JPH053436B2 - - Google Patents

Info

Publication number
JPH053436B2
JPH053436B2 JP60233840A JP23384085A JPH053436B2 JP H053436 B2 JPH053436 B2 JP H053436B2 JP 60233840 A JP60233840 A JP 60233840A JP 23384085 A JP23384085 A JP 23384085A JP H053436 B2 JPH053436 B2 JP H053436B2
Authority
JP
Japan
Prior art keywords
sliding
ceramic
temperature
base material
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60233840A
Other languages
Japanese (ja)
Other versions
JPS6296378A (en
Inventor
Yoshio Shimura
Yoshuki Mizutani
Akio Isotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP23384085A priority Critical patent/JPS6296378A/en
Priority to US06/919,455 priority patent/US4902576A/en
Publication of JPS6296378A publication Critical patent/JPS6296378A/en
Publication of JPH053436B2 publication Critical patent/JPH053436B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mechanical Sealing (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、シール材料やベアリング材料等とし
て用いられる高温摺動部材およびその摺動方法に
関し、更に詳しくは、耐熱性に優れたセラミツク
スの本来の特長を変えずに表面を改質し、高温摺
動特性を向上させたセラミツクス高温摺動部材お
よびその摺動方法に関するものである。 〔従来の技術およびその問題点〕 シール材料やベアリング材料等を高温雰囲気下
における摺動部材としては、従来より、コバルト
(Co)聞、ニツケル(Ni)基等およびそれらの合
金からなる耐熱金属材料が用いられている。しか
し、耐酸化性、高温強度等の耐熱性の観点から、
その使用温度は800℃程度までに限定されている
のが現状である。 そこで、高温雰囲気下において金属より物理的
性質、化学的性質、機械的性質に優れたセラミツ
クス材料の利用が図られている。ところが、この
セラミツクス材料は、耐摩耗性が小さく、それも
温度の上昇に伴つて摩耗の増大が著しいという欠
点を有し、構造材としては十分な高温特性を有す
るこのセラミツクス材料もそのまま高温摺動部材
として使用することが難しい。 これは、セラミツクスからなる材料を摺動部材
として用いた場合、高温雰囲気下における摺動過
程において局部的な高面圧接触部分でセラミツク
ス材料が摩耗して摩耗粉が生成され、この硬い摩
耗粉の研磨作用とそれに伴う表面粗さの増大によ
り、摺動部材および相手材の摩耗が促進される。
相手材が金属材料のようにセラミツクスより軟質
材の場合には生じた摩耗粉が埋収され易いので摩
耗粉による研磨作用が抑制されるが、相手材がセ
ラミツクス材料よりなる場合には、埋収性は乏し
いため、この摩耗が著しく、寸法変化が激しくな
り、実用に供することが難しい。 この問題を解決すべく、従来より種々の開発が
行われ、耐摩耗性の向上した摺動部材がいくつか
提案されている。その一つに、セラミツクスの原
料に、固体潤滑剤である窒化硼素(BN)を添加
し、この原料を用いて表層部を焼成して得られた
窒化珪素質材料がある(特開昭59−137375号公
報)。しかしながら、このセラミツクス材料は、
確かに耐摩耗性の向上はある程度見られるもの
の、セラミツクス材料本来有する高温特性、特に
高温強度を低下させるという問題があつた。 そこで、本発明者等は、上述の如き従来技術の
問題点を解決すべく鋭意研究し、各種の系統的実
験を重ねた結果、本発明を成すに至つたものであ
る。 〔発明の目的〕 本発明の目的は、高温雰囲気下で耐摩耗性に優
れた摺動部材およびその摺動方法を提供するにあ
る。 〔発明の構成〕 本発明の高温摺動部材は、窒化物セラミツクス
よりなる基材と、該基材表面にニツケル、マンガ
ンの一種またはその合金を物理蒸着して得られた
金属膜とからなる高温摺動部材であつて、高温雰
囲気下で相手材としてのセラミツクス部材を前記
金属膜の表面を摺動させることにより、セラミツ
クス部材および基材の摩耗を防止したことを特徴
とするものである(以下、第一発明とする)。 本発明の高温摺動部材の摺動方法は、一対のセ
ラミツクス部材よりな摺動部材を高温で摺動させ
る方法において、少なくとも一方の部材を窒化物
セラミツクスからなるセラミツクス基材表面にニ
ツケル、マンガンの一種またはその合金よりなる
金属膜を物理蒸着により被覆し、高温雰囲気下で
相手材としてのセラミツクス部材を前記金属膜上
を摺動させ、セラミツクス部材と金属膜との摩擦
面馴染みを促進することにより、セラミツクス部
材および基材の摩耗を防止したことを特徴とする
ものである(以下、第二発明とする)。 以下に、本発明の構成をより詳細に説明する。 先ず、本第一発明の高温摺動部材について説明
する。 本第一発明における基材は、高温摺動部材とし
ての基材をなすもので窒化物を主な原料として製
造された窒化物質セラミツクス焼結体であり、窒
化珪素(Si3N4)等の窒化物セラミツクスを用い
る。この、窒化物セラミツクスは、耐熱性に優
れ、高温雰囲気下においても優れた物理的性質、
化学的性質、機械的性質を有する。 また、この窒化物セラミツクスよりなる基材の
表面に形成した金属膜は、セラミツクス基材に対
して高温雰囲気下における耐摩耗性を付与する金
属薄膜であり、ニツケル(Ni)、マンガン(Mn)
の一種またはその合金よりなる金属膜である。 ここで、この金属膜の膜厚は、高温摺動部材の
基材としての窒化物セラミツクス材料に耐摩耗性
を付与する程度の厚さであり、かつこの窒化物セ
ラミツクスの表面粗さを越えた膜厚であれば、特
に限定するものでないが、好ましくは、0.1〜5μ
mである。これは、金属膜の膜厚が、0.1μm未満
の場合には、摺動時には摩擦面に発生するせん断
力による基材の破壊を防止することが難しく、ま
た、5μmを越えた場合には、高温時に金属の溶
融或いは酸化による寸法変化が激しくなり、摺動
部材として作用しにくいからである。 本発明の高温摺動部材は、上述した窒化物セラ
ミツクス基材の表面に、ニツケル(Ni)、マンガ
ン(Mn)の一種またはその合金よりなる金属膜
を形成してなる。 ここで、金属膜の窒化物セラミツクス基材表面
への被覆・形成は、物理蒸着法により行う。この
物理蒸着(PVD:Pysical Vapor Dposition)
は、上述の如く高温摺動部材として有用な金属膜
をセラミツクス基材表面へ被覆・形成し得るもの
であれば、その具体的方法について特定するもの
ではなく、真空蒸着法、スパツタリング法、イオ
ンプレーテイング法等の何れの方法であつてもよ
い。 本発明の高温摺動部材の代表的な製造方法を簡
単に述べると、以下の様である。 先ず、高温摺動部材としての目的に応じた所望
の性質を有する窒化物セラミツクスを、従来のセ
ラミツクスの製造方法により得、基材とする。 次に、得られた窒化物セラミツクス基材を、真
空蒸着装置、スパツタリング装置等に配設し、所
望の金属を真空蒸着法、スパツタリング法等の物
理蒸着法により窒化物セラミツクス基材の表面に
被覆し、本発明にかかる高温摺動部材を得る。 次に、第二発明の高温摺動部材の摺動方法は、
第一発明の高温摺動部材と相手材としてのセラミ
ツクス部材とを高温で摺動させる方法である。す
なわち、本第二発明の高温摺動部材の摺動方法
は、一対のセラミツクス部材よりなる摺動部材を
高温で摺動させる方法において、少なくとも一方
の部材を窒化物を主な原料として製造された窒化
物セラミツクス焼結体からなるセラミツクス基材
の表面に、ニツケル(Ni)、マンガン(Mn)の
一種またはその合金よりなる金属膜を物理蒸着に
より被覆し、高温雰囲気下で相手材としてのセラ
ミツクス部材を前記金属膜上を摺動させ、セラミ
ツクス部材と金属膜との摩擦面馴染みを促進する
ことにより、セラミツクス部材および基材の摩耗
を防止するものである。 〔発明の作用および効果〕 本第一発明の高温摺動部材は、高温雰囲気下に
おいて耐摩耗性に優れた摺動部材である。 本第二発明の摺動方法により、高温雰囲気下に
おいても摺動部材の摺動による摩耗を防止するこ
とができる。 この様に、本第一発明の高温摺動部材および第
二発明の摺動方法がかかる効果を発揮するメカニ
ズムについては、未だ必ずしも明らかではない
が、次の様に考えられる。 即ち、本発明の高温摺動部材の基材としての窒
化物セラミツクスは、耐熱性に優れ、温度の上昇
に伴う機械的性質の低下が小さく、800℃以上の
ような高温雰囲気下においても十分な強度を有
し、また、熱膨張係数も小さいので熱変形量が小
さい。そして、この窒化物セラミツクス基材の表
面に形成した金属膜は、基材より高温で軟質な金
属またはその合金であり、下地としてのセラミツ
クス基材によく馴染む。また、この金属膜は、摺
動過程で容易には基材と反応せず、例え基材と反
応したとしてもその反応生成物は脆弱なものでは
ない。 この高温摺動部材を高温雰囲気下で摺動部材と
して用いた場合、摺動により摩際面に作用する負
荷を下地のセラミツクス基材で受け、摩擦に伴う
せん断力は極く表面の軟質な金属薄膜で受け持た
れる。これにより、摺動面にセラミツクス摩耗粉
等の摩耗促進物質が生成されず、基材及び相手材
の耐摩耗性が著しく向上され、優れた高温摺動特
性を発揮しているものと思われる。 本第一発明および第二発明は、高温摺動特性、
耐熱性、耐摩耗性に優れているので、熱交換器の
シール材料、溶湯中で用いるベアリング材料、タ
ーボチヤージヤーのベアリング材料等の高温雰囲
気下における摺動部材および摺動方法として広く
利用することができる。 〔実施例〕 先ず、窒化物セラミツクス基材として、窒化珪
素質焼結体(京セラ(株)製:SN220)の26×26×4
mmの平板の中心に直径5mmの穴をあけ、表面粗さ
が0.03μmRzになるように研磨処理して得たもの
を用意した。 次に、このセラミツクス基材を真空蒸着装置
(日本電子(株)製、JEE−5B)に入れ、10-3パスカ
ル(Pa)に減圧し、セラミツクス基材を350〜
400℃に加熱し、タングステン(W)線製バスケ
ツトを用いて真空蒸着を行い、基材に第1表に示
す金属を被覆した。これにより、本発明にかかる
高温摺動部材を得た(試料番号3〜6)。尚、試
料番号1,2,7および8については、スパツタ
リング装置を用い、導入ガスをアルゴン(Ar)
ガス、真空度を4Paとして1時間グロー放電を行
ない、基材表面にニツケルを被覆した。 得られた高温摺動部材の性能評価試験を、摩擦
摩耗試験により行つた。 先ず、得られた高温摺動部材を試料板Aとし
た。次に、上述とセラミツクス基材と同質の窒化
珪素質焼結体(京セラ(株)製:SN220)の26×26×
4mm、表面粗さが0.03μmRz)の一方の面(摩擦
面部)を、直径25mm、厚み1mmのリングが突出し
た形となるように加工し、更に中央部に直径10mm
の穴を空け試料板Bとした。次に、スラスト・カ
ラー型の高温摩擦試験機の回転軸側の試験片台に
試料板Aを、加圧軸側の試験片台に試料板Bを載
置し、第2表に示す試験条件により摩擦摩耗試験
を行つた。得られた結果を、第1表に示す。尚、
摩耗量は、試料板Aの重量変化を測定することに
より得た。その際、試料板Aが高温に加熱される
と、金属膜は酸化されて重量増加をもたらすの
で、この影響を避けるために、すべり距離120m
の試験後の試料板の重量とすべり距離600mの試
験後の試料板の重量との差を摩耗量の指標とし
た。また、試料番号1および試料番号2について
は、試料板Aの摩耗痕の断面プロフイールを触針
式粗さ計により得た。その結果を、第1図および
第2図に示す。 比較のために、試料板Aとして金属膜のない窒
化珪素質焼結体(上述のセラミツクス基材と同様
のもの)を用いたもの(試料番号C1,C2)、
及び、試料板Aの基材および試料板Bとして
3mol%Y2O3部分安定化ジルコニア(ZrO2:京セ
ラ(株)製:Z201、同寸法)を用いた(試料番号C
3〜C9)ほかは上述と同様の構成により比較試
験を同様に行つた。得られた結果を、第1表に併
せて示す。また、試料番号C1およびC2につい
ては、試料板Aの摩耗痕の断面プロフイールを触
針式粗さ計により得た。その結果を、第3図およ
び第4図に示す。
[Industrial Application Field] The present invention relates to high-temperature sliding members used as seal materials, bearing materials, etc., and a sliding method therefor. This invention relates to a ceramic high-temperature sliding member whose high-temperature sliding properties have been improved by modifying it, and a method for sliding the same. [Prior art and its problems] Conventionally, heat-resistant metal materials made of cobalt (Co), nickel (Ni), etc., and their alloys have been used as sliding members such as seal materials and bearing materials in high-temperature atmospheres. is used. However, from the viewpoint of heat resistance such as oxidation resistance and high temperature strength,
Currently, the operating temperature is limited to about 800°C. Therefore, efforts are being made to utilize ceramic materials, which have better physical, chemical, and mechanical properties than metals in high-temperature atmospheres. However, this ceramic material has a drawback that its wear resistance is low and the wear increases significantly as the temperature rises, and even though this ceramic material has sufficient high temperature properties as a structural material, it cannot be used as it is for high temperature sliding. Difficult to use as a component. This is because when a material made of ceramics is used as a sliding member, during the sliding process in a high-temperature atmosphere, the ceramic material is worn away at local high surface pressure contact areas and abrasion powder is generated. The abrasive action and the resulting increase in surface roughness accelerate the wear of the sliding member and the mating material.
When the mating material is softer than ceramics, such as a metal material, the generated abrasion powder is easily buried, so the abrasive action of the abrasion powder is suppressed. Because of its poor properties, this wear is significant and dimensional changes are severe, making it difficult to put it to practical use. In order to solve this problem, various developments have been made in the past, and several sliding members with improved wear resistance have been proposed. One such material is a silicon nitride material obtained by adding boron nitride (BN), which is a solid lubricant, to the raw material for ceramics and firing the surface layer using this raw material (Japanese Patent Application Laid-Open No. 1983-1999- Publication No. 137375). However, this ceramic material
Although it is true that wear resistance has been improved to some extent, there has been a problem in that the high-temperature properties inherent in ceramic materials, particularly the high-temperature strength, are reduced. Therefore, the present inventors conducted intensive research to solve the above-mentioned problems of the prior art, and as a result of conducting various systematic experiments, they came up with the present invention. [Object of the Invention] An object of the present invention is to provide a sliding member with excellent wear resistance in a high-temperature atmosphere and a method for sliding the same. [Structure of the Invention] The high-temperature sliding member of the present invention comprises a base material made of nitride ceramics and a metal film obtained by physical vapor deposition of nickel, manganese, or an alloy thereof on the surface of the base material. The sliding member is characterized in that wear of the ceramic member and the base material is prevented by sliding a ceramic member as a mating member on the surface of the metal film in a high-temperature atmosphere (hereinafter referred to as , the first invention). The sliding method of a high-temperature sliding member of the present invention is a method of sliding a pair of sliding members made of ceramic members at high temperatures, in which at least one member is coated with nickel or manganese on the surface of a ceramic base material made of nitride ceramics. A metal film made of one kind or an alloy thereof is coated by physical vapor deposition, and a ceramic member as a mating material is slid on the metal film in a high temperature atmosphere to promote frictional surface familiarity between the ceramic member and the metal film. , which is characterized in that abrasion of the ceramic member and the base material is prevented (hereinafter referred to as the second invention). Below, the configuration of the present invention will be explained in more detail. First, the high temperature sliding member of the first invention will be explained. The base material in the first invention is a base material for a high-temperature sliding member, and is a nitride ceramic sintered body manufactured using nitride as the main raw material, such as silicon nitride (Si 3 N 4 ). Uses nitride ceramics. This nitride ceramic has excellent heat resistance and excellent physical properties even under high temperature atmosphere.
It has chemical and mechanical properties. In addition, the metal film formed on the surface of the base material made of nitride ceramics is a thin metal film that provides wear resistance to the ceramic base material in a high-temperature atmosphere.
It is a metal film made of a type of or an alloy thereof. Here, the thickness of this metal film is a thickness that imparts wear resistance to the nitride ceramic material used as the base material of the high-temperature sliding member, and is thick enough to exceed the surface roughness of the nitride ceramic material. There is no particular limitation as long as the film thickness is, but preferably 0.1 to 5μ.
It is m. This is because if the thickness of the metal film is less than 0.1 μm, it is difficult to prevent the base material from being destroyed by the shear force generated on the friction surface during sliding, and if the thickness exceeds 5 μm, This is because dimensional changes due to metal melting or oxidation become severe at high temperatures, making it difficult to function as a sliding member. The high-temperature sliding member of the present invention is formed by forming a metal film made of one of nickel (Ni), manganese (Mn), or an alloy thereof on the surface of the above-mentioned nitride ceramic base material. Here, the coating and formation of the metal film on the surface of the nitride ceramic substrate is performed by physical vapor deposition. This physical vapor deposition (PVD)
As mentioned above, as long as a metal film useful as a high-temperature sliding member can be coated and formed on the surface of a ceramic substrate, the method does not specify a specific method, but vacuum evaporation, sputtering, ion spraying, etc. Any method such as the Teing method may be used. A typical manufacturing method of the high-temperature sliding member of the present invention will be briefly described as follows. First, a nitride ceramic having desired properties according to its purpose as a high-temperature sliding member is obtained by a conventional ceramic manufacturing method and used as a base material. Next, the obtained nitride ceramic substrate is placed in a vacuum evaporation device, a sputtering device, etc., and the desired metal is coated on the surface of the nitride ceramic substrate by a physical vapor deposition method such as a vacuum evaporation method or a sputtering method. Then, a high-temperature sliding member according to the present invention is obtained. Next, the sliding method of the high temperature sliding member of the second invention is as follows:
This is a method of sliding the high-temperature sliding member of the first invention and a ceramic member as a mating member at high temperature. That is, the method for sliding a high-temperature sliding member of the second invention is a method for sliding a sliding member made of a pair of ceramic members at a high temperature, in which at least one of the members is manufactured using nitride as a main raw material. A metal film made of one of nickel (Ni), manganese (Mn), or an alloy thereof is coated on the surface of a ceramic base material made of a sintered nitride ceramic body by physical vapor deposition, and the ceramic member as a mating material is coated in a high-temperature atmosphere. The ceramic member and the base material are prevented from being worn out by sliding on the metal film to promote frictional surface fitting between the ceramic member and the metal film. [Operations and Effects of the Invention] The high-temperature sliding member of the first invention is a sliding member that has excellent wear resistance in a high-temperature atmosphere. By the sliding method of the second invention, it is possible to prevent the sliding member from being worn out by sliding even in a high-temperature atmosphere. As described above, the mechanism by which the high-temperature sliding member of the first invention and the sliding method of the second invention exhibit such effects is not necessarily clear yet, but it is thought to be as follows. In other words, the nitride ceramics used as the base material of the high-temperature sliding member of the present invention have excellent heat resistance, have small decreases in mechanical properties as the temperature rises, and have sufficient properties even in high-temperature atmospheres of 800°C or higher. It has strength and also has a small coefficient of thermal expansion, so the amount of thermal deformation is small. The metal film formed on the surface of the nitride ceramic base material is a metal or an alloy thereof that is softer at a higher temperature than the base material, and blends well into the ceramic base material as a base. Further, this metal film does not easily react with the base material during the sliding process, and even if it does react with the base material, the reaction product is not fragile. When this high-temperature sliding member is used as a sliding member in a high-temperature atmosphere, the load acting on the friction surface due to sliding is received by the underlying ceramic base material, and the shearing force due to friction is extremely absorbed by the soft metal surface. It is handled by a thin film. As a result, wear-promoting substances such as ceramic abrasion powder are not generated on the sliding surface, and the wear resistance of the base material and the mating material is significantly improved, and it is thought that excellent high-temperature sliding properties are exhibited. The first and second inventions provide high-temperature sliding properties,
It has excellent heat resistance and wear resistance, so it is widely used as a sliding member and sliding method in high-temperature atmospheres, such as sealing materials for heat exchangers, bearing materials used in molten metal, and bearing materials for turbochargers. be able to. [Example] First, a 26×26×4 silicon nitride sintered body (manufactured by Kyocera Corporation: SN220) was used as a nitride ceramic base material.
A hole with a diameter of 5 mm was made in the center of a flat plate with a diameter of 5 mm, and a surface roughness of 0.03 μm Rz was obtained by polishing. Next, this ceramic base material was placed in a vacuum evaporation device (manufactured by JEOL Ltd., JEE-5B), the pressure was reduced to 10 -3 Pascal (Pa), and the ceramic base material was
The substrate was heated to 400° C. and vacuum evaporated using a tungsten (W) wire basket to coat the metal shown in Table 1. As a result, high-temperature sliding members according to the present invention were obtained (sample numbers 3 to 6). For sample numbers 1, 2, 7, and 8, a sputtering device was used to introduce argon (Ar) gas.
Glow discharge was performed for 1 hour with a gas and vacuum level of 4 Pa to coat the surface of the substrate with nickel. A performance evaluation test of the obtained high-temperature sliding member was conducted by a friction and wear test. First, the obtained high-temperature sliding member was designated as sample plate A. Next, a silicon nitride sintered body (manufactured by Kyocera Corporation: SN220) of 26
4 mm, surface roughness 0.03 μm R z ), one side (friction surface) was machined so that a ring with a diameter of 25 mm and a thickness of 1 mm protruded, and a ring with a diameter of 10 mm was added in the center.
A hole was made in the sample plate B. Next, sample plate A was placed on the test piece stand on the rotating shaft side of the thrust collar type high temperature friction tester, and sample plate B was placed on the test piece stand on the pressurized shaft side, and the test conditions were as shown in Table 2. Friction and wear tests were conducted using the following methods. The results obtained are shown in Table 1. still,
The amount of wear was obtained by measuring the change in weight of sample plate A. At that time, when the sample plate A is heated to a high temperature, the metal film will be oxidized and its weight will increase, so in order to avoid this effect, a sliding distance of 120 m was set.
The difference between the weight of the sample plate after the test and the weight of the sample plate after the test with a sliding distance of 600 m was used as an index of the amount of wear. Further, for Sample No. 1 and Sample No. 2, the cross-sectional profile of the wear marks on sample plate A was obtained using a stylus roughness meter. The results are shown in FIGS. 1 and 2. For comparison, a silicon nitride sintered body (same as the above-mentioned ceramic base material) without a metal film was used as sample plate A (sample numbers C1 and C2),
And as the base material of sample plate A and sample plate B
3 mol% Y 2 O 3 partially stabilized zirconia (ZrO 2 : manufactured by Kyocera Corporation: Z201, same dimensions) was used (sample number C
3 to C9) Comparative tests were conducted in the same manner using the same configuration as above. The obtained results are also shown in Table 1. Further, for sample numbers C1 and C2, the cross-sectional profile of the wear marks on sample plate A was obtained using a stylus roughness meter. The results are shown in FIGS. 3 and 4.

【表】【table】

【表】【table】

【表】 以上の結果より明らかの如く、本発明にかかる
高温摺動部材を用いた場合には、高温雰囲気下で
耐摩耗性に優れていることが分る。
[Table] As is clear from the above results, when the high-temperature sliding member according to the present invention is used, it is found that the wear resistance is excellent in a high-temperature atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における摩擦摩耗試験後の
試料板Aの摩耗痕の断面プロフイールを示す線図
で、第1図は試料番号1の線図、第4図は試料番
号C2の線図、第3図は試料番号C1の線図、第
4図は試料番号C2の線図である。 1,11,21,31……試料板Aの最表面、
2,12,22,32……試料板Aの摩耗痕の表
面。
The figures are diagrams showing the cross-sectional profile of the wear marks on sample plate A after the friction and wear test in the example of the present invention, in which Figure 1 is the diagram for sample number 1, Figure 4 is the diagram for sample number C2, FIG. 3 is a diagram of sample number C1, and FIG. 4 is a diagram of sample number C2. 1, 11, 21, 31...the outermost surface of sample plate A,
2, 12, 22, 32... Surface of wear marks on sample plate A.

Claims (1)

【特許請求の範囲】 1 窒化物セラミツクスよりなる基材と、該基材
表面にニツケル、マンガンの一種またはその合金
を物理蒸着して得られた金属膜とからなる高温摺
動部材であつて、高温雰囲気下で相手材としての
セラミツクス部材を前記金属膜の表面を摺動させ
ることにより、セラミツクス部材および基材の摩
耗を防止したことを特徴とする高温摺動部材。 2 金属膜の厚さは、0.1μm〜5μmであることを
特徴とする特許請求の範囲第1項記載の高温摺動
部材。 3 炭化物セラミツクスは、炭化珪素セラミツク
スであることを特徴とする特許請求の範囲第1項
記載の高温摺動部材。 4 一対のセラミツクス部材よりなる摺動部材を
高温で摺動させる方法において、 少なくとも一方の部材を窒化物セラミツクスか
らなるセラミツクス基材表面にニツケル、マンガ
ンの一種またはその合金よりなる金属膜を物理蒸
着により被覆し、高温雰囲気下で相手材としての
セラミツクス部材を前記金属膜上を摺動させ、セ
ラミツクス部材と金属膜との摩擦面馴染みを促進
することにより、セラミツクス部材および基材の
摩耗を防止したことを特徴とする高温摺動部材の
摺動方法。
[Scope of Claims] 1. A high-temperature sliding member comprising a base material made of nitride ceramics and a metal film obtained by physical vapor deposition of nickel, manganese, or an alloy thereof on the surface of the base material, A high-temperature sliding member, characterized in that wear of the ceramic member and the base material is prevented by sliding a ceramic member as a mating member on the surface of the metal film in a high-temperature atmosphere. 2. The high-temperature sliding member according to claim 1, wherein the metal film has a thickness of 0.1 μm to 5 μm. 3. The high-temperature sliding member according to claim 1, wherein the carbide ceramic is silicon carbide ceramic. 4. In a method of sliding a pair of sliding members made of ceramic members at high temperatures, at least one member is made of a ceramic base material made of nitride ceramics by physical vapor deposition of a metal film made of nickel, a type of manganese, or an alloy thereof. Abrasion of the ceramic member and the base material is prevented by coating and sliding a ceramic member as a mating material on the metal film in a high-temperature atmosphere to promote frictional surface familiarization between the ceramic member and the metal film. A sliding method for a high-temperature sliding member, characterized by:
JP23384085A 1985-10-17 1985-10-18 High temperature sliding member Granted JPS6296378A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23384085A JPS6296378A (en) 1985-10-18 1985-10-18 High temperature sliding member
US06/919,455 US4902576A (en) 1985-10-17 1986-10-16 High temperature sliding element and method for preventing high temperature sliding wear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23384085A JPS6296378A (en) 1985-10-18 1985-10-18 High temperature sliding member

Publications (2)

Publication Number Publication Date
JPS6296378A JPS6296378A (en) 1987-05-02
JPH053436B2 true JPH053436B2 (en) 1993-01-14

Family

ID=16961386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23384085A Granted JPS6296378A (en) 1985-10-17 1985-10-18 High temperature sliding member

Country Status (1)

Country Link
JP (1) JPS6296378A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525799B2 (en) * 1987-03-13 1996-08-21 株式会社東芝 Method for metallizing nitride ceramics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217481A (en) * 1982-06-09 1983-12-17 住友電気工業株式会社 Surface-clad ceramic throwaway chip
JPS60145980A (en) * 1983-12-29 1985-08-01 株式会社東芝 Ceramic sintered body with metallized coating and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217481A (en) * 1982-06-09 1983-12-17 住友電気工業株式会社 Surface-clad ceramic throwaway chip
JPS60145980A (en) * 1983-12-29 1985-08-01 株式会社東芝 Ceramic sintered body with metallized coating and manufacture

Also Published As

Publication number Publication date
JPS6296378A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
US5108813A (en) Sliding member
JP2755702B2 (en) Wear-resistant material
WO2001094657A2 (en) Bearing with amorphous boron carbide coating
JP2891745B2 (en) piston ring
Wei et al. Tribological characteristics of titanium nitride and titanium carbonitride multilayer films: Part II. The effect of coating sequence on tribological properties
JPH053436B2 (en)
JP2000170768A (en) Sliding member
JPH053435B2 (en)
JPH0587476B2 (en)
US4902576A (en) High temperature sliding element and method for preventing high temperature sliding wear
JPH0587475B2 (en)
JP3069462B2 (en) Ceramic coating member and method of manufacturing the same
JP3403459B2 (en) Carbon member with ceramic spray coating
JP2000169266A (en) Sliding material
US4983468A (en) Metallic slide members to be used with ceramic slide members and sliding assemblies using the same
EP0252728B1 (en) Metallic slide members to be used with ceramic slide members and sliding assemblies using the same
JPH0741779A (en) Sliding member
JPH06104888B2 (en) Conveyor roll for high temperature steel
JP2003120695A (en) Sliding member
JP3043917B2 (en) Rolls for heat treatment furnaces with excellent peel resistance, wear resistance, and build-up resistance
JPS63134585A (en) Sic coated member
JP6915549B2 (en) Sliding member and its manufacturing method
JPH01111857A (en) Ceramic composition for flame spraying
JPH05247621A (en) Roll for heat treatment furnace
JPS6089538A (en) Antifriction material for sealing piece in rotary regenerative heat exchanger having ceramic core