JPH0587476B2 - - Google Patents

Info

Publication number
JPH0587476B2
JPH0587476B2 JP24857786A JP24857786A JPH0587476B2 JP H0587476 B2 JPH0587476 B2 JP H0587476B2 JP 24857786 A JP24857786 A JP 24857786A JP 24857786 A JP24857786 A JP 24857786A JP H0587476 B2 JPH0587476 B2 JP H0587476B2
Authority
JP
Japan
Prior art keywords
sliding
temperature
ceramic
base material
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24857786A
Other languages
Japanese (ja)
Other versions
JPS63103884A (en
Inventor
Yoshio Shimura
Yoshuki Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP24857786A priority Critical patent/JPS63103884A/en
Publication of JPS63103884A publication Critical patent/JPS63103884A/en
Publication of JPH0587476B2 publication Critical patent/JPH0587476B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、シール材料やベアリング材料等とし
て用いられる高温摺動部材およびその摺動方法に
関し、更に詳しくは、耐熱性に優れたセラミツク
スの本来の特長を変えずに表面を改質し、高温摺
動特性を向上させたセラミツクス高温摺動部材お
よびその摺動方法に関するものである。 〔従来の技術およびその問題点〕 シール材料やベアリング材料等の高温雰囲気下
における摺動部材としては、従来より、コバルト
(Co)基,ニツケル(Ni)基等の合金からなる耐
熱金属材料が用いられている。しかし、耐酸化
性、高温強度等の耐熱性の観点から、その使用温
度は800℃程度までに限定されているのが現状で
ある。 そこで、高温雰囲気下において金属より物理的
性質,化学的性質,機械的性質に優れたセラミツ
クス材料の利用が図られている。ところが、一般
的には耐摩材と思われているこのセラミツクス材
料は、実際には耐摩耗性が小さく、それも温度の
上昇に伴つて摩耗の増大が著しいという欠点を有
し、構造材としては十分な高温特性を有するこの
セラミツクス材料もそのまま高温摺動部材として
使用することが難しい。 これは、セラミツクスからなる材料を摺動部材
として用いた場合、高温雰囲気下における摺動過
程において、局部的な高面圧接触部分でセラミツ
クス材料が摩耗して摩耗粉が生成され、この硬い
摩耗粉の研磨作用とそれに伴う表面粗さの増大に
より、摺動部材および相手材の摩耗が促進される
ためである。相手材が金属材料のようにセラミツ
クスより軟質材の場合には、生じた摩耗粉が埋収
され易いので、摩耗粉による研磨作用が抑制され
るが、相手材がセラミツク材料よりなる場合に
は、埋収性は乏しいための摩耗が特に著しく、寸
法変化が激しくなり、実用に供することが難し
い。 この問題を解決すべく、従来より種々の開発が
行われ、耐摩耗性の向上した摺動部材がいくつか
提案されている。その一つに、セラミツクスの原
料に、固体潤滑剤である窒化硼素(BN)を添加
し、この原料を用いて表層部を焼成して得られた
窒化珪素質材料がある(特開昭59−137375号公
報)。しかしながら、このセラミツクス材料は、
確かに耐摩耗性の向上はある程度見られるもの
の、セラミツク材料本来有する強度を低下させる
という問題があつた。 そこで、本発明者等は、上述の如き従来技術の
問題点を解決すべく鋭意研究し、各種の系統的実
験を重ねた結果、本発明を成すに至つたものであ
る。 〔発明の目的〕 本発明の目的は、高温雰囲気下で耐磨耗性に優
れた摺動部材およびその摺動方法を提供するにあ
る。 〔発明の構成〕 本発明の高温摺動部材は、酸化物セラミツクス
よりなる基材と、該基材表面にクロム,マンガ
ン,鉄,コバルト,ニツケル,銅,銀の一種また
はその合金を物理蒸着して得られた金属膜と、該
金属膜の表面に形成した摺動部とからなる高温摺
動部材であつて、500℃以上の高温雰囲気下(少
なくとも摺動部及びその近傍を含む雰囲気:以下
同じ)で相手材としてのセラミツクス部材を前記
摺動部面上を摺動させることによりセラミツクス
部材および基材の摩耗を防止したことを特徴とす
るものである(以下、本第一発明とする)。 本発明の高温摺動部材の摺動方法は、一対のセ
ラミツクス部材よりなる摺動部材を高温で摺動さ
せる方法において、少なくとも一方の部材を酸化
物セラミツクスまたは窒化物セラミツクスからな
るセラミツクス基材表面にクロム,マンガン,
鉄,コバルト,ニツケル,銅,銀の一種またはそ
の合金よりなる金属膜を物理蒸着により被覆して
その表面に摺動部を形成し、該摺動部を加熱する
ことにより前記摺動部に酸化物層を形成させ、
500℃以上の高温雰囲気下で相手材としてのセラ
ミツクス部材を前記摺動部の酸化物層上を摺動さ
せ、セラミツクス部材と金属膜の摺動部との摩擦
面馴染みを促進することにより、セラミツクス部
材および基材の摩耗を防止したことを特徴とする
ものである(以下、本第二発明とする)。 以下に、本発明の構成をより詳細に説明する。 先ず、本第一発明の高温摺動部材について説明
する。 本第一発明における基材は、高温摺動部材とし
ての基材をなすもので、酸化物を主な原料として
製造された酸化物セラミツクス焼結体であり、ア
ルミナ(Al2O3)、ジルコニア(ZrO2)等の酸化
物セラミツクスを用いる。この酸化物セラミツク
スは、耐酸化性に優れ、窒化珪素や炭化珪素に比
べると高温強度がやや劣るが、従来の耐熱合金に
比べて高温雰囲気下において優れた物理的,化学
的および機械的性質を有する。 また、酸化物セラミツクスよりなる基材の摺動
部表面に形成した金属膜は、高温で軟化または溶
融することにより、或いは雰囲気により酸化され
ることにより潤滑剤となつてセラミツクス基材に
対して耐摩耗性を付与する金属薄膜であり、クロ
ム(Cr),マンガン(Mn),鉄(Fe),コバルト
(Co),ニツケル(Ni),銅(Cu),銀(Ag)の
一種またはその合金よりなる金属膜である。 ここで、この金属膜の膜厚は、高温摺動部材の
基材としての酸化物セラミツクス材料に耐摩耗性
を付与する程度の厚さであり、かつこの酸化物セ
ラミツクス基材の表面粗さを越えた膜厚であれ
ば、特に限定するものではないが、好ましくは、
0.1〜5μmである。これは、金属膜の膜厚が、
0.1μm未満の場合には、摺動時に摩擦面に発生す
るせん断力による基材の破壊を防止することが難
しく、また、5μmを越えた場合には、高温時に
金属の溶融或いは酸化による寸法変化が激しくな
り、摺動部材として作用しにくいからである。更
に、酸化物セラミツクスがジルコニア質セラミツ
クスであり、かつ金属膜がマンガン(Mn),鉄
(Fe),コバルト(Co),ニツケル(Ni),銀
(Ag)の場合には、金属膜の膜厚を1μm以上とす
ることが好ましい。これは、高温ではジルコニア
質セラミツクスの強度低下が比較的大きいためで
ある。この場合、相手材に窒化珪素などの高温強
度の高いセラミツクスを組み合わせることによ
り、より一層耐摩耗性を向上させることができ
る。 また、セラミツクス基材の摺動部表面に形成す
る金属膜は、常温から高温まで基材より柔らか
く、高温では表面から酸化されるが、それが特に
摩擦初期においてはセラミツクス基材同士の直接
接触を防止し、摩擦面馴染みを促進する役割を果
たし、基材の摩耗が特に多くなる500℃以上の温
度において、高い耐摩耗性を付与する。 また、セラミツクス基材と金属膜の種類によつ
ては基材と被覆金属の酸化物が反応し、脆い金属
間化合物を生成して、使用温度が制限されること
がある。例えば、アルミナセラミツクスにNi膜
を形成する場合には、使用雰囲気温度を900℃程
度までとするのが好ましい。これは、使用温度が
1000℃の場合には、摩擦熱による温度上昇が加わ
り、金属膜の2価酸化物、NiOとアルミナ基材間
での NiO+Al2O3→NiAl2O4 なる反応によつ
てスピネルが生成され、耐摩耗性が損なわれるか
らである。ただし、これはNiの酸化物が2価の
ものだけであるからで、1価または3価以上の多
価酸化物ともなる金属膜で、例えスピネルを生成
しても、その上に被覆金属単体の酸化物層が形成
されるので、1000℃以上でも優れた耐摩耗性をア
ルミナ基材に付与する。 本第一発明の高温摺動部材は、上述したセラミ
ツクス基材の表面に、クロム(Cr),マンガン
(Mn),鉄(Fe),コバルト(Co),ニツケル
(Ni),銅(Cu),銀(Ag)の一種またはその合
金よりなる金属膜を形成してなる。 ここで、金属膜の酸化物セラミツクス基材表面
への被覆・形成は、物理蒸着法により行う。この
物理蒸着(PVD:Physical Vapor Deposition)
は、上述の如く高温摺動部材として有用な金属膜
をセラミツクス基材表面への被覆・形成し得るも
のであれば、その具体的方法について特定するも
のではなく、真空蒸着法,スパツタリング法,イ
オンプレーテイング法等の何れの方法であつても
よい。 本第一発明の高温摺動部材の代表的な製造方法
を簡単に述べると、以下の様である。 先ず、高温摺動部材としての目的に応じた所望
の性質を有する酸化物セラミツクスを、従来のセ
ラミツクスの製造方法により得、基材とする。 次に、得られたセラミツクス基材を、真空蒸着
装置、スパツタリング装置等に配設し、所望の金
属を真空蒸着法、スパツタリング法等の物理蒸着
法により酸化物セラミツクス基材の表面に被覆
し、本第一発明にかかる高温摺動部材を得る。 また、本第一発明の高温摺動部材は、金属膜の
摺動部に酸化物層を形成したものであつてもよ
い。その場合、該酸化物層は、高温摺動部材を加
熱することにより形成する。 次に、第二発明の高温摺動部材の摺動方法は、
第一発明の高温摺動部材と相手材としてのセラミ
ツクス部材とを高温で摺動させる方法である。即
ち、本第二発明の高温摺動部材の摺動方法は、一
対のセラミツクス部材よりなる摺動部材を高温で
摺動させる方法において、少なくとも一方の部材
を酸化物を主な原料として製造された酸化物セラ
ミツクス焼結体からなるセラミツクス基材表面に
クロム,マンガン,鉄,コバルト,ニツケル,
銅,銀の一種またはその合金よりなる金属膜を物
理蒸着により被覆してその表面に摺動部を形成
し、該摺動部を加熱することにより前記摺動部の
少なくとも表面に酸化物層を形成させ、少なくと
も摺動面及びその近傍を含む雰囲気が500℃以上
の高温雰囲気下で相手材としてのセラミツクス部
材と前記摺動部の酸化物層を摺動させ、セラミツ
クス部材と金属膜の摺動部との摩擦面馴染みを促
進することにより、セラミツクス部材および基材
の摩耗を防止するものである。 この際、金属膜の摺動部への酸化物層の形成
は、少なくとも該摺動部またはその近傍の温度雰
囲気を金属膜が酸化する温度となるように加熱す
ることにより行なう。従つて、該加熱は、酸化層
を形成する部分のみを所定の温度雰囲気として
も、該部分を含む雰囲気を所定の温度雰囲気とし
てもよい。更に、該加熱は、単に相手材としての
セラミツクス部材との摺動により前記部分に摩擦
熱を発生させ、該部分を含む雰囲気を所定の温度
雰囲気としてもよい。 〔発明の作用および効果〕 本第一発明の高温摺動部材および第二発明の摺
動方法は、500℃以上の高温雰囲気下において耐
摩耗性に優れている。 また、本第二発明の摺動方法により、500℃以
上の高温雰囲気下においても摺動部材の摺動によ
る摩耗を防止することができる。 この様に、本第一発明の高温摺動部材および第
二発明の摺動方法がかかる効果を発揮するメカニ
ズムについては、末だ必ずしも明らかではない
が、次の様に考えられる。 即ち、本発明の高温摺動部材の基材としての酸
化物セラミツクスは、耐熱性に優れ、温度の上昇
に伴う機械的性質の低下が小さく、800℃以上の
ような高温雰囲気下においても十分な強度を有
し、また、熱膨張係数も小さいので熱変形量が小
さい。そして、この酸化物セラミツクス基材の表
面に形成した金属膜は、基材より軟質な金属また
はその合金であり、下地としてのセラミツクス基
材によく馴染む。また、この金属膜は、高温では
軟化,溶融または雰囲気と反応して酸化膜となつ
て、基材の摩耗を防止する潤滑剤となる。 この高温摺動部材および方法を高温雰囲気下で
用いた場合、摺動により摩擦面に作用する負荷を
下地のセラミツクス基材で受け、摩擦に伴うせん
断力は極く表面の高温で軟化した金属薄膜または
その高温酸化物層で受け持たれる。さらに、加工
精度等により不可避的に局部的な高面圧接触や片
当りの生ずる摺動面は、この酸化物層の変形ある
いはわずかな摩耗によつて速やかに馴染ませられ
る。これにより、摺動面にセラミツクス摩耗粉等
の硬い摩耗促進物質が生成されず、基材及び相手
材の耐摩耗性が著しく向上され、優れた高温摺動
特性を発揮しているものと思われる。 本第一および第二発明は、高温摺動特性,耐熱
性,耐摩耗性に優れているので、熱交換器のシー
ル材料,溶湯中で用いるベアリング材料、ターボ
チヤージヤーのベアリング材料等の高温雰囲気下
における摺動部材および摺動方法として広く利用
することができる。 〔実施例〕 実施例 1 先ず、酸化物セラミツクス基材として、アルミ
ナ焼結体(京セラ(株)製:A479)の26×26×4mm
の平板の中心に直径5mmの穴をあけ、表面粗さが
0.05μmRzになるように研磨して得たものを用意
した。 次に、このセラミツクス基材を真空蒸着装置
(日本電子(株)製,JEE−5B)に入れ、10-3パスカ
ル(Pa)に減圧し、セラミツクス基材を350〜
400℃に加熱し、タングステン(W)線製バスケ
ツトを用いて真空蒸着を行い、基材に第1表に示
す金属を被覆した。これにより、本発明にかかる
高温摺動部材を得た(試料番号1〜6,8〜1
2)。尚、試料番号7および13〜15について
は、スパツタリング装置を用い、導入ガスをアル
ゴン(Ar)ガス、真空度を4Paとして1時間以上
のグロー放電を行ない、基材表面にニツケルまた
は鉄を被覆した。 得られた高温摺動部材の性能評価試験を、摩擦
摩耗試験により行つた。 先ず、得られた高温摺動部材を試料板Aとし
た。次に、上述のセラミツクス基材と同質のアル
ミナ焼結体(京セラ(株)製:A479:の26×26×4
mm、表面粗さが0.05μmRz)の一方の面(摩擦面
部)を、直径25mm、厚み1mmの円板が突出した形
となるように加工し、更に中央部に直径10mmの穴
を空け試料板Bとした。次に、スラスト・カラー
型の高温摩擦試験機の回転軸側の試験片台に試料
板Aを、加圧軸側の試験片台に試料板Bを載置
し、第2表に示す試験条件により摩擦摩耗試験を
行つた。得られた結果、第1表に示す。尚、摩耗
量は、試験板Aおよび試料板Bの重量変化を測定
することにより得た。その際、試料板Aが高温に
加熱されると、金属膜は酸化されて重量増加をも
たらすので、この影響を避けるために、すべり距
離120mの試験後の試料板の重量とすべり距離600
mの試験後の試料板の重量との差を摩耗量の指標
とした。また、試料番号1および試料番号7につ
いては、試料板Aの摩耗痕の断面プロフイールを
触針式粗さ計により得た。その結果を、第1図お
よび第2図に示す。図中、1および2は試料板A
の最表面を、11および12は試料板Aの摩耗痕
の表面をそれぞれ示す。 比較のために、試料板Aとして金属膜のないア
ルミナ焼結体(上述のセラミツクス基材と同様の
もの)を用いたもの(試料番号C1,C2)、ま
たは、試料板Aおよび試料板Bとしてα−SiOお
よびβ−SiOからなる炭化珪素焼結体(SiC:イ
ビデン(株)製;イビセラム,同寸法)を用いた(試
験番号C3〜C4)ほかは上述と同様の構成によ
り比較試験を同様に行つた。得られた結果を、第
1表に併せて示す。また、試料番号C2について
は、試料板Aの摩耗痕の断面プロフイールを触針
式粗さ計により得た。その結果を、第3図に示
す。図中、3は試料板Aの最表面を、13は試料
板Aの摩耗痕の表面をそれぞれ示す。
[Industrial Application Field] The present invention relates to high-temperature sliding members used as seal materials, bearing materials, etc., and a sliding method therefor. This invention relates to a ceramic high-temperature sliding member whose high-temperature sliding properties have been improved by modifying it, and a method for sliding the same. [Conventional technology and its problems] Conventionally, heat-resistant metal materials made of cobalt (Co)-based, nickel (Ni)-based, etc. alloys have been used as sliding members such as seal materials and bearing materials in high-temperature atmospheres. It is being However, from the viewpoint of heat resistance such as oxidation resistance and high-temperature strength, the use temperature is currently limited to about 800°C. Therefore, efforts are being made to utilize ceramic materials, which have better physical, chemical, and mechanical properties than metals in high-temperature atmospheres. However, this ceramic material, which is generally considered to be a wear-resistant material, actually has low wear resistance and has the disadvantage that wear increases significantly as the temperature rises, making it difficult to use as a structural material. It is difficult to use this ceramic material as it is as a high-temperature sliding member because it has sufficient high-temperature properties. This is because when a material made of ceramics is used as a sliding member, during the sliding process in a high-temperature atmosphere, the ceramic material is worn away at local high surface pressure contact areas and abrasion powder is generated. This is because the abrasive action of and the accompanying increase in surface roughness accelerate the wear of the sliding member and the mating material. When the mating material is softer than ceramics, such as a metal material, the abrasion powder generated is easily buried, so the abrasive action of the abrasion powder is suppressed, but when the mating material is made of ceramic material, Since it has poor embeddability, wear is particularly significant and dimensional changes become severe, making it difficult to put it to practical use. In order to solve this problem, various developments have been made in the past, and several sliding members with improved wear resistance have been proposed. One such material is a silicon nitride material obtained by adding boron nitride (BN), which is a solid lubricant, to the raw material for ceramics and firing the surface layer using this raw material (Japanese Patent Application Laid-Open No. 1983-1999- 137375). However, this ceramic material
Although it is true that the wear resistance has been improved to some extent, there is a problem in that the inherent strength of the ceramic material is reduced. Therefore, the present inventors conducted intensive research to solve the above-mentioned problems of the prior art, and as a result of conducting various systematic experiments, they came up with the present invention. [Object of the Invention] An object of the present invention is to provide a sliding member with excellent wear resistance in a high-temperature atmosphere and a method for sliding the same. [Structure of the Invention] The high-temperature sliding member of the present invention includes a base material made of oxide ceramics, and one of chromium, manganese, iron, cobalt, nickel, copper, and silver or an alloy thereof is physically vapor-deposited on the surface of the base material. A high-temperature sliding member consisting of a metal film obtained by The present invention is characterized in that wear of the ceramic member and the base material is prevented by sliding a ceramic member as a mating member on the surface of the sliding part (hereinafter referred to as the first invention). . The sliding method of a high temperature sliding member of the present invention is a method of sliding a sliding member made of a pair of ceramic members at high temperature, in which at least one member is placed on the surface of a ceramic base material made of oxide ceramics or nitride ceramics. Chromium, manganese,
A metal film made of one of iron, cobalt, nickel, copper, and silver or an alloy thereof is coated by physical vapor deposition to form a sliding part on the surface, and the sliding part is heated to oxidize the sliding part. form a layer of matter,
By sliding a ceramic member as a mating material on the oxide layer of the sliding part in a high-temperature atmosphere of 500°C or higher and promoting frictional surface familiarity between the ceramic member and the sliding part of the metal film, the ceramic This invention is characterized by preventing wear of the members and the base material (hereinafter referred to as the second invention). Below, the configuration of the present invention will be explained in more detail. First, the high temperature sliding member of the first invention will be explained. The base material in the first invention is a base material for a high-temperature sliding member, and is an oxide ceramic sintered body manufactured using oxide as a main raw material, and includes alumina (Al 2 O 3 ), zirconia (ZrO 2 ) or other oxide ceramics are used. This oxide ceramic has excellent oxidation resistance, and although its high-temperature strength is slightly inferior to silicon nitride and silicon carbide, it has superior physical, chemical, and mechanical properties in a high-temperature atmosphere compared to conventional heat-resistant alloys. have In addition, the metal film formed on the surface of the sliding part of the base material made of oxide ceramics becomes a lubricant when softened or melted at high temperatures or oxidized in the atmosphere, making it resistant to the ceramic base material. A thin metal film that imparts wear resistance, made from one of chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), silver (Ag), or an alloy thereof. It is a metal film. Here, the thickness of this metal film is such that it imparts wear resistance to the oxide ceramic material as the base material of the high-temperature sliding member, and it also reduces the surface roughness of the oxide ceramic base material. There is no particular limitation as long as the film thickness exceeds, but preferably,
It is 0.1 to 5 μm. This means that the thickness of the metal film is
If it is less than 0.1 μm, it is difficult to prevent the base material from being destroyed by the shear force generated on the friction surface during sliding, and if it exceeds 5 μm, it may cause dimensional changes due to metal melting or oxidation at high temperatures. This is because the friction becomes intense, making it difficult to function as a sliding member. Furthermore, when the oxide ceramic is a zirconia ceramic and the metal film is manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), or silver (Ag), the film thickness of the metal film is is preferably 1 μm or more. This is because the strength of zirconia ceramics decreases relatively significantly at high temperatures. In this case, wear resistance can be further improved by combining ceramics with high high temperature strength such as silicon nitride as the mating material. In addition, the metal film formed on the surface of the sliding part of the ceramic base material is softer than the base material from room temperature to high temperature, and is oxidized from the surface at high temperatures, which prevents direct contact between the ceramic base materials, especially in the early stages of friction. It plays the role of preventing friction and promoting familiarity with friction surfaces, and provides high wear resistance at temperatures above 500°C, where wear of the base material is particularly high. Furthermore, depending on the type of the ceramic base material and the metal film, the base material and the oxide of the coating metal may react to form a brittle intermetallic compound, which may limit the operating temperature. For example, when forming a Ni film on alumina ceramics, it is preferable to use an ambient temperature of up to about 900°C. This is because the operating temperature is
In the case of 1000℃, a temperature increase due to frictional heat is added, and a spinel is generated by the reaction between NiO, the divalent oxide of the metal film, and the alumina base material: NiO + Al 2 O 3 → NiAl 2 O 4 . This is because wear resistance is impaired. However, this is because the Ni oxide is only divalent, and it is a metal film that can also be a monovalent or polyvalent oxide of trivalent or higher valence, so even if spinel is formed, the coating metal alone will not be present. oxide layer is formed, giving the alumina base material excellent wear resistance even at temperatures above 1000°C. The high-temperature sliding member of the first invention includes chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), A metal film made of one type of silver (Ag) or an alloy thereof is formed. Here, the coating and formation of the metal film on the surface of the oxide ceramic substrate is performed by physical vapor deposition. This physical vapor deposition (PVD)
As mentioned above, as long as a metal film useful as a high-temperature sliding member can be coated/formed on the surface of a ceramic substrate, it does not specify a specific method, but may include vacuum evaporation, sputtering, ionization, etc. Any method such as a plating method may be used. A typical manufacturing method of the high-temperature sliding member of the first invention will be briefly described as follows. First, an oxide ceramic having desired properties according to its purpose as a high-temperature sliding member is obtained by a conventional ceramic manufacturing method and used as a base material. Next, the obtained ceramic substrate is placed in a vacuum evaporation device, a sputtering device, etc., and a desired metal is coated on the surface of the oxide ceramic substrate by a physical vapor deposition method such as a vacuum evaporation method or a sputtering method. A high temperature sliding member according to the first invention is obtained. Further, the high temperature sliding member of the first invention may be one in which an oxide layer is formed on the sliding portion of the metal film. In that case, the oxide layer is formed by heating the high temperature sliding member. Next, the sliding method of the high temperature sliding member of the second invention is as follows:
This is a method of sliding the high-temperature sliding member of the first invention and a ceramic member as a mating member at high temperature. That is, the method for sliding a high-temperature sliding member of the second invention is a method for sliding a sliding member made of a pair of ceramic members at a high temperature, in which at least one of the members is manufactured using an oxide as a main raw material. Chromium, manganese, iron, cobalt, nickel,
A metal film made of one of copper, silver, or an alloy thereof is coated by physical vapor deposition to form a sliding part on the surface, and the sliding part is heated to form an oxide layer on at least the surface of the sliding part. The ceramic member as a mating material and the oxide layer of the sliding part are made to slide in a high temperature atmosphere of 500°C or higher, including at least the sliding surface and its vicinity, and the sliding of the ceramic member and the metal film is achieved. This prevents wear of the ceramic member and the base material by promoting frictional surface familiarity with the ceramic member and the base material. At this time, the oxide layer is formed on the sliding portion of the metal film by heating at least the temperature atmosphere at or near the sliding portion to a temperature at which the metal film is oxidized. Therefore, the heating may be performed by setting only the part where the oxidized layer is to be formed to a predetermined temperature atmosphere, or to setting the atmosphere including the part to a predetermined temperature atmosphere. Further, the heating may be performed by simply generating frictional heat in the portion due to sliding with a ceramic member serving as a mating material, and setting the atmosphere containing the portion to a predetermined temperature atmosphere. [Operations and Effects of the Invention] The high-temperature sliding member of the first invention and the sliding method of the second invention have excellent wear resistance in a high-temperature atmosphere of 500° C. or higher. Further, by the sliding method of the second invention, wear due to sliding of the sliding member can be prevented even in a high temperature atmosphere of 500° C. or higher. As described above, the mechanism by which the high-temperature sliding member of the first invention and the sliding method of the second invention exhibit such effects is not necessarily clear, but it is thought to be as follows. In other words, the oxide ceramics used as the base material of the high-temperature sliding member of the present invention have excellent heat resistance, have small decreases in mechanical properties as the temperature rises, and have sufficient properties even in high-temperature atmospheres of 800°C or higher. It has strength and also has a small coefficient of thermal expansion, so the amount of thermal deformation is small. The metal film formed on the surface of the oxide ceramic base material is made of a metal or an alloy thereof that is softer than the base material, and blends well into the ceramic base material as a base. Further, at high temperatures, this metal film softens, melts, or reacts with the atmosphere to become an oxide film, which acts as a lubricant to prevent wear of the base material. When this high-temperature sliding member and method are used in a high-temperature atmosphere, the load that acts on the friction surface due to sliding is received by the underlying ceramic base material, and the shear force accompanying friction is extremely absorbed by the thin metal film on the surface that has been softened by the high temperature. or its high-temperature oxide layer. Furthermore, the sliding surface, which inevitably experiences localized high surface pressure contact or uneven contact due to machining accuracy, can be quickly adapted by deformation or slight abrasion of this oxide layer. As a result, hard wear-promoting substances such as ceramic wear particles are not generated on the sliding surface, and the wear resistance of the base material and mating material is significantly improved, which is thought to result in excellent high-temperature sliding properties. . The first and second inventions have excellent high-temperature sliding properties, heat resistance, and wear resistance, so they can be used as high-temperature sealing materials for heat exchangers, bearing materials used in molten metal, bearing materials for turbochargers, etc. It can be widely used as a sliding member and sliding method in an atmosphere. [Example] Example 1 First, a 26 x 26 x 4 mm alumina sintered body (manufactured by Kyocera Corporation: A479) was used as an oxide ceramic base material.
A hole with a diameter of 5 mm was made in the center of the flat plate, and the surface roughness was
A sample obtained by polishing to 0.05 μm Rz was prepared. Next, this ceramic base material was placed in a vacuum evaporation device (manufactured by JEOL Ltd., JEE-5B), the pressure was reduced to 10 -3 Pascal (Pa), and the ceramic base material was
The substrate was heated to 400° C. and vacuum evaporated using a tungsten (W) wire basket to coat the metal shown in Table 1. As a result, high-temperature sliding members according to the present invention were obtained (sample numbers 1-6, 8-1
2). For sample numbers 7 and 13 to 15, glow discharge was performed for more than 1 hour using a sputtering device with argon (Ar) gas introduced and a vacuum level of 4 Pa to coat the base material surface with nickel or iron. . A performance evaluation test of the obtained high-temperature sliding member was conducted by a friction and wear test. First, the obtained high-temperature sliding member was designated as sample plate A. Next, a 26 x 26 x 4 alumina sintered body (manufactured by Kyocera Corporation: A479) of the same quality as the ceramic base material described above was prepared.
mm, surface roughness 0.05μmRz) was processed so that one surface (friction surface part) had a protruding shape with a diameter of 25mm and a thickness of 1mm, and a hole with a diameter of 10mm was made in the center of the sample plate. It was set as B. Next, sample plate A was placed on the test piece stand on the rotating shaft side of the thrust collar type high temperature friction tester, and sample plate B was placed on the test piece stand on the pressurized shaft side, and the test conditions were as shown in Table 2. Friction and wear tests were conducted using the following methods. The results obtained are shown in Table 1. Note that the amount of wear was obtained by measuring changes in weight of test plate A and sample plate B. At that time, if sample plate A is heated to a high temperature, the metal film will be oxidized and its weight will increase, so in order to avoid this effect, the weight of the sample plate after the test with a sliding distance of 120 m and the sliding distance of 600 m
The difference between m and the weight of the sample plate after the test was used as an index of the amount of wear. Further, for Sample No. 1 and Sample No. 7, the cross-sectional profile of the wear marks on sample plate A was obtained using a stylus roughness meter. The results are shown in FIGS. 1 and 2. In the figure, 1 and 2 are sample plates A
, and 11 and 12 indicate the surfaces of the wear marks on sample plate A, respectively. For comparison, samples using an alumina sintered body (same as the ceramic base material described above) without a metal film were used as sample plates A (sample numbers C1 and C2), or sample plates A and B were used as sample plates A and B. Comparative tests were conducted in the same manner with the same configuration as above except that a silicon carbide sintered body (SiC: manufactured by Ibiden Co., Ltd.; Ibiceram, same dimensions) consisting of α-SiO and β-SiO was used (test numbers C3 to C4). I went to The obtained results are also shown in Table 1. For sample number C2, the cross-sectional profile of the wear marks on sample plate A was obtained using a stylus roughness meter. The results are shown in FIG. In the figure, 3 indicates the outermost surface of the sample plate A, and 13 indicates the surface of the abrasion marks on the sample plate A, respectively.

【表】【table】

【表】【table】

【表】【table】

【表】 以上の結果より明らかの如く、本発明にかかる
高温摺動部材を用いた場合には、高温雰囲気下で
耐摩耗性に優れていることが分る。 実施例 2 先ず、酸化物セラミツクス基材として、3mol
%Y2O3部分安定化ジルコニア(ZrO2:京セラ(株)
製:Z201)の26×26×4mmの平板の中心に直径
5mmの穴をあけ、表面粗さが0.1μmRzになるよ
うに研磨処理して得たものを用意した。 次に、このセラミツクス基材に、実施例1と同
様の真空蒸着装置を用いて真空蒸着を行い、第3
表に示す金属を被覆した。これにより、本発明に
かかる高温摺動部材を得た(試料番号16,1
9)。尚、試料番号20については、スパツタリ
ング装置を用い、導入ガスをアルゴン(Ar)ガ
ス、圧力を4Paとして膜厚に応じて1時間以上グ
ロー放電を行ない、基材表面にニツケルを被覆し
た。 次に、得られた高温摺動部材を試料板Aとし、
上述のセラミツクス基材と同質のジルコニア焼結
体(京セラ(株)製:Z201:26×26×4mm、表面粗
さが0.1μmRz)の一方の面(摩擦面部)を、直
径25mm、厚み1mmの円板が突出した形となるよう
に加工し、更に中央部に直径10mmの穴を空け試料
板Bとした。また、試料番号19については窒化
珪素焼結体(京セラ(株)製:SN220:上述の試料板
Bと同様の形状)を試料板Bとした。次に、スラ
フト・カラー型の高温摩擦試験機の回転軸側の試
験片台に試料板Aを、加圧軸側の試験片台に試料
板Bを載置し、第2表に示す試験条件により摩擦
摩耗試験を行つた。得られた結果を、第3表に示
す。尚、摩耗量の測定方法は、実施例1と同様で
ある。また、試料番号18については、試料板A
の摩耗痕の断面プロフイールを触針式粗さ計によ
り得た。その結果を、第4図に示す。図中、4は
試料板Aの最表面を、14は試料板Aの摩耗痕の
表面をそれぞれ示す。 比較のために、試料板Aとして金属膜のないジ
ルコニア焼結体(上述のセラミツクス基材と同様
のもの)を用いた(試料番号C5〜C7)ほかは
上述と同様の構成により比較試験を行つた。得ら
れた結果を、第3表に併せて示す。また、試料番
号C7については、試料板Aの摩耗痕の断面プロ
フイールを触針式粗さ計により得た。その結果
を、第5図に示す。図中、5は試料板Aの最表面
を、15は試料板Aの摩耗痕の表面をそれぞれ示
す。
[Table] As is clear from the above results, when the high-temperature sliding member according to the present invention is used, it is found that the wear resistance is excellent in a high-temperature atmosphere. Example 2 First, as an oxide ceramic base material, 3 mol
%Y 2 O 3 Partially stabilized zirconia (ZrO 2 : Kyocera Corporation)
A hole with a diameter of 5 mm was drilled in the center of a 26 x 26 x 4 mm flat plate (manufactured by Z201) and polished to a surface roughness of 0.1 μmRz. Next, vacuum evaporation was performed on this ceramic base material using the same vacuum evaporation apparatus as in Example 1, and the third
The metals shown in the table were coated. As a result, a high temperature sliding member according to the present invention was obtained (sample number 16,1
9). For sample No. 20, a sputtering device was used, argon (Ar) gas was introduced, the pressure was 4 Pa, and glow discharge was performed for more than 1 hour depending on the film thickness to coat the surface of the base material with nickel. Next, the obtained high-temperature sliding member was designated as sample plate A,
One surface (friction surface part) of a zirconia sintered body (manufactured by Kyocera Corporation: Z201: 26 x 26 x 4 mm, surface roughness: 0.1 μm Rz), which is the same as the ceramic base material described above, is 25 mm in diameter and 1 mm thick. The disk was processed to have a protruding shape, and a hole with a diameter of 10 mm was made in the center to prepare sample plate B. In addition, for sample number 19, a silicon nitride sintered body (manufactured by Kyocera Corporation: SN220: similar shape to the above-mentioned sample plate B) was used as sample plate B. Next, sample plate A was placed on the test piece stand on the rotating shaft side of the high-temperature friction tester of the draft collar type, and sample plate B was placed on the test piece stand on the pressurized shaft side, and the test conditions shown in Table 2 were set. Friction and wear tests were conducted using the following methods. The results obtained are shown in Table 3. Note that the method for measuring the amount of wear is the same as in Example 1. In addition, for sample number 18, sample plate A
The cross-sectional profile of the wear scar was obtained using a stylus roughness meter. The results are shown in FIG. In the figure, 4 indicates the outermost surface of the sample plate A, and 14 indicates the surface of the abrasion marks on the sample plate A, respectively. For comparison, a comparative test was conducted with the same configuration as above except that a zirconia sintered body (same as the above-mentioned ceramic base material) without a metal film was used as sample plate A (sample numbers C5 to C7). Ivy. The obtained results are also shown in Table 3. For sample number C7, the cross-sectional profile of the wear marks on sample plate A was obtained using a stylus roughness meter. The results are shown in FIG. In the figure, 5 indicates the outermost surface of the sample plate A, and 15 indicates the surface of the abrasion marks on the sample plate A, respectively.

【表】【table】

【表】 以上の結果より明らかの如く、本発明にかかる
高温摺動部材を用いた場合には、高温雰囲気下で
耐摩耗性に優れていることが分る。
[Table] As is clear from the above results, when the high-temperature sliding member according to the present invention is used, it is found that the wear resistance is excellent in a high-temperature atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の実施例1または実施例2におけ
る摩擦摩耗試験後の試料Aの摩耗痕の断面プロフ
イールを示す線図で、第1図ないし第5図はそれ
ぞれ試料番号1,7C2,18,C7の線図であ
る。 1,2,3,4,5……試料板Aの最表面、1
1,12,13,14,15……試料板Aの摩耗
痕の表面。
The figure is a diagram showing the cross-sectional profile of the wear scar of sample A after the friction and wear test in Example 1 or Example 2 of the present invention, and Figures 1 to 5 are for sample numbers 1, 7C2, 18, and 18, respectively. It is a diagram of C7. 1, 2, 3, 4, 5... Uppermost surface of sample plate A, 1
1, 12, 13, 14, 15... Surface of wear marks on sample plate A.

Claims (1)

【特許請求の範囲】 1 酸化物セラミツクスよりなる基材と、該基材
表面にクロム,マンガン,鉄,コバルト,ニツケ
ル,銅,銀の一種またはその合金を物理蒸着して
得られた金属膜と、該金属膜の表面に形成した摺
動部とからなる高温摺動部材であつて、500℃以
上の高温雰囲気下で相手材としてのセラミツクス
部材を前記摺動部面上を摺動させることによりセ
ラミツクス部材および基材の摩耗を防止したこと
を特徴とする高温摺動部材。 2 金属膜の厚さは、0.1μm〜5μmであることを
特徴とする特許請求の範囲第1項記載の高温摺動
部材。 3 金属膜の摺動部に酸化物層を形成したことを
特徴とする特許請求の範囲第1項記載の高温摺動
部材。 4 酸化物セラミツクスは、アルミナセラミツク
スまたはジルコニアセラミツクスであることを特
徴とする特許請求の範囲第1項記載の高温摺動部
材。 5 一対のセラミツク部材よりなる摺動部材を高
温で摺動させる方法において、少なくとも一方の
部材を酸化物セラミツクスからなるセラミツクス
基材表面にクロム,マガン,鉄,コバルト,ニツ
ケル,銅,銀の一種またはその合金よりなる金属
膜を物理蒸着により被覆してその表面に摺動部を
形成し、該摺動部を加熱することにより前記摺動
部に酸化物層を形成させ、500℃以上の高温雰囲
気下で相手材としてのセラミツクス部材を前記摺
動部の酸化物層上を摺動させ、セラミツクス部材
と金属膜の摺動部との摩擦面馴染みを促進するこ
とにより、セラミツクス部材および基材の摩耗を
防止したことを特徴とする高温摺動部材の摺動方
法。
[Scope of Claims] 1. A base material made of oxide ceramics, and a metal film obtained by physically vapor depositing one of chromium, manganese, iron, cobalt, nickel, copper, and silver or an alloy thereof on the surface of the base material. , a high-temperature sliding member consisting of a sliding part formed on the surface of the metal film, by sliding a ceramic member as a mating material on the surface of the sliding part in a high-temperature atmosphere of 500°C or higher. A high-temperature sliding member characterized by preventing abrasion of a ceramic member and a base material. 2. The high-temperature sliding member according to claim 1, wherein the metal film has a thickness of 0.1 μm to 5 μm. 3. The high-temperature sliding member according to claim 1, characterized in that an oxide layer is formed on the sliding portion of the metal film. 4. The high-temperature sliding member according to claim 1, wherein the oxide ceramic is an alumina ceramic or a zirconia ceramic. 5. In a method of sliding a pair of sliding members made of a pair of ceramic members at high temperature, at least one member is coated on the surface of a ceramic base material made of oxide ceramics with one of chromium, maganese, iron, cobalt, nickel, copper, silver or the like. A metal film made of the alloy is coated by physical vapor deposition to form a sliding part on the surface, and an oxide layer is formed on the sliding part by heating the sliding part, and an oxide layer is formed on the sliding part in a high temperature atmosphere of 500 ° C or more. At the bottom, a ceramic member as a mating material is slid on the oxide layer of the sliding part to promote frictional surface familiarization between the ceramic member and the sliding part of the metal film, thereby reducing wear of the ceramic member and the base material. A method for sliding a high-temperature sliding member, characterized by preventing the above.
JP24857786A 1986-10-20 1986-10-20 High temperature sliding member and sliding method Granted JPS63103884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24857786A JPS63103884A (en) 1986-10-20 1986-10-20 High temperature sliding member and sliding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24857786A JPS63103884A (en) 1986-10-20 1986-10-20 High temperature sliding member and sliding method

Publications (2)

Publication Number Publication Date
JPS63103884A JPS63103884A (en) 1988-05-09
JPH0587476B2 true JPH0587476B2 (en) 1993-12-16

Family

ID=17180198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24857786A Granted JPS63103884A (en) 1986-10-20 1986-10-20 High temperature sliding member and sliding method

Country Status (1)

Country Link
JP (1) JPS63103884A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696474B2 (en) * 1988-07-26 1994-11-30 株式会社▲吉▼野ハード Seal mechanism
JP2007127192A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Spline
GB2458960A (en) * 2008-04-04 2009-10-07 Ricardo Uk Ltd Sliding bearing

Also Published As

Publication number Publication date
JPS63103884A (en) 1988-05-09

Similar Documents

Publication Publication Date Title
US5108813A (en) Sliding member
JPH0587476B2 (en)
JPH0587475B2 (en)
JPH053435B2 (en)
US4902576A (en) High temperature sliding element and method for preventing high temperature sliding wear
JPH053436B2 (en)
JPS59126772A (en) Melt spraying material having build-up resistance
US4983468A (en) Metallic slide members to be used with ceramic slide members and sliding assemblies using the same
JP2002003962A (en) Sliding friction member
EP0252728B1 (en) Metallic slide members to be used with ceramic slide members and sliding assemblies using the same
JPH0114997B2 (en)
JP3861522B2 (en) Manufacturing method of low friction ceramics
JP2003105426A (en) Water-cooled lance for metallurgical use and manufacturing method therefor
JPH0733559A (en) Member made of carbon equipped with flame-sprayed ceramic coating film
JP3224463B2 (en) Cermet spray material containing high thermal expansion hard oxide and hearth roll with spray coating
Wallstabe On the tribological behaviour of SiC and alumina mated against different steels under dry sliding conditions
JP2592628B2 (en) Method of forming thermal spray coating with excellent build-up resistance
JPH08249B2 (en) Sliding member with excellent seizure resistance and wear resistance
JP3043917B2 (en) Rolls for heat treatment furnaces with excellent peel resistance, wear resistance, and build-up resistance
JPH09316621A (en) Sprayed coating suitable for sliding wear resistant member subjected to repeated thermal impact
JPS6123266B2 (en)
JPS6089538A (en) Antifriction material for sealing piece in rotary regenerative heat exchanger having ceramic core
JPH04246145A (en) Mold for forming optical element
JP2001335905A (en) Continuous hot dip metal coating apparatus, and roll and bearing therefor
JPH0835032A (en) Corrosion resisting sintered hard alloy for molten zinc and molten aluminum