 was self-sintered was produced.
The weight reduction rate at this time was 22.6%, and the original short fiber shape was maintained. When this heat-treated preform was composited using JIS A6061 alloy in the same manner as in Example 1, there was no magnesium-deficient phase. Example 4 Using the same aluminum borate short fibers as in Example 1, 100g of it was placed in a crucible and heated at a temperature of 1500°C.
By heating for a period of time, short alumina fibers having a composition of Al 2 O 3 /B 2 O 3 =9:0.2 are obtained. These short fibers are dispersed in 1 water in which 5 g of polyvinyl alcohol and 4 c.c. of a 30% aqueous solution of silica sol are dissolved in advance, and stirred for 20 minutes while irradiating with ultrasonic waves to prepare a uniformly dispersed slurry. Next, this was concentrated to about 10% water content, the contents were taken out, placed in a cylindrical vinyl chloride mold with an inner diameter of 10 cm, and compressed with a vinyl chloride piston until the contents reached a height of 2 cm. A preform was formed. The demolded preform is dried at a temperature of 150°C for 2 hours, then heated at 800°C for 1 hour to burn out the polyvinyl alcohol, and the silica sol is gelled and sintered to create a preform with high mechanical strength. And so. The short fiber volume fraction (Vf) at this time was about 20%. Subsequently, in the same manner as in Example 1, aluminum expanded material JIS A2014 was used as a matrix alloy to form a composite, and after T4 heat treatment, hot extrusion was performed at 500°C to produce a wire rod with a diameter of 12 mm. This composite had a tensile strength of 44 Kg/mm 2 and a Young's modulus of 8.7 ton/mm 2 . The values of tensile strength and Young's modulus when only the expanded aluminum material A2014 is treated in the same way are as follows.
37Kg/mm 2 and 7.5ton/mm 2 , and it was confirmed that the short fiber composite had a considerable reinforcing effect. Effects of the Invention According to the present invention, it is possible to produce an aluminum-based metal matrix composite material that takes advantage of the characteristics of matrix metal, and it can be used as a material for various metal parts.

Claims (1)

【特許請求の範囲】 1 式9Al2O3・XB2O3(但し式中Xは0.01以上で
あり且つ2.0未満の数値を表わす)で示される組
成を持つアルミナ系短繊維を含有させたことを特
徴とするアルミニウム系金属基複合材料。 2 式9Al2O3・XB2O3(但し式中Xは0.01以上で
あり且つ2.0未満の数値を表わす)で示される組
成を持つアルミナ系短繊維の予備成型体を形成
し、これに溶融したアルミニウムまたはアルミニ
ウム合金を加圧溶浸させることを特徴とするアル
ミニウム系金属基複合材料の製造法。 3 式9Al2O3・2B2O3で示される組成を有するア
ルミナ系短繊維を成型し、これを加熱してB2O3
成分を揮発させ、式9Al2O3・XB2O3(但し式中X
は0.01以上であり且つ2.0未満の数値を表わす)
で示される組成を持つアルミナ系短繊維予備成型
体に変換させ、前記予備成型体に溶融したアルミ
ニウムまたはアルミニウム合金を加圧溶浸するこ
とを特徴とするアルミニウム系金属基複合材料の
製造法。
[Claims] 1 Containing alumina-based short fibers having a composition represented by the formula 9Al 2 O 3 . An aluminum-based metal matrix composite material characterized by: 2 A preformed body of alumina short fibers having a composition represented by the formula 9Al 2 O 3 · 1. A method for producing an aluminum-based metal matrix composite material, which comprises infiltrating aluminum or aluminum alloy under pressure. 3 Alumina-based short fibers having the composition shown by the formula 9Al 2 O 3・2B 2 O 3 are molded and heated to form B 2 O 3
The components are volatilized and the formula 9Al 2 O 3・XB 2 O 3 (However, in the formula
represents a value greater than or equal to 0.01 and less than 2.0)
A method for producing an aluminum-based metal matrix composite material, which comprises converting the alumina-based short fiber preform into an alumina-based short fiber preform having the composition shown in the following, and infiltrating the preform with molten aluminum or an aluminum alloy under pressure.
JP7719790A 1990-03-26 1990-03-26 Aluminum series metal matrix composite and its manufacture Granted JPH03274233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7719790A JPH03274233A (en) 1990-03-26 1990-03-26 Aluminum series metal matrix composite and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7719790A JPH03274233A (en) 1990-03-26 1990-03-26 Aluminum series metal matrix composite and its manufacture

Publications (2)

Publication Number Publication Date
JPH03274233A JPH03274233A (en) 1991-12-05
JPH0587575B2 true JPH0587575B2 (en) 1993-12-17

Family

ID=13627099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7719790A Granted JPH03274233A (en) 1990-03-26 1990-03-26 Aluminum series metal matrix composite and its manufacture

Country Status (1)

Country Link
JP (1) JPH03274233A (en)

Also Published As

Publication number Publication date
JPH03274233A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
AU625092B2 (en) Directional solidification of metal matrix composites
AU625094B2 (en) A method of thermo-forming a novel metal matrix composite body and products produced therefrom
JP4568410B2 (en) Method for manufacturing preform for magnesium metal matrix composite, method for manufacturing metal matrix composite, and composite
EP0380973B1 (en) Reinforced materials
JP3247364B2 (en) Method for producing metal matrix composite material
JP2612578B2 (en) Method for producing self-supporting ceramic composite
EP0505990B1 (en) Fiber reinforced aluminum matrix composite with improved interfacial bonding
JPH0587575B2 (en)
US20040202883A1 (en) Metal-ceramic composite material and method for production thereof
JPH03138326A (en) Manufacture of aluminum borate whisker reinforced metal matrix composite
JP3847009B2 (en) Method for producing silicon carbide composite
JP4129507B2 (en) Method for producing metal-ceramic composite material
CN1061695C (en) Method for preparation of ceramic/aluminium composite material
JP2002249832A (en) Ceramics/metal composite material and its manufacturing method
JP4313442B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP7382105B1 (en) High-strength metal matrix composite and method for producing high-strength metal matrix composite
JP2002241869A (en) Method for manufacturing metal/ceramic composite material
JP4084793B2 (en) Magnesium alloy composite preform and method for producing the same
JPH11264032A (en) Production of metal-ceramics composite material for casting
JPH03274234A (en) Manufacture of aluminum series metal matrix composite and its manufacture
JP2952361B2 (en) Magnesium borate fiber reinforced metal matrix composite and method for producing the same
JP4294882B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP3237770B2 (en) Method for producing alumina / aluminum composite material
JPH11228262A (en) Metal-ceramic composite material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees