JPH0587562A - Device for measuring surface roughness - Google Patents

Device for measuring surface roughness

Info

Publication number
JPH0587562A
JPH0587562A JP27734191A JP27734191A JPH0587562A JP H0587562 A JPH0587562 A JP H0587562A JP 27734191 A JP27734191 A JP 27734191A JP 27734191 A JP27734191 A JP 27734191A JP H0587562 A JPH0587562 A JP H0587562A
Authority
JP
Japan
Prior art keywords
surface roughness
measured
parameter
detection
evaluation area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27734191A
Other languages
Japanese (ja)
Other versions
JPH0792385B2 (en
Inventor
Chihiro Marumo
千尋 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP27734191A priority Critical patent/JPH0792385B2/en
Publication of JPH0587562A publication Critical patent/JPH0587562A/en
Publication of JPH0792385B2 publication Critical patent/JPH0792385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To clearly grasp the correlation between the size and rough parameter of an evaluation region. CONSTITUTION:A surface roughness measuring device is equipped with a detection signal memory means 50 storing the surface roughness data of an object to be measured corresponding to the coordinate value thereof and parameter operational display means 52, 54, 58 calculating a parameter value on the basis of the surface roughness data stored in the detection signal memory means, the coordinate value thereof and the size of a desired evaluation region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面粗さ測定装置、特に
粗さパラメータの演算機構の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface roughness measuring device, and more particularly to improvement of a roughness parameter calculating mechanism.

【0002】[0002]

【従来の技術】被測定物の表面粗さを評価する装置とし
て表面粗さ測定装置が周知であり、該表面粗さ測定装置
は被測定物表面よりその凹凸を検出する検出手段と、該
検出手段より得られた凹凸情報に基づき表面粗さを適切
に表現するパラメータを出力するパラメータ演算手段と
を備えている。
2. Description of the Related Art A surface roughness measuring device is well known as a device for evaluating the surface roughness of an object to be measured. The surface roughness measuring device includes a detecting means for detecting irregularities on the surface of the object to be measured, and the detecting means. And parameter calculation means for outputting a parameter that appropriately expresses the surface roughness based on the unevenness information obtained by the means.

【0003】すなわち、検出手段より得られた凹凸情報
をそのまま表示するのみでは、単に表面状態を示す粗さ
曲線が得られるのみであり、その表面粗さを適切に把握
することができない。
That is, if the unevenness information obtained by the detecting means is displayed as it is, only the roughness curve showing the surface condition can be obtained, and the surface roughness cannot be properly grasped.

【0004】そこで、従来より粗さパラメータとして、
粗さ曲線とその中心線までの偏差の絶対値の平均である
中心線平均値、最も高い山頂から最も深い谷底までの高
さ方向の距離である最大高さなどを用い、被測定物の表
面粗さを適切に表現することが試みられていた。
Therefore, as a roughness parameter, conventionally,
The surface of the measured object using the roughness curve and the center line average value that is the average of the absolute values of the deviations to the center line, and the maximum height that is the distance in the height direction from the highest peak to the deepest valley bottom. It has been attempted to properly express the roughness.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の表面
粗さ測定装置は、検出した断面曲線もしくは粗さ曲線を
二次元データとして処理することを原則としており、し
かも粗さパラメータの演算に際しては曲線全区間を対象
とした唯一の値を出力するものである。しかし、現実の
測定対象面における粗さパラメータ値の分布は、通常そ
の評価領域の長さ、つまりいわゆるサンプルの大きさに
よって大きく変化することが知られており、この点に対
してより妥当な測定を行なうためには、この評価領域の
大きさと粗さパラメータの相関を考慮したデータ処理を
併用することが必要である。
By the way, in the conventional surface roughness measuring apparatus, it is a principle to process the detected cross-section curve or roughness curve as two-dimensional data. It outputs a unique value for all intervals. However, it is known that the distribution of roughness parameter values on the actual surface to be measured usually changes greatly depending on the length of the evaluation area, that is, the size of the sample. In order to perform the above, it is necessary to use the data processing in consideration of the correlation between the size of the evaluation area and the roughness parameter.

【0006】一方、近年三次元粗さ測定装置として断面
曲線もしくは粗さ曲線をそれらの抽出断面に垂直な方向
の配列として検出し得るものも見受けられ、その粗さパ
ラメータの演算機能は、配列曲線群を構成する各々を個
別的に扱って前記同様の処理を行なうものと、全曲線を
一群の三次元データとして統計的に処理するものがあ
る。
On the other hand, in recent years, it has been found that a three-dimensional roughness measuring device can detect a cross-section curve or a roughness curve as an array in the direction perpendicular to the extracted cross-section, and the function of calculating the roughness parameter is the array curve. There are a type that individually treats each of the groups and performs the same process as described above, and a type that statistically processes all curves as a group of three-dimensional data.

【0007】しかしながら、三次元粗さ測定装置におい
ても断面曲線を二次元データとして処理する表面粗さ測
定装置と同様に、粗さパラメータの値は評価領域の面積
の大きさによって大きく変化し、この粗さパラメ−タの
値の変化を考慮したパラメータ演算が三次元パラメ−タ
に関しても行なわれていなかった。本発明は前記従来技
術の課題に鑑みなされたものであり、その目的は評価領
域の大きさを所望により拡大、縮小して粗さパラメータ
を得ることのできる表面粗さ測定装置を提供することに
ある。
However, also in the three-dimensional roughness measuring device, the value of the roughness parameter largely changes according to the size of the area of the evaluation region, as in the surface roughness measuring device which processes the sectional curve as two-dimensional data. The parameter calculation taking into consideration the change in the value of the roughness parameter has not been performed for the three-dimensional parameter. The present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a surface roughness measuring device capable of obtaining a roughness parameter by enlarging or reducing the size of an evaluation region as desired. is there.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に本発明にかかる表面粗さ測定装置は、表面粗さ検出手
段と、検出位置制御手段と、検出信号記憶手段と、パラ
メータ演算表示手段とを備える。そして、表面粗さ検出
手段は、被測定物の表面粗さを検出する。また、検出位
置制御手段は、該表面粗さ検出手段の検出走査開始の位
置を被測定面の基準点に位置させ、該基準点より表面粗
さ検出手段を所定範囲で走査する。検出信号記憶手段
は、被測定面の特定の部位の位置とその部位における表
面粗さの検出デ−タを対応付けて記憶する。
To achieve the above object, a surface roughness measuring device according to the present invention comprises a surface roughness detecting means, a detection position controlling means, a detection signal storing means, and a parameter calculation displaying means. With. The surface roughness detecting means detects the surface roughness of the measured object. Further, the detection position control means positions the detection scanning start position of the surface roughness detection means at a reference point of the surface to be measured, and scans the surface roughness detection means from the reference point within a predetermined range. The detection signal storage means stores the position of a specific portion of the surface to be measured and the detection data of the surface roughness in that portion in association with each other.

【0009】パラメータ演算表示手段は、前記記憶手段
に記憶された表面粗さデータ及びその座標値に基づき、
前記表面粗さ検出手段の検出走査する全領域と同一もし
くは小さく設定された評価領域を、所望により拡張ない
し縮小し、それぞれの評価領域に対応する検出データ及
び必要に応じて該位置の座標値を演算し、評価領域毎の
パラメータ値を算出して表示する。
The parameter calculation display means is based on the surface roughness data and its coordinate values stored in the storage means.
The evaluation area set to be the same as or smaller than the entire area to be detected and scanned by the surface roughness detecting means is expanded or reduced as desired, and the detection data corresponding to each evaluation area and the coordinate value of the position as necessary are calculated. A parameter value for each evaluation area is calculated and displayed.

【0010】[0010]

【作用】本発明にかかる表面粗さ測定装置は、表面粗さ
データを一時的にその位置と対応付けて、検出信号記憶
手段が記憶する。そして、パラメータ演算表示手段は、
検出走査範囲と同一もしくはそれより小さく設定された
評価領域を、拡大、または縮小して、その評価領域毎の
パラメータ値を求めるので、その拡大または縮小した評
価領域の大きさと粗さパラメータの相関関係を算出す
る。
In the surface roughness measuring device according to the present invention, the surface roughness data is temporarily stored in the detection signal storage means in association with its position. And the parameter calculation display means is
The evaluation value set to be the same as or smaller than the detection scan range is enlarged or reduced to obtain the parameter value for each evaluation area, so the correlation between the size of the expanded or reduced evaluation area and the roughness parameter. To calculate.

【0011】[0011]

【実施例】以下、図面に基づき本発明の好適な実施例を
説明する。なお、本発明は実施例に限定されるものでは
ない。図1には本発明の一実施例にかかる表面粗さ測定
装置の概略構成が示されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments. FIG. 1 shows a schematic structure of a surface roughness measuring apparatus according to an embodiment of the present invention.

【0012】同図に示す表面粗さ測定装置10は、プロ
ーブを被測定物表面に移動させ、その表面粗さを検出す
る接触式表面粗さ測定装置であり、ベース12上に立設
された支柱14と、該支柱14に支持された表面粗さ検
出手段16とを備える。そして、前記支柱14にはアー
ム18が上下動可能に支持され、更にアーム18には移
動部材20がX方向に移動可能に支持されている。前記
表面粗さ検出手段16は移動部材20に固定され、モー
タ22を駆動させて移動部材20をX方向に移動させる
ことにより、該表面粗さ検出手段16のX方向への移動
を可能としている。
A surface roughness measuring device 10 shown in FIG. 1 is a contact type surface roughness measuring device which moves a probe to the surface of an object to be measured and detects the surface roughness thereof, which is erected on a base 12. The support 14 and the surface roughness detecting means 16 supported by the support 14 are provided. An arm 18 is vertically movably supported by the column 14, and a moving member 20 is movably supported by the arm 18 in the X direction. The surface roughness detecting means 16 is fixed to the moving member 20, and by driving the motor 22 to move the moving member 20 in the X direction, the surface roughness detecting means 16 can be moved in the X direction. ..

【0013】また、アーム18は支柱に平行に設置され
たボールネジ24に螺合されており、モータ26により
ボールネジ24を回転駆動することにより、該アーム1
8(すなわち表面粗さ検出手段16)をZ方向に移動さ
せることができる。一方、ベース12上にはY方向に移
動可能なテーブル28が載置されており、該テーブル2
8はモータ30の回転駆動によりY方向に移動する。こ
の結果、表面粗さ検出手段16をXないしZ方向に移動
し、テーブル28をY方向に移動させることで、テーブ
ル28上に載置された被測定物32と表面粗さ検出手段
16との相対位置を三方向で設定することができる。
Further, the arm 18 is screwed into a ball screw 24 installed in parallel with the supporting column, and the ball screw 24 is rotationally driven by a motor 26, whereby the arm 1 is rotated.
8 (that is, the surface roughness detecting means 16) can be moved in the Z direction. On the other hand, a table 28 that is movable in the Y direction is placed on the base 12.
8 is moved in the Y direction by the rotational drive of the motor 30. As a result, the surface roughness detecting means 16 is moved in the X or Z direction, and the table 28 is moved in the Y direction, whereby the object 32 to be measured placed on the table 28 and the surface roughness detecting means 16 are moved. The relative position can be set in three directions.

【0014】前記各モータ22,26,30は、それぞ
れドライバー40,42,44を介して各軸方向駆動制
御部34,36,38により駆動制御されている。ま
た、各モータ22,26,30は、その駆動量を検出す
るロータリーエンコーダ23,27,31を備えてお
り、各エンコーダ23,27,31の出力は各軸方向駆
動制御部34,36,38にフィードバックされる。従
って、検出位置制御手段46が各駆動制御部34,3
6,38に指示することで、表面粗さ検出手段16を所
望の位置に位置決めする。そして、例えばY方向の位置
及びZ方向の位置を基準の位置に設定し、X方向に表面
粗さ検出手段16をスライド移動することで、該Y方向
の位置座標における表面粗さを測定し、更にY方向の位
置をずらして同様の操作を繰返すことで、被測定物32
の被測定面の表面粗さ信号を得ることができる。
The respective motors 22, 26, 30 are drive-controlled by respective axial drive control units 34, 36, 38 via drivers 40, 42, 44, respectively. The motors 22, 26, 30 are equipped with rotary encoders 23, 27, 31 for detecting the drive amounts thereof, and the outputs of the encoders 23, 27, 31 are output to the axial drive control units 34, 36, 38. Be fed back to. Therefore, the detection position control means 46 causes the drive control units 34, 3 to
6 and 38, the surface roughness detecting means 16 is positioned at a desired position. Then, for example, the position in the Y direction and the position in the Z direction are set as reference positions, and the surface roughness detecting means 16 is slid in the X direction to measure the surface roughness at the position coordinates in the Y direction. By further shifting the position in the Y direction and repeating the same operation, the measured object 32
The surface roughness signal of the surface to be measured can be obtained.

【0015】この表面粗さ検出結果はA/D変換器48
によりデジタル信号に変換され、その検出座標に対応し
て検出信号記憶手段50に記憶される。ここで、記憶手
段50はRAMからなり、図2に模式的に示されるよう
に各デジタル信号はその信号の得られた座標(x,y)
に対応してZxyの形態でマトリックス状に記憶される。
すなわち、一度目の走査Lに対応してZ11,Z21、…Z
m1が得られ、さらに二度目の走査に対応してZ12
22、…Zm2、…n度目の走査に対応してZ1n,Z2n
…Zmnが得られ、それぞれ被測定面の座標に対応した記
憶エリアに記憶される。なお、測定範囲が広い場合等デ
ータ量が著しく多い場合には、記憶手段50としてフロ
ッピーディスク或いはハードディスク等の外部記憶装置
を用いることも可能である。そして、検出信号記憶手段
50からの表面粗さ情報に基づき、パラメータ演算手段
52がパラメータ演算を行ない、表示手段54へ所望の
表示形式で表面粗さパラメータの表示を行なう。
This surface roughness detection result is the A / D converter 48.
Is converted into a digital signal by means of, and is stored in the detection signal storage means 50 corresponding to the detected coordinates. Here, the storage means 50 is composed of a RAM, and each digital signal has coordinates (x, y) at which the signal is obtained, as schematically shown in FIG.
Are stored in a matrix in the form of Z xy .
That is, Z 11 , Z 21 , ... Z corresponding to the first scan L
m1 is obtained, and further Z 12 corresponding to the second scan,
Z 22 , ... Z m2 , ... Z 1n , Z 2n , ... Corresponding to the nth scan
... Z mn is obtained and stored in a storage area corresponding to the coordinates of the surface to be measured. When the amount of data is extremely large such as when the measurement range is wide, an external storage device such as a floppy disk or a hard disk can be used as the storage unit 50. Then, based on the surface roughness information from the detection signal storage means 50, the parameter calculation means 52 performs the parameter calculation and displays the surface roughness parameter on the display means 54 in a desired display format.

【0016】次に本発明において特徴的なパラメータ演
算方式について説明する。まず、本実施例における最も
基本的な例として、一走査範囲(二次元)について順次
評価領域を変更する方式について説明する。図3に示す
ように、表面粗さ検出手段16の触針56は、所定Y座
標上でX方向に一単位測定当たり被測定物32の表面を
距離Lだけ走査する。従って、表面粗さデータとしては
図4に示すような断面曲線が得られる。
Next, a parameter calculation method characteristic of the present invention will be described. First, as the most basic example of the present embodiment, a method of sequentially changing the evaluation area for one scanning range (two-dimensional) will be described. As shown in FIG. 3, the stylus 56 of the surface roughness detecting means 16 scans the surface of the object to be measured 32 by a distance L per unit measurement in the X direction on a predetermined Y coordinate. Therefore, a cross-sectional curve as shown in FIG. 4 is obtained as the surface roughness data.

【0017】次に、測定者が任意に設定した評価領域L
v毎に表面粗さパラメータRを算出する。すなわち、図
4において、基準点0を設定し、さらに該基準点0より
基準評価領域としてLv0を設定する。そして、基準点0
を一端とした評価領域を順次延長し、評価領域Lv1、L
v2…Lvnを得る。ここで、評価領域Lv0で検出データZ
11,Z21,Z31より粗さパラメータR0を算出した場
合、例えば評価領域Lv1では検出データZ11,Z21,Z
31,Z41より粗さパラメータR1を算出し、評価領域L
vnでは検出データZ11,Z21…Zn1より粗さパラメータ
nを得る。
Next, the evaluation area L arbitrarily set by the measurer.
The surface roughness parameter R is calculated for each v . That is, in FIG. 4, a reference point 0 is set, and further, L v0 is set from the reference point 0 as a reference evaluation area. And the reference point 0
Sequentially extend the evaluation region and one end, evaluation area L v1, L
v2 ... Get Lvn . Here, the detection data Z in the evaluation area L v0
When the roughness parameter R 0 is calculated from 11 , Z 21 , Z 31 , for example, in the evaluation area L v1 , the detection data Z 11 , Z 21 , Z
Roughness parameter R 1 is calculated from 31 and Z 41 , and evaluation area L
In vn , the roughness parameter R n is obtained from the detection data Z 11 , Z 21 ... Z n1 .

【0018】そして、この評価領域の大きさと粗さパラ
メータの相関は、例えば図5に示すように表示される。
また、本発明において評価領域を面状に設定、拡張する
ことも可能である。すなわち、一単位のX方向走査が終
了した後に、Y座標を一単位移動し、更に同様に被測定
物32の表面をX方向に距離Lだけ走査する操作を繰返
す。この結果、表面粗さデータとしては図6に示すよう
に、X−Y面に対応した被測定面について、複数の断面
曲線を得ることができる。そして、評価領域を前記Lvn
に対応して、X,Y座標で規定される平面評価領域
v0,Av1…Avk…Anとして設定する。この結果、例
えばAv0に対応して前記図2のZ11,Z21,Z12,Z22
を基にパラメータR0を算出し、さらにAv1に対応して
11,Z21,Z31,Z12,Z22,Z32,Z13,Z23,Z
33を基にパラメータR1を算出するように、順次パラメ
ータ算出の基となる検出データの採取域を拡大してい
く。このようにして、面状の評価領域の大きさとパラメ
ータの相関関係を算出することができる。図7,図8に
は本実施例にかかる表面粗さ測定装置の作動状態を示す
フローチャート図が示されている。同図に示すように、
まず触針56のX軸方向測定距離Lを設定し、更に所定
Y軸座標値でのX軸方向への走査が終了した後にY軸方
向へ移動させる駆動ピッチP及びY軸方向への駆動回数
N(被測定面上で何本の断面曲線を得るか)を設定す
る。
The correlation between the size of the evaluation area and the roughness parameter is displayed as shown in FIG. 5, for example.
Further, in the present invention, it is possible to set and expand the evaluation area in a planar shape. That is, after the scanning of one unit in the X direction is completed, the Y coordinate is moved by one unit, and the operation of scanning the surface of the DUT 32 by the distance L in the X direction is repeated. As a result, as the surface roughness data, as shown in FIG. 6, a plurality of cross-section curves can be obtained for the measured surface corresponding to the XY plane. Then, the evaluation area is set to L vn
Corresponding to the plane evaluation areas A v0 , A v1 ... A vk ... A n defined by the X and Y coordinates. As a result, for example, Z 11 of the Figure 2 corresponds to A v0, Z 21, Z 12 , Z 22
The parameter R 0 is calculated on the basis of the following, and further Z 11 , Z 21 , Z 31 , Z 12 , Z 22 , Z 32 , Z 13 , Z 23 , Z corresponding to A v1.
In order to calculate the parameter R 1 on the basis of 33 , the sampling range of the detection data, which is the basis for the parameter calculation, is gradually expanded. In this way, the correlation between the size of the planar evaluation area and the parameter can be calculated. 7 and 8 are flowcharts showing the operating state of the surface roughness measuring apparatus according to this embodiment. As shown in the figure,
First, the measurement distance L of the stylus 56 in the X-axis direction is set, and after the scanning in the X-axis direction at the predetermined Y-axis coordinate value is completed, the drive pitch P is moved in the Y-axis direction and the number of times of driving in the Y-axis direction. Set N (how many cross-section curves are to be obtained on the surface to be measured).

【0019】そして測定開始スイッチをONすると、検
出手段16の触針56がZ軸方向に降下し、原点位置合
せを行なった後、第一回目のX軸方向走査が行なわれ
る。そして、検出手段16からの信号Zijをピッチp毎
に採取して検出信号記憶手段50に記憶し、距離Lの走
査が終了すると、検出手段16をX方向原点位置に復帰
させる。
When the measurement start switch is turned on, the stylus 56 of the detecting means 16 descends in the Z-axis direction, the origin is aligned, and then the first scanning in the X-axis direction is performed. Then, the signal Z ij from the detection means 16 is sampled for each pitch p and stored in the detection signal storage means 50, and when the scanning of the distance L is completed, the detection means 16 is returned to the X-direction origin position.

【0020】次に検出手段16をY軸方向にピッチPだ
け移動させ、同様の走査を繰返し、走査回数がNとなっ
たらば測定走査を終了する。ここで必要により測定手段
16の上昇、検出信号の表示を行なう。
Next, the detecting means 16 is moved in the Y-axis direction by the pitch P, the same scanning is repeated, and when the number of scanning times becomes N, the measurement scanning is ended. Here, if necessary, the measuring means 16 is raised and the detection signal is displayed.

【0021】次に所望パラメータの演算を行なうため、
検出信号記憶手段50内で最大評価領域(Lvn
vn)、評価領域設定の基準位置0、基準評価領域(L
v0,Av0)、評価領域の拡大・縮小方式fL(k),f
A(k)、及び目的とするパラメータRを設定する。そし
て、パラメータ演算スイッチをONにすると、順次評価
領域(Lk,Ak)が算定され、該評価領域に対応する検
出データZよりパラメータRkが算出される。
Next, in order to calculate the desired parameters,
In the detection signal storage means 50, the maximum evaluation area (L vn ,
A vn ), reference position 0 for evaluation area setting, reference evaluation area (L
v0 , A v0 ), evaluation area scaling method f L (k), f
Set A (k) and the target parameter R. Then, when the parameter calculation switch is turned on, the evaluation areas (L k , A k ) are sequentially calculated, and the parameter R k is calculated from the detection data Z corresponding to the evaluation areas.

【0022】全てのパラメータの演算が終了したらば、
各パラメータが得られた評価領域の長さ及び広さと対応
させて表示手段上にパラメータを二次元的ないし三次元
的に出力する。以上説明したように本実施例の表面粗さ
測定装置によれば、被測定物のX,Y平面上の表面粗さ
と、その評価領域の大きさとの相関関係についての情報
を得ることが可能となる。
When all parameters have been calculated,
The parameters are two-dimensionally or three-dimensionally output on the display means in correspondence with the length and width of the evaluation area in which each parameter is obtained. As described above, according to the surface roughness measuring apparatus of the present embodiment, it is possible to obtain information about the correlation between the surface roughness of the object to be measured on the X and Y planes and the size of the evaluation area. Become.

【0023】なお、本発明において図9ないし図10に
示すように評価領域の基準点0を検出領域の中心点等に
置き、X,Y各方向に評価領域を拡張するようにしても
よい。
In the present invention, as shown in FIGS. 9 to 10, the reference point 0 of the evaluation area may be placed at the center point of the detection area or the like to extend the evaluation area in each of the X and Y directions.

【0024】以上説明したように本発明によれば、被測
定面より検出した表面形状データ(二次元ないし三次
元)から粗さパラメータを求める場合に、その評価領域
(二次元ならば直線領域の区間、三次元なら平面領域)
の大きさを拡大ないし縮小させながら、その都度粗さパ
ラメータを求められるので、評価領域の大きさと粗さパ
ラメータの関係を明確にグラフ等の表示形態で提供する
ことができる。なお、評価領域の拡大又は縮小の割合
は、測定者が所望により決定する。
As described above, according to the present invention, when the roughness parameter is obtained from the surface shape data (two-dimensional or three-dimensional) detected from the surface to be measured, the evaluation area (in the case of two-dimensional, the linear area Section, plane area if three-dimensional)
Since the roughness parameter can be obtained each time while increasing or decreasing the size of, the relationship between the size of the evaluation area and the roughness parameter can be clearly provided in a display form such as a graph. The rate of enlargement or reduction of the evaluation area is determined by the measurer as desired.

【0025】[0025]

【発明の効果】以上説明したように本発明にかかる表面
粗さ測定装置によれば、被測定物の表面粗さデータをそ
の座標値と対応させて記憶する検出信号記憶手段、及び
検出信号記憶手段に記憶された表面粗さデータ及びその
座標値に基づき、所望の評価領域の大きさでパラメータ
値を求めるパラメータ演算表示手段を備えたので、評価
領域の大きさと粗さパラメータの相関関係を明確に把握
することが可能となり、これによって評価領域の大きさ
に影響の受けることがより少ない妥当な表面粗さ測定が
できるという効果が得られている。
As described above, according to the surface roughness measuring device of the present invention, the detection signal storage means for storing the surface roughness data of the object to be measured in correspondence with the coordinate values thereof, and the detection signal storage. Based on the surface roughness data and its coordinate values stored in the means, a parameter calculation display means for obtaining a parameter value with a desired size of the evaluation area is provided, so that the correlation between the size of the evaluation area and the roughness parameter is clarified. Therefore, it is possible to obtain a proper surface roughness measurement that is less affected by the size of the evaluation area.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる表面粗さ測定装置の
概略構成の説明図である。
FIG. 1 is an explanatory diagram of a schematic configuration of a surface roughness measuring device according to an embodiment of the present invention.

【図2】図1に示した装置において、検出信号記憶手段
における信号記憶形態の説明図である。
FIG. 2 is an explanatory diagram of a signal storage mode in a detection signal storage means in the device shown in FIG.

【図3】図1に示した装置において、表面粗さ検出手段
の作動状態の説明図である。
FIG. 3 is an explanatory diagram of an operating state of surface roughness detecting means in the apparatus shown in FIG.

【図4】図1に示した装置において、二次元評価領域と
断面曲線の関係の一例の説明図である。
4 is an explanatory diagram of an example of a relationship between a two-dimensional evaluation area and a section curve in the device shown in FIG.

【図5】図4に示したデータに基づく粗さパラメータ分
布を示す説明図である。
5 is an explanatory diagram showing a roughness parameter distribution based on the data shown in FIG.

【図6】図1に示した装置において、三次元評価領域と
断面曲線の関係の一例の説明図である。
FIG. 6 is an explanatory diagram showing an example of a relationship between a three-dimensional evaluation region and a section curve in the device shown in FIG.

【図7】,[Fig. 7]

【図8】図1に示した装置の作動状態を示すフローチャ
ート図である。
FIG. 8 is a flow chart diagram showing an operating state of the apparatus shown in FIG.

【図9】,[FIG. 9]

【図10】図1に示した装置において、評価領域と断面
曲線の他の関係の説明図である。
FIG. 10 is an explanatory diagram of another relationship between the evaluation area and the sectional curve in the device shown in FIG.

【符号の説明】[Explanation of symbols]

10 表面粗さ測定装置 16 表面粗さ検出手段 46 検出位置制御手段 50 検出信号記憶手段 52 パラメータ演算手段 54 表示手段 58 パラメータ記憶手段 10 Surface Roughness Measuring Device 16 Surface Roughness Detection Means 46 Detection Position Control Means 50 Detection Signal Storage Means 52 Parameter Calculation Means 54 Display Means 58 Parameter Storage Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物と相対移動してその被測定面の
表面粗さを走査検出する表面粗さ検出手段と、被測定物
が与えられた際に、その被測定面上の特定の点を基準点
として、その基準点から所望一定範囲で前記表面粗さ検
出手段を検出走査させるように、被測定物と表面粗さ検
出手段の相対移動を制御する検出位置制御手段と、被測
定物の表面粗さが得られる際に、被測定面の特定部位と
その特定部位に対応する検出デ−タを対応付けて記憶す
る検出信号記憶手段と、対応付けられて前記記憶手段に
記憶された表面粗さデ−タ及び部位の位置に基づき、前
記表面粗さ検出手段の検出走査する全領域と同一もしく
はそれより小さく設定された評価領域を、拡張又は/及
び縮小し、それぞれの評価領域に対応する検出デ−タ及
び必要に応じて該部位の位置の値を演算し、各評価領域
毎のパラメ−タ値を算出して表示するパラメ−タ演算表
示手段と、を備えたことを特徴とする表面粗さ測定装
置。
1. A surface roughness detecting unit that moves relative to an object to be measured to scan and detect the surface roughness of the surface to be measured, and a specific surface on the surface to be measured when the object to be measured is given. Using a point as a reference point, detection position control means for controlling relative movement of the object to be measured and the surface roughness detection means so as to detect and scan the surface roughness detection means in a desired fixed range from the reference point, and the measured object. When a surface roughness of an object is obtained, a detection signal storage unit that stores a specific portion of a surface to be measured and detection data corresponding to the specific portion is stored in the storage unit in association with the detection signal storage unit. Based on the surface roughness data and the position of the portion, the evaluation area set to be the same as or smaller than the whole area to be detected and scanned by the surface roughness detecting means is expanded or / and reduced, and the respective evaluation areas are obtained. Corresponding to the detection data and the part if necessary. A surface roughness measuring device comprising: a parameter calculation display means for calculating the value of the position of the position and calculating and displaying the parameter value for each evaluation area.
JP27734191A 1991-09-27 1991-09-27 Surface roughness measuring device Expired - Fee Related JPH0792385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27734191A JPH0792385B2 (en) 1991-09-27 1991-09-27 Surface roughness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27734191A JPH0792385B2 (en) 1991-09-27 1991-09-27 Surface roughness measuring device

Publications (2)

Publication Number Publication Date
JPH0587562A true JPH0587562A (en) 1993-04-06
JPH0792385B2 JPH0792385B2 (en) 1995-10-09

Family

ID=17582178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27734191A Expired - Fee Related JPH0792385B2 (en) 1991-09-27 1991-09-27 Surface roughness measuring device

Country Status (1)

Country Link
JP (1) JPH0792385B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51278U (en) * 1974-06-12 1976-01-05
EP2312263A1 (en) 2009-10-13 2011-04-20 Mitutoyo Corporation Offset Amount Calibrating Method and Surface Profile Measuring Machine
EP2312264A1 (en) 2009-10-13 2011-04-20 Mitutoyo Corporation Offset Amount Calibrating Method and Surface Texture Measuring Machine
EP2312262A2 (en) 2009-10-13 2011-04-20 Mitutoyo Corporation Surface texture measuring machine and a surface texture measuring method
JP2011085398A (en) * 2009-10-13 2011-04-28 Mitsutoyo Corp Surface property measuring instrument and method of measuring surface property

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51278U (en) * 1974-06-12 1976-01-05
EP2312263A1 (en) 2009-10-13 2011-04-20 Mitutoyo Corporation Offset Amount Calibrating Method and Surface Profile Measuring Machine
EP2312264A1 (en) 2009-10-13 2011-04-20 Mitutoyo Corporation Offset Amount Calibrating Method and Surface Texture Measuring Machine
EP2312262A2 (en) 2009-10-13 2011-04-20 Mitutoyo Corporation Surface texture measuring machine and a surface texture measuring method
JP2011085398A (en) * 2009-10-13 2011-04-28 Mitsutoyo Corp Surface property measuring instrument and method of measuring surface property
EP2450660A1 (en) 2009-10-13 2012-05-09 Mitutoyo Corporation Surface texture measuring machine and a surface texture measuring method
EP2450659A1 (en) 2009-10-13 2012-05-09 Mitutoyo Corporation Surface texture measuring machine and a surface texture measuring method
US8363904B2 (en) 2009-10-13 2013-01-29 Mitutoyo Corporation Offset amount calibrating method and surface texture measuring machine
US8654351B2 (en) 2009-10-13 2014-02-18 Mitutoyo Corporation Offset amount calibrating method and surface profile measuring machine
US8650939B2 (en) 2009-10-13 2014-02-18 Mitutoyo Corporation Surface texture measuring machine and a surface texture measuring method

Also Published As

Publication number Publication date
JPH0792385B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
AU600500B2 (en) System for automatically inspecting a flat workpiece for holes
Huang et al. Portable laser scanner for measuring soil surface roughness
CN101105389A (en) High accuracy non-contact tri-dimensional facial type measuring device
US20080083127A1 (en) Method of calibrating a scanning system
EP1975557A2 (en) Apparatus and method for measuring surface texture
JPH0587562A (en) Device for measuring surface roughness
JP4034906B2 (en) Surface texture measuring machine
JPH0587561A (en) Device for measuring surface roughness
JPH0571952A (en) Measuring apparatus for surface roughness
CN112097940B (en) Thermocouple two-dimensional temperature measurement platform and method based on computer automatic control
JPH05107051A (en) Measuring machine
JP3064111B2 (en) Comparison judgment device
JPH01250702A (en) Apparatus for measuring straightness
JP2585482B2 (en) Surface texture measuring machine
JP3276534B2 (en) Shape measurement method
JP3019987B2 (en) Automatic dimension measuring device
JPH0328708A (en) Measurement and display of surface roughness for object worked by laser
JPH06194115A (en) Scanning tunneling microscope and measuring method thereof
JP3064109B2 (en) Articulated comparative measuring device
JP2982663B2 (en) Three-dimensional measuring method and device
KR100227738B1 (en) Ic tester with resolution-converting function
CN117606328A (en) Curved surface coordinate measuring device and measuring method
JPH0217285Y2 (en)
CN104880169B (en) A kind of four-dimensional scanning probe micromorphology measuring systems of XYZ β
JP2516471B2 (en) measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees