JPH03274234A - Manufacture of aluminum series metal matrix composite and its manufacture - Google Patents
Manufacture of aluminum series metal matrix composite and its manufactureInfo
- Publication number
- JPH03274234A JPH03274234A JP7719890A JP7719890A JPH03274234A JP H03274234 A JPH03274234 A JP H03274234A JP 7719890 A JP7719890 A JP 7719890A JP 7719890 A JP7719890 A JP 7719890A JP H03274234 A JPH03274234 A JP H03274234A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- whiskers
- magnesium
- manufacture
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000011156 metal matrix composite Substances 0.000 title claims description 7
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 18
- 239000011029 spinel Substances 0.000 claims abstract description 18
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 30
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 11
- 239000012779 reinforcing material Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 13
- 229910045601 alloy Inorganic materials 0.000 abstract description 8
- 239000000956 alloy Substances 0.000 abstract description 8
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 230000003014 reinforcing effect Effects 0.000 abstract description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract 1
- 239000002002 slurry Substances 0.000 description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 16
- 229910052749 magnesium Inorganic materials 0.000 description 16
- 229940091250 magnesium supplement Drugs 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 230000002950 deficient Effects 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- -1 aluminum metals Chemical class 0.000 description 5
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical class [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 5
- 235000012254 magnesium hydroxide Nutrition 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 2
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 2
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 101100005925 Arabidopsis thaliana CERK gene Proteins 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000008167 Magnesium Deficiency Diseases 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910000905 alloy phase Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940063656 aluminum chloride Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229960002337 magnesium chloride Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 235000004764 magnesium deficiency Nutrition 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 229960003390 magnesium sulfate Drugs 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000004690 nonahydrates Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明はホウ酸アルξニウムウィスカーを強化法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for strengthening aluminum borate whiskers.
金属材料の中でアルごニウム及びアルごニウム合金は、
比重が小さく易加工性、低価枯のため航空機、自動車、
建材をはしめとして種々の用途に使用されている。Among metal materials, argonium and argonium alloys are
Due to its small specific gravity, easy processing, and low price, it is used in aircraft, automobiles,
It is used for various purposes as a building material.
そして近時これらのアルミニウム系金属の機械的特性を
向上させるために、高強度、高弾性を有する炭化ケイ素
、窒化ケイ素、炭素、アルミナ系、6チタン酸カリウム
等のウィスカーまたは短繊維を、強化材として金属との
複合化を図ろうとする開発が盛んに進められている。Recently, in order to improve the mechanical properties of these aluminum metals, whiskers or short fibers of silicon carbide, silicon nitride, carbon, alumina, potassium hexatitanate, etc., which have high strength and high elasticity, have been used as reinforcing materials. Development efforts are actively underway to combine these materials with metals.
これらのうち6チタン酸カリウムウイスカーは、溶融ア
ルミニウムと反応するため強化材としては不適切である
。9^1.0.・2B2O3で示されるホウ酸アルミニ
ウムウィスカーは、溶融剤を用いる液相法で合成できる
ため、製造コストが気相法でしか合成できない炭化珪素
、窒化珪素より低く、且つアルミナ成分が多く含まれる
ので溶融アル≧ニウム金属に対して安定であるので、ア
ルミニウム系金属用強化材として適している。Among these, potassium hexatitanate whiskers are unsuitable as reinforcing materials because they react with molten aluminum. 9^1.0.・Aluminum borate whiskers represented by 2B2O3 can be synthesized by a liquid phase method using a melting agent, so the manufacturing cost is lower than that of silicon carbide and silicon nitride, which can only be synthesized by a gas phase method.Aluminum borate whiskers, represented by 2B2O3, can be synthesized by a liquid phase method using a melting agent. Since it is stable against Al≧Nium metals, it is suitable as a reinforcing material for aluminum-based metals.
しかしながらホウ酸アルミニウムウィスカーは、アルミ
ナ成分を9^120.・2B2O3の場合は87%、2
A1gOs・Biasの場合は75%有しているものの
、残余の820.成分が複合化の際に反応し易いので、
特にマグネシウムを含むアルミニウム合金をマトリック
スとして用いた時に問題が生じる。However, aluminum borate whiskers have an alumina component of 9^120.・87% for 2B2O3, 2
In the case of A1gOs・Bias, it has 75%, but the remaining 820. Because the components are likely to react during compounding,
In particular, problems arise when an aluminum alloy containing magnesium is used as a matrix.
即ち、BtOs$、分とマグネシウムとが反応してホウ
素と酸化マグネシウムとになり、後者とウィスカー中の
アルミナ成分または複合化の際アルミニウム金属が酸化
されて生ずるアルミナと反応してスピネル(MgAl□
04)を形成する。That is, BtOs and magnesium react to form boron and magnesium oxide, and the latter reacts with the alumina component in the whisker or alumina produced when aluminum metal is oxidized during compounding to form spinel (MgAl□
04) is formed.
このスピネル生成は微量であるため、基本的な強度発現
には支障はないが、本来硬度を向上するためにアルミニ
ウム金属中に添加しているマグネシウム金属がこれによ
って消失し、期待される硬度が得られないという難点が
ある。Since this spinel formation is in a small amount, it does not interfere with basic strength development, but the magnesium metal that is originally added to aluminum metal to improve hardness disappears, and the expected hardness is not achieved. The problem is that it cannot be done.
最も工業化に適している複合化の方法は、溶湯鍛造法で
ある。これはウィスカーによる予備成型体を形成し、こ
れに溶融アルミニウムを圧入する方法である。予備成型
体は、通常先ずウィスカーをポリビニルアルコール等の
有機バインダー及びシリカゾル等の無機バインダーを数
%溶解または分散させた水等に分散し、これを濾過また
は濃縮したのち加圧して形成される。有機系バインダー
は成型性を向上させるために、無機系バインダーは得ら
れた予備成型体を加熱焼成して、アルミニウムの圧入に
十分針えうる強度を付与する為に添加される。有機系の
バインダーは予備成型体の焼成の際、消失してしまうの
で全く問題は無いが、無機系のバインダーはシリカ系の
ものが主であるため、前述のようにマグネシウムを含む
アルミニウム合金の場合、複合化の際に酸化還元反応が
起ってスピネルを生成し、マトリックス合金相からマグ
ネシウムが消失してしまうという不具合を生じるのが現
実である。The compounding method most suitable for industrialization is the molten metal forging method. This is a method in which a preformed body is formed using whiskers, and molten aluminum is press-fitted into this preformed body. The preform is usually formed by first dispersing the whiskers in water or the like in which several percent of an organic binder such as polyvinyl alcohol and an inorganic binder such as silica sol are dissolved or dispersed, filtering or concentrating the dispersion, and then applying pressure. The organic binder is added to improve the moldability, and the inorganic binder is added to the obtained preformed body to give it sufficient strength for press-fitting aluminum by heating and baking it. Organic binders disappear when the preform is fired, so there is no problem at all, but inorganic binders are mainly silica-based, so as mentioned above, in the case of aluminum alloys containing magnesium, The reality is that during compositing, an oxidation-reduction reaction occurs to produce spinel, causing the problem that magnesium disappears from the matrix alloy phase.
本発明方法は、このような問題を解決したホウ酸アルξ
ニウムウィスカー強化金属基複合材料の製造方法を提供
するものである。The method of the present invention solves these problems by using aluminum borate ξ
The present invention provides a method for manufacturing a metal matrix composite material reinforced with aluminum whiskers.
本発明者等は、このような事情に鑑み鋭意試験研究を重
ねた結果、ホウ酸アルミニウムウィスカーの表面に溶融
アルミニウム、マグネシウムに対し安定なスピネルを被
覆し、これを強化用素材として用いることによりこれら
の問題を解決することを見い出し、本発明を完遂したも
のである。In view of these circumstances, the inventors of the present invention have carried out extensive research and testing, and have found that by coating the surface of aluminum borate whiskers with spinel, which is stable against molten aluminum and magnesium, and using this as a reinforcing material, these The present invention has been completed by discovering a solution to the above problem.
本発明によれば、原料として使用するホウ酸アルミニウ
ムウィスカーは既に明らかになっている製法で得られる
ものでよく、その粒度は規制されるものでは無いが、通
常は繊維径0.1〜10μm、繊維長5〜500μmの
範囲のものが適当である。According to the present invention, the aluminum borate whisker used as a raw material may be obtained by an already known manufacturing method, and its particle size is not restricted, but usually the fiber diameter is 0.1 to 10 μm, A fiber length in the range of 5 to 500 μm is suitable.
ホウ酸アルミニウムウィスカーの表面にスピネルを被覆
する方法としては、例えば■アルミニウムとマグネシウ
ムの水酸化物の沈澱を表面に析出させ、これを焼成して
酸化物とする方法。■ゾルーゲル法によりアルミニウム
とマグネシウムの酸化物の前駆体をコーティングし、焼
成する方法。As a method for coating the surface of aluminum borate whiskers with spinel, for example, (1) a method in which a precipitate of aluminum and magnesium hydroxides is deposited on the surface, and this is fired to form an oxide. ■A method in which aluminum and magnesium oxide precursors are coated and fired using the sol-gel method.
■金属アルミニウムとマグネシウムを蒸着し酸化処理す
るか、酸化雰囲気下で金属アルミニウムとマグネシウム
化合物を分解する所謂、PVD法やCVD等の方法があ
る。(2) There are methods such as the so-called PVD method and CVD method, in which metal aluminum and magnesium are vapor-deposited and oxidized, or metal aluminum and magnesium compounds are decomposed in an oxidizing atmosphere.
このうち容易にできるのは■の方法である。具体的には
先ず水溶性のアルミニウムとマグネシウムの塩をスピネ
ルの化学量論量、即ちアルミニウム/マグネシウム=2
/1 (モル比)溶解した水にホウ酸アルミニウムウィ
スカーを均一に分散したスラリーを用意する。これに該
当する塩としては塩化アルミニウム、硫酸アルミニウム
、硝酸アルミニウム、塩化マグネシウム、硫酸マグネシ
ウム、硝酸マグネシウム等である。また、水酸化アルミ
ニウムや水酸化マグネシウムのように水不溶性のもので
も、p i+を塩酸等で下げることにより溶解できるの
で使用可能である。ホウ酸アルごニウムウィスカーに対
するこれら原料の割合は、被覆膜の厚みに関係するが生
成するスピネルの重量で1〜30%、好ましくは3〜l
O%となるようにするのが適切である。Among these methods, method (2) is the easiest. Specifically, first, water-soluble aluminum and magnesium salts are added to the stoichiometric amount of spinel, that is, aluminum/magnesium = 2.
/1 (mole ratio) Prepare a slurry in which aluminum borate whiskers are uniformly dispersed in dissolved water. Corresponding salts include aluminum chloride, aluminum sulfate, aluminum nitrate, magnesium chloride, magnesium sulfate, magnesium nitrate, and the like. Furthermore, even water-insoluble materials such as aluminum hydroxide and magnesium hydroxide can be used because they can be dissolved by lowering the p i+ with hydrochloric acid or the like. The ratio of these raw materials to the argonium borate whiskers is related to the thickness of the coating film, but the weight of the spinel produced is 1 to 30%, preferably 3 to 1
It is appropriate to set it to 0%.
調整したスラリーを充分撹拌しながら、アンモニア水溶
液を滴下してpHを徐々に上げてゆくと、先ずpH=7
付近で水酸化アルミニウムが析出し、続いてpH=9付
近で水酸化マグネシウムが析出する。引き続きアンモニ
ア水溶液を滴下してゆくと水酸化アルミニウムが再溶解
するので、滴下はpH=11以下好ましくはlO以下で
停止する引き続き行う予備成型体の底型性を向上させる
ためにポリビニールアルコール等の有機質バインダー水
溶液をこの時点で添加するが、本発明において、これは
必須要件となるものではない。While thoroughly stirring the prepared slurry, an ammonia aqueous solution was added dropwise to gradually raise the pH.
Aluminum hydroxide precipitates in the vicinity, followed by magnesium hydroxide precipitates around pH=9. If the ammonia aqueous solution is subsequently added dropwise, the aluminum hydroxide will be redissolved, so the dropping should be stopped at a pH of 11 or less, preferably 1O or less.In order to improve the bottom formability of the subsequently preformed product, polyvinyl alcohol, etc. An aqueous organic binder solution is added at this point, but this is not an essential requirement in the present invention.
前記のように調整されたスラリーを濾過したり、そのま
まか若しくは濃縮したのち加圧成型して予備成型体を形
成する。The slurry prepared as described above is filtered or press-molded as it is or after being concentrated to form a preform.
次に予備成型体に含まれる水を除去するために100〜
200 ’Cで乾燥したのち、700〜1200°C好
ましくは800〜1100°Cに大気中加熱する。これ
によりウィスカー上に沈着したアルミニウムとマグネシ
ウムの水酸化物はそれぞれ酸化物となり、且つ複合酸化
物化して目的とするスピネルの被覆膜を生しる。このと
き被覆膜のスピネルはウィスカー同志を凝集させるバイ
ンダー的な役割も果たし、得られた予備成型体は溶融金
属の圧入に耐えうる機械的強度を有したものとなる。こ
の点も本発明方法の大きな特徴である。Next, in order to remove the water contained in the preform,
After drying at 200'C, it is heated in the air to 700-1200C, preferably 800-1100C. As a result, the aluminum and magnesium hydroxides deposited on the whiskers turn into oxides, and then into a composite oxide to form the desired spinel coating film. At this time, the spinel of the coating film also plays the role of a binder that aggregates the whiskers together, and the obtained preform has mechanical strength that can withstand press-fitting of molten metal. This point is also a major feature of the method of the present invention.
前記予m成型体を走査型電子顕微鏡で観察すると、ウィ
スカー表面が粒子により覆われていることが確認され、
また微小X線分析によりウィスカー表面の均一なマグネ
シウムの分布が認められ、さらにX49回折回折法りス
ピネル相の形成が確認できた。When the pre-molded body was observed with a scanning electron microscope, it was confirmed that the whisker surface was covered with particles,
In addition, a uniform distribution of magnesium on the whisker surface was observed by micro X-ray analysis, and formation of a spinel phase was confirmed by X49 diffraction analysis.
このような方法の他に、中和処理したスラリーから一旦
固形分を濾過器または遠心分離器で回収し、乾燥、熱処
理によりスピネル被覆膜形成のウィスカーが得られ、前
述の方法でこれに有機質及び無機質のバインダーを添加
して予m成型体を形成することも可能である。この場合
、有機質バインダーの脱脂及び無りa質バインダーの坑
底のため800〜1100°Cの加熱処理が必要である
。In addition to this method, the solid content is once recovered from the neutralized slurry using a filter or centrifugal separator, and spinel-coated whiskers are obtained by drying and heat treatment. It is also possible to form a pre-molded body by adding an inorganic binder. In this case, heat treatment at 800 to 1100°C is required to degrease the organic binder and remove the amorphous binder from the bottom.
なお、以上の操作の中で、中和に用いるアルカリ水溶液
はアンモニア水溶液が最適である。これハ中和によって
生成する塩が塩化アンモニウム、硝酸アンモニウム、硫
酸アンモニウムということで、後に行われる加熱処理に
よって容易に分解または昇華して、被覆膜から除去され
る。In addition, among the above operations, an ammonia aqueous solution is most suitable as the alkaline aqueous solution used for neutralization. Since the salts produced by this neutralization are ammonium chloride, ammonium nitrate, and ammonium sulfate, they are easily decomposed or sublimed by the heat treatment performed later and removed from the coating film.
水酸化ナトリウム、水酸化カリウム水溶液を中和液とし
た場合は、固形物分離の際に充分な洗浄が必要であり、
洗浄中にpHが大きく変化しないよう先ず緩衝液を使用
したのち、水洗する必要がある。If sodium hydroxide or potassium hydroxide aqueous solution is used as the neutralizing liquid, sufficient washing is required when separating solids.
It is necessary to first use a buffer solution and then wash with water so that the pH does not change significantly during washing.
このようにして出来上がったウィスカー予備成形体を所
定の形状に設計された金型に組み込み、所定量のアルミ
ニウムまたはアルミニウム合金の溶湯を注ぎ込み、上部
パンチにより加圧してウィスカー予備成形体の空隙に溶
湯を浸透させる。溶湯を浸透させる圧力は300〜2.
000 kg/cdの範囲であり、また金型温度は20
0〜500℃、溶湯温度は700〜900″C1そして
予備成形体温度は溶湯温度と同程度にするのが良い。金
型温度を上げ過ぎると溶湯の凝固速度が遅く性能的には
良い物が出来るが、生産性は低下する。逆に金型温度か
低い場合には予備成形体及び溶湯の凝固が早くなり、浸
透が不十分となる。同様な理由で予備成形体も充分余熱
しておくことが必要である。The whisker preform thus completed is assembled into a mold designed to have a predetermined shape, a predetermined amount of molten aluminum or aluminum alloy is poured into the mold, and the molten metal is poured into the voids of the whisker preform by applying pressure with the upper punch. Let it penetrate. The pressure for penetrating the molten metal is 300~2.
000 kg/cd, and the mold temperature is 20
0~500℃, molten metal temperature is 700~900''C1, and the temperature of the preform should be about the same as the molten metal temperature.If the mold temperature is raised too much, the solidification rate of the molten metal will be slow and the performance will not be good. It can be done, but the productivity will decrease.On the other hand, if the mold temperature is low, the preform and molten metal will solidify quickly and penetration will be insufficient.For the same reason, the preform should also be preheated sufficiently. It is necessary.
本発明の実施において使用されるアルミニウム及びその
合金としては、JISで規定されている進展材及び鋳物
材が好適である。As aluminum and its alloys used in carrying out the present invention, advanced materials and cast materials specified by JIS are suitable.
これらの複合材はJISに規定される熱処理を行ったり
、ダイスを用いて熱間押出を行ったり、機械加工をして
最終部品として使用可能となる。These composite materials can be used as final parts by undergoing heat treatment specified by JIS, hot extrusion using a die, or machining.
前記のようにして造ったアル藁ニウム複合材は、X線回
折及び走査型電子顕微鏡観察の結果、ホウ酸アルミニウ
ムウィスカーはマトリックスであるアルミニウム及びア
ルミニウムの合金、特にマグネシウムを含むアルミニウ
ム合金においても全く反応していないことが分かった。As a result of X-ray diffraction and scanning electron microscopy observations of the aluminum straw composite material produced as described above, aluminum borate whiskers did not react at all with the matrix aluminum and aluminum alloys, especially aluminum alloys containing magnesium. I found out that I didn't.
そして、試験片を切り出しその機械的強度を測定した結
果ウィスカーによる補強効果が充分発現していることが
確認できた。Then, a test piece was cut out and its mechanical strength was measured. As a result, it was confirmed that the reinforcing effect of the whiskers was sufficiently exerted.
以下、本発明を実施例及び比較例によって具体的に説明
する。Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples.
実施例1
水51に塩化アルミニウム6水和物を67.9gと塩化
マグネシウム6水和物を28.6g 溶解する。この中
に繊維径約1μm1繊維長lO〜30μmの9AI□0
、・2B2O3ウイスカー(四国化成工業■製「アルボ
レックスG」)400gを入れて攪拌機で充分分散させ
、均一なスラリーを調整する。このスラリーにpH計を
セットし、攪拌しながら25〜28%濃度のアンモニア
水溶液を滴下してゆく。この操作により溶解していたア
ルミニウムイオンとマグネシウムイオンが微細な水酸化
物としてウィスカー上に析出、沈着する。pHが9にな
った時点で滴下を終了して10分間攪拌のみを行う。次
に予め5%濃度に調整したポリビニールアルコールを1
00cc加えて、更に10分間撹拌を行う。Example 1 67.9 g of aluminum chloride hexahydrate and 28.6 g of magnesium chloride hexahydrate are dissolved in 51 g of water. Among these, 9AI
, 400 g of 2B2O3 whiskers ("Arborex G" manufactured by Shikoku Kasei Kogyo ■) are added and sufficiently dispersed with a stirrer to prepare a uniform slurry. A pH meter is set in this slurry, and an ammonia aqueous solution having a concentration of 25 to 28% is added dropwise to the slurry while stirring. Through this operation, dissolved aluminum ions and magnesium ions precipitate and deposit on the whiskers as fine hydroxides. When the pH reaches 9, the dropwise addition is terminated and only stirring is continued for 10 minutes. Next, add 1 portion of polyvinyl alcohol adjusted to a concentration of 5% in advance.
00 cc was added and stirring was continued for an additional 10 minutes.
次に濾紙をセットしたヌッチェに内径10cm、高さ2
Oc−の塩化ビニル製シリンダーを置き、以上調整を行
ったスラリーを適宜注ぎ込み、吸引濾過を行う。全スラ
リーの濾過を終了した後、固形分の入ったシリンダーを
ヌッチェから離し、内容物の高さが8C111にな渇ま
で塩化ビニル製のピストンで圧縮してウィスカー成形体
を造る。脱型した予備成形体を150°Cにて2時間乾
燥させ、更に900’Cで2時間加熱してポリビニルア
ルコールの脱脂、及びウィスカー表面の水酸化物をスピ
ネルに変換させる。この時のウィスカーの体積分率(V
「)は約20%であり、スピネルがバインダー的に作用
するため機械的強度の高い予備成型体が得られる。この
成型体の一部を走査型電子顕微鏡で観察したところ、ホ
ウ酸アル逅ニウムウィスカー表面に微細な粒子が付着し
て、均一な被覆膜を形成していることが確認できた。ま
た微小X線分析によりウィスカー表面に均一なマグネシ
ウムの分布が認められ、X線回折によりスピネル相の形
成が確認できた。Next, set the filter paper in a Nutsche with an inner diameter of 10 cm and a height of 2.
An Oc- vinyl chloride cylinder is placed, and the slurry prepared above is appropriately poured into the cylinder, followed by suction filtration. After the entire slurry has been filtered, the cylinder containing the solid content is removed from the Nutsche and compressed with a vinyl chloride piston until the content reaches a height of 8C111 to form a whisker molded body. The demolded preform is dried at 150° C. for 2 hours and further heated at 900° C. for 2 hours to degrease the polyvinyl alcohol and convert the hydroxide on the whisker surface into spinel. At this time, the whisker volume fraction (V
) is approximately 20%, and since the spinel acts as a binder, a preformed body with high mechanical strength can be obtained. When a part of this molded body was observed with a scanning electron microscope, it was found that aluminum borate It was confirmed that fine particles adhered to the whisker surface to form a uniform coating film. Also, micro X-ray analysis confirmed a uniform distribution of magnesium on the whisker surface, and X-ray diffraction revealed that the spinel Formation of a phase was confirmed.
次に、300’Cに保った内径12C11のシリンダー
形状の金型の底面中心部に800°Cで予備加熱した予
備成形体を置き、800″Cで溶融させたアルミニウム
伸展材JIS A6061合金を注湯し、素早く金型上
部ピストンで加圧して溶融アルミニウム合金を予備成形
体に浸透させる。この時の圧力は800kg/c団2で
あり、約1分以内に溶湯は浸透が終了し凝固したので、
脱型して複合材を得た。Next, the preform preheated at 800°C was placed in the center of the bottom of a cylindrical mold with an inner diameter of 12C11 kept at 300'C, and an aluminum extensible JIS A6061 alloy melted at 800'C was poured into the mold. After boiling, the molten aluminum alloy was quickly pressurized with the upper piston of the mold to penetrate into the preform.The pressure at this time was 800 kg/cm2, and within about 1 minute, the molten metal finished penetrating and solidified. ,
The mold was demolded to obtain a composite material.
このようにして得られた複合材を半円柱状に切断し、マ
グネシウム欠乏部の大きさを測定した。The composite material thus obtained was cut into semi-cylindrical shapes, and the size of the magnesium-deficient portion was measured.
通常は溶湯の最終圧入部位にマグネシラl、欠乏に偏析
異常部分が存在するけれども、本例ではこのような部分
は全く観察されなかった。またT6処理を行った複合材
の1000kg荷重峙のブリネル硬度は、200kg/
am”であり十分な硬度の向上が確認できた。Normally, there is an abnormal segregation area due to magnesilium deficiency at the final injection site of the molten metal, but in this example, no such area was observed. In addition, the Brinell hardness of the T6-treated composite material under a 1000 kg load is 200 kg/
am'', and a sufficient improvement in hardness was confirmed.
比較例1
実施例1で使用したホウ酸アルξニウムウィスカー40
0gを、予め5gのポリビニルアルコールヲ溶解した水
5Nに入れて攪拌機で充分分散させ、均一なスラリーを
調整する。これを実施例1と同し手順で濾過、底型、脱
脂を行いウィスカー予備成型体を造ったのち、アルごニ
ウム伸展材JIS^6061合金を用いて同様に処理し
、複合材を得た。Comparative Example 1 Aluminum borate whisker 40 used in Example 1
0g was added to 5N water in which 5g of polyvinyl alcohol had been dissolved in advance, and sufficiently dispersed with a stirrer to prepare a uniform slurry. This was filtered, molded and degreased in the same manner as in Example 1 to produce a whisker preform, and then treated in the same manner using an expanded argonium JIS^6061 alloy to obtain a composite material.
この複合材を半円柱状に切断した中心部分には、図Aに
示すようなマグネシウム欠乏部が観測された。T6処理
後の1000kg荷重時のブリネル硬度を測定した結果
、マグネシウム非欠乏部は190kg/m−であるのに
対し、マグネシウム欠乏部は170kg/m1であり大
きな差が現れた。また非欠乏部でもこの値は実施例1の
値より低くなっていた。At the center of this composite material cut into a semi-cylindrical shape, a magnesium deficient area as shown in Figure A was observed. As a result of measuring the Brinell hardness under a load of 1000 kg after T6 treatment, the non-magnesium-deficient part was 190 kg/m-, while the magnesium-deficient part was 170 kg/m1, showing a large difference. Moreover, this value was lower than the value of Example 1 even in the non-deficient area.
実施例2
水51に水酸化アルミニウムを44g、水酸化マグネシ
ウムを16g分散さ一部たのち、塩酸を添加して全て溶
解させる。この中に繊維径約2μrn、繊維長20〜5
0μmの9AhO+ ’ 28203 ウィスカー40
0gを入れて撹拌機で充分分散させ、均一なスラリーを
調整する。このスラリーにp I−1計をセントし、攪
拌しながら10%濃度の水酸化ナトリウム水溶液を滴下
してゆく。p)1が10になった時点で滴下を終了して
10分間攪拌のみを行う。次に濾紙をセットシタヌッチ
ェに内径10cm、高さ20cmの塩化ビニル製シリン
ダーを置き、以上調整を行ったスラリーを適宜注ぎ込み
、吸引濾過を行う。全スラリーの濾過を終了したのち、
pH=lOのNH40H−NH4C1系緩衝液により塩
素イオン、ナトリウムイオンを洗浄除去する。Example 2 After dispersing 44 g of aluminum hydroxide and 16 g of magnesium hydroxide in water 51, hydrochloric acid was added to dissolve them all. In this, the fiber diameter is about 2 μrn, the fiber length is 20 to 5
0μm 9AhO+' 28203 Whisker 40
Add 0g and thoroughly disperse with a stirrer to prepare a uniform slurry. A p I-1 meter was placed in the slurry, and a 10% aqueous sodium hydroxide solution was added dropwise while stirring. p) When 1 becomes 10, dropwise addition is completed and only stirring is performed for 10 minutes. Next, a vinyl chloride cylinder with an inner diameter of 10 cm and a height of 20 cm was placed in the Shitanuche, where the filter paper was set, and the slurry adjusted above was appropriately poured into the cylinder to perform suction filtration. After completing the filtration of all slurry,
Chlorine ions and sodium ions are removed by washing with an NH40H-NH4C1 buffer solution having a pH of 1O.
以下は実施例1と同様に底型、乾燥、焼成、を行い、ア
ルミニウム鋳造合金AC7^を用いて複合化を行った結
果、マグネシウムの欠乏部分は発生しなかった。Below, the bottom molding, drying, and firing were carried out in the same manner as in Example 1, and as a result of compounding using aluminum casting alloy AC7^, no magnesium-deficient portion was generated.
実施例3
水51に硝酸アル≧ニウム9水和塩を53g、硝酸マグ
ネシウム6水和塩を18g溶解させたのち、繊維径約0
.5#m、繊維長10〜20μmの 2A110m・B
zO,ウィスカー400gを入れて攪拌機で充分分散し
、均一なスラリーを調整する。このスラリーにp H計
をセットし、攪拌しながら実施例1に従いアンモニア水
溶液を滴下して水酸化物をウィスカー表面に沈着させる
。Example 3 After dissolving 53 g of aluminum nitrate≧nium nonahydrate and 18 g of magnesium nitrate hexahydrate in 51 water, the fiber diameter was approximately 0.
.. 5#m, fiber length 10-20μm 2A110m・B
Add 400 g of zO and whiskers and thoroughly disperse with a stirrer to prepare a uniform slurry. A pH meter is set on this slurry, and while stirring, an ammonia aqueous solution is added dropwise in accordance with Example 1 to deposit hydroxide on the whisker surface.
あとは実施例1と同様にポリビニルアルコール水溶液を
添加、濾過、底型、乾燥、焼成、を行い、アルミニウム
鋳造合金ACD5を用いて複合化を行った結果、マグネ
シウムの欠乏部分は発生しなかった。After that, as in Example 1, addition of a polyvinyl alcohol aqueous solution, filtration, bottom molding, drying, and firing were performed, and as a result of composite formation using aluminum casting alloy ACD5, no magnesium-deficient portion was generated.
実施例4
水11に塩化アルミニウム6水和物を17.0gと塩化
マグネシウム6水和物を7.2g溶解する。この中に実
施例1において用いたと同じウィスカー200gを入れ
て攪拌機で充分に分散させ、均一なスラリーを調整する
。このスラリーにpH計をセットし、攪拌しながら25
〜28%濃度のアンモニア水溶液を滴下してアルミニウ
ムイオンとマグネシウムイオンを微細な水酸化物として
ウィスカー上に析出、沈着させる。pHが9.75にな
った時点で滴下を終了して10分間攪拌のみを行う。こ
のスラリーから遠心分離機で固形分を回収し、乾燥した
後1000°Cで4時間加熱しスピネルをウィスカー表
面に形成させる。Example 4 17.0 g of aluminum chloride hexahydrate and 7.2 g of magnesium chloride hexahydrate are dissolved in water 11. 200 g of the same whiskers used in Example 1 were added into this mixture and thoroughly dispersed with a stirrer to prepare a uniform slurry. Set a pH meter on this slurry, and while stirring,
An ammonia aqueous solution having a concentration of ~28% is dropped to precipitate and deposit aluminum ions and magnesium ions as fine hydroxides on the whiskers. When the pH reaches 9.75, the dropwise addition is completed and only stirring is continued for 10 minutes. The solid content is collected from this slurry using a centrifuge, dried, and then heated at 1000°C for 4 hours to form spinel on the whisker surface.
前記処理をしたウィスカーを予め5gのポリビニルアル
コール、及び4 cc30%水溶液のシリカゾルを溶解
した11の水に分散させ、超音波を照射しながら20分
間攪拌して均一に分散したスラリーを調整する。次にこ
れを水分約lO%にまで濃縮して内容物を取り出し、内
径IQcmのシリンダー形状の塩化ビニル製型に入れ、
内容物の高さが2cmになるまで塩化ビニル製のピスト
ンで圧縮して短繊維子OI威形体を造る。脱型した予備
成形体を150°Cにて2時間乾燥させ、更に800’
Cで1時間加熱してポリビニルアルコールを焼失させ、
さらにシリカゾルをゲル化焼結して、機械的強度の高い
予備成型体とする。この時のウィスカ一体積分率(Vf
)は約20%である。The treated whiskers are dispersed in 11 water in which 5 g of polyvinyl alcohol and 4 cc of 30% aqueous silica sol are dissolved in advance, and stirred for 20 minutes while irradiating with ultrasonic waves to prepare a uniformly dispersed slurry. Next, this was concentrated to a moisture content of about 10%, the contents were taken out, and placed in a cylindrical vinyl chloride mold with an inner diameter of IQ cm.
The contents were compressed with a vinyl chloride piston until the height of the contents reached 2 cm to produce short fiber OI shapes. The demolded preform was dried at 150°C for 2 hours and further dried at 800°C.
Heat at C for 1 hour to burn off the polyvinyl alcohol,
Furthermore, the silica sol is gelled and sintered to obtain a preformed body with high mechanical strength. At this time, the whisker volume fraction (Vf
) is approximately 20%.
引き続き実施例1と同様にマトリックス合金としてアル
くニウム伸展材JIS A2014で複合化し、T4熱
処理を行ったのち、500 ’Cで熱間押出を行い直径
12開の線材を形成した。この複合材の引張強度は44
kg/am”、ヤング率は8.7 ton/s−であり
、ウィスカーを使用しないアルミニウム伸展材の成形材
における引張強度は37kg10hm2、ヤング率は7
.5ton/am”であって、補強効果が充分に現れて
いることが確認できた。Subsequently, in the same manner as in Example 1, the matrix alloy was composited with aluminum expanded material JIS A2014, subjected to T4 heat treatment, and then hot extruded at 500'C to form a wire rod with a diameter of 12. The tensile strength of this composite material is 44
kg/am", the Young's modulus is 8.7 ton/s-, and the tensile strength of the aluminum extensible material without whiskers is 37 kg10hm2, and the Young's modulus is 7.
.. 5 ton/am'', and it was confirmed that the reinforcing effect was sufficiently exhibited.
本発明方法によれば、このようにアルミニウム金属との
親和性に優れ、且つアルミニウムと反応しない比較的廉
価なホウ酸アル2ニウムウィスカーを用いた金属基複合
材料を得ることができる。According to the method of the present invention, it is possible to obtain a metal matrix composite material using relatively inexpensive aluminum borate whiskers that have excellent affinity with aluminum metal and do not react with aluminum.
図面は本発明方法の比較例で示した複合材の断面状態を
示したものであり、図中Aはマグネシウム欠乏による偏
析異常部分を示す。The drawing shows a cross-sectional state of a composite material shown in a comparative example of the method of the present invention, and A in the drawing shows an abnormal segregation area due to magnesium deficiency.
Claims (4)
なるスピネルで被覆されたホウ酸アルミニウムウィスカ
ーを用いることを特徴とするアルミニウム系金属基複合
材料の製造方法。(1) As a reinforcing material, the surface has the chemical formula MgAl_2O_4
1. A method for producing an aluminum-based metal matrix composite material, the method comprising using aluminum borate whiskers coated with spinel.
ホウ酸アルミニウムウィスカーを用いる請求項(1)に
記載のアルミニウム系金属基複合材料の製造方法。(2) The method for producing an aluminum-based metal matrix composite material according to claim (1), using aluminum borate whiskers represented by the formula 9Al_2O_3.2B_2O_3.
ウ酸アルミニウムウィスカーを用いる請求項(1)に記
載のアルミニウム系金属基複合材料の製造方法。(3) The method for producing an aluminum-based metal matrix composite material according to claim (1), using aluminum borate whiskers represented by the formula 2Al_2O_3·B_2O_3.
とを特徴とする請求項(1)に記載のアルミニウム系金
属基複合材料の製造方法。(4) The method for producing an aluminum-based metal matrix composite material according to claim (1), characterized in that molten metal is press-fitted into the whisker preform.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7719890A JPH03274234A (en) | 1990-03-26 | 1990-03-26 | Manufacture of aluminum series metal matrix composite and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7719890A JPH03274234A (en) | 1990-03-26 | 1990-03-26 | Manufacture of aluminum series metal matrix composite and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03274234A true JPH03274234A (en) | 1991-12-05 |
JPH0587576B2 JPH0587576B2 (en) | 1993-12-17 |
Family
ID=13627127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7719890A Granted JPH03274234A (en) | 1990-03-26 | 1990-03-26 | Manufacture of aluminum series metal matrix composite and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03274234A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6521061B1 (en) * | 2000-04-28 | 2003-02-18 | Hiroshima University | Preforms, metal matrix composite materials using said preforms, and producing processes thereof |
CN105349921A (en) * | 2015-11-23 | 2016-02-24 | 哈尔滨工业大学 | Method for improving mechanical property of aluminum borate whisker enhanced aluminum matrix composite materials |
-
1990
- 1990-03-26 JP JP7719890A patent/JPH03274234A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6521061B1 (en) * | 2000-04-28 | 2003-02-18 | Hiroshima University | Preforms, metal matrix composite materials using said preforms, and producing processes thereof |
CN105349921A (en) * | 2015-11-23 | 2016-02-24 | 哈尔滨工业大学 | Method for improving mechanical property of aluminum borate whisker enhanced aluminum matrix composite materials |
Also Published As
Publication number | Publication date |
---|---|
JPH0587576B2 (en) | 1993-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6247519B1 (en) | Preform for magnesium metal matrix composites | |
KR100486000B1 (en) | Platinum material reinforced by oxide dispersion and process for produceing the same | |
EP0765946A1 (en) | Processes for producing Mg-based composite materials | |
US5141683A (en) | Method of producing reinforced materials | |
EP1390321B1 (en) | Metal-ceramic composite material and method for production thereof | |
JPH03274234A (en) | Manufacture of aluminum series metal matrix composite and its manufacture | |
EP0394056B1 (en) | Metal-based composite material and process for preparation thereof | |
US5972489A (en) | Porous inorganic material and metal-matrix composite material containing the same and process therefor | |
JPH03138326A (en) | Manufacture of aluminum borate whisker reinforced metal matrix composite | |
JP3324766B2 (en) | Metal matrix composite material and method for producing the same | |
JP2019052059A (en) | Composite sintered body, abrasive grain, grinding stone, and method for manufacturing composite sintered body | |
JP2788448B2 (en) | Method for producing fiber composite member | |
JP3090873B2 (en) | Mold and its manufacturing method | |
JP2885688B2 (en) | Aqueous suspension for ceramic molding | |
JP3030121B2 (en) | Potassium hexatitanate fiber for reinforcement | |
JP3143671B2 (en) | Al2O3-based superplastic ceramics and method for producing the same | |
JP3035648B2 (en) | Fiber reinforced metal material and method for producing the same | |
JP4135191B2 (en) | Method for producing partially composite light metal parts and preform used therefor | |
JP2002241869A (en) | Method for manufacturing metal/ceramic composite material | |
JP2777560B2 (en) | Whisker preform manufacturing method | |
JPH03274233A (en) | Aluminum series metal matrix composite and its manufacture | |
Manu et al. | Fabrication and Characterization of a Hybrid Functionally Graded Metal-matrix Composite Using the Technique of Squeeze Infiltration | |
JPH0775770B2 (en) | Method for producing preform for fiber-reinforced metal matrix composite material | |
JPH0742532B2 (en) | Method for manufacturing ceramic fiber preform for fiber-reinforced metal matrix composite material | |
JPS6267129A (en) | Production of composite metallic material |