JPH0835032A - Corrosion resisting sintered hard alloy for molten zinc and molten aluminum - Google Patents

Corrosion resisting sintered hard alloy for molten zinc and molten aluminum

Info

Publication number
JPH0835032A
JPH0835032A JP17116894A JP17116894A JPH0835032A JP H0835032 A JPH0835032 A JP H0835032A JP 17116894 A JP17116894 A JP 17116894A JP 17116894 A JP17116894 A JP 17116894A JP H0835032 A JPH0835032 A JP H0835032A
Authority
JP
Japan
Prior art keywords
sintered alloy
composition
sintered
alloy
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17116894A
Other languages
Japanese (ja)
Inventor
Yasuo Shinozaki
泰夫 篠崎
Kazuo Hamashima
和雄 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP17116894A priority Critical patent/JPH0835032A/en
Publication of JPH0835032A publication Critical patent/JPH0835032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered hard alloy excellent in wear resistance as well as in corrosion resistance to molten metal by regulating the composition of a sintered alloy, represented by MoxCoyBz, so that it is on the square lines connecting specific composition points on an Mo-Co-B ternary composition diagram and also specifying the content of MoCoB type double boride hard phases in the sintered alloy. CONSTITUTION:The composition (x, y, z) of a sintered alloy, represented by MoxCoyBz when (x), (y), (z) are atomic percentages, is on the quadrangle formed by connecting four composition points represented by (a)(30, 40, 30), (b)(32, 38, 30), (C)(30, 49, 21), and (d)(21, 58, 21) on the Mo-Co-B ternary composition diagram by straight lines. Further, this sintered alloy contains MoCoB type double boride hard phases by 55-90wt.%, and these hard phases are bound by metallic binding phases composed essentially of Co and Mo. By this method, the corrosion resistant sintered hard alloy suitably used as members for a continuous hot dip galvanizing line for steel sheet and also for a continuous hot dip aluminum coating line can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてMo、Co、
及びB(硼素)から構成され、たとえば鋼板の連続溶融
亜鉛メッキライン及び連続溶融アルミニウムメッキライ
ン用の部材に好適な溶融亜鉛及び溶融アルミニウム用耐
食性硬質焼結合金に関する。
BACKGROUND OF THE INVENTION The present invention is mainly applied to Mo, Co,
And B (boron), which are suitable for, for example, members for continuous hot-dip galvanizing line of steel sheets and continuous hot-dip aluminum coating line, and to a corrosion-resistant hard sintered alloy for hot-dip zinc and molten aluminum.

【0002】[0002]

【従来の技術】近年、自動車用、家電用及び建築用の鋼
板に耐食性に優れた亜鉛メッキ鋼板や溶融アルミニウム
メッキ鋼板が多用されている。
2. Description of the Related Art In recent years, galvanized steel sheets and hot-dip aluminum plated steel sheets having excellent corrosion resistance have been widely used as steel sheets for automobiles, home appliances and construction.

【0003】これらのメッキ鋼板は、鋼板を連続的に溶
融した亜鉛や亜鉛合金又は溶融アルミニウムやアルミニ
ウム合金(以下、これらの溶融金属と略記する)中に浸
漬するプロセスで製造されるため、製造設備にはこれら
の溶融金属中に常に浸漬され、浸漬された状態で回転
し、摺動摩擦を受ける環境で使用される部材が多くあ
る。たとえばシンクロールやガイドロールはこれらの溶
融金属中に浸漬され、連続的に移動する鋼板との間で摺
動摩擦を受ける。また、これらのロールの軸を支持する
部分に、軸スリーブや軸受けが使用されているが、これ
らの部材もこれらの溶融金属中に常に浸漬された状態で
摺動摩擦を受ける。
Since these plated steel sheets are manufactured by a process of immersing the steel sheets in continuously molten zinc, zinc alloy, molten aluminum or aluminum alloy (hereinafter abbreviated as molten metal), manufacturing equipment is used. Has many members that are constantly immersed in these molten metals, rotate in the immersed state, and are used in an environment subject to sliding friction. For example, sink rolls and guide rolls are immersed in these molten metals and are subject to sliding friction with the continuously moving steel plates. Further, shaft sleeves and bearings are used in the portions that support the shafts of these rolls, but these members also receive sliding friction while being constantly immersed in these molten metals.

【0004】これらの部材の中でも、特にロール軸の支
持部に使用される軸スリーブや軸受けは、比較的高い面
圧の摺動摩擦による機械的磨耗と、溶融金属による浸食
を同時に受ける非常に過酷な環境下で使用される。従
来、軸スリーブや軸受け用の材料として鉄鋼材料の中で
は耐熱性があり、比較的これらの溶融金属による浸食を
受け難いステンレス鋼や耐熱鋳鋼等が多く使用されてい
たが、部材の耐用は1週間〜10日前後と極く短かかっ
た。
Among these members, the shaft sleeves and bearings used especially for the support portion of the roll shaft are very severely subjected to mechanical wear due to sliding friction of relatively high surface pressure and erosion by molten metal at the same time. Used in the environment. Conventionally, stainless steel, heat-resistant cast steel, etc., which have heat resistance among steel materials and are relatively hard to be eroded by these molten metals, have been widely used as materials for shaft sleeves and bearings, but the service life of members is 1 It was very short, about 10 to 10 days a week.

【0005】これらの部材の耐用を延長するため、ステ
ンレス鋼や耐熱鋳鋼からなる母材表面に硬度とこれらの
溶融金属に対する耐食性が比較的優れているCo−Cr
系自溶合金(溶射技術、Vol.12 No.1, p45)、WC−C
o系サーメット(特開平1−225761)、Al2
3 −ZrO2 系セラミックス(特開昭61−1172
6)等を溶射したものや、Co系合金であるステライト
を肉盛り溶接したものを使用して耐用の延長が図られて
いる。
In order to extend the service life of these members, the surface of the base material made of stainless steel or heat-resistant cast steel is relatively excellent in hardness and corrosion resistance against these molten metals. Co-Cr
-Based self-fluxing alloy (spraying technology, Vol.12 No.1, p45), WC-C
o-based cermet (Japanese Patent Laid-Open No. 1-225761), Al 2 O
3 -ZrO 2 based ceramics (JP-A-61-1172
6) and the like are sprayed, and those in which Stellite, which is a Co-based alloy, is overlay welded are used to extend the service life.

【0006】しかしながら、これらの溶射皮膜には亀裂
や剥離が生じ易く、亀裂や剥離が生じた部分からこれら
の溶融金属による浸食が急速に進行する問題や、溶射皮
膜の膜厚が数100μm以下と薄いため、皮膜が磨耗と
侵食により失われ、部材の損耗が急速に進行する等の問
題があった。また、ステライトの肉盛り溶接層は、母材
との密着力が強いため亀裂や剥離が生じにくく、これら
の溶融金属中での耐食性も優れており、従来の合金の中
では比較的良好な耐用を示すが、ステライトの硬度があ
まり高くないため、摺動による磨耗に弱く満足できる寿
命は得られていない。
However, cracks and peeling are likely to occur in these sprayed coatings, and the problem of rapid erosion of these molten metals from the cracked and peeled portions and the thickness of the sprayed coating being several 100 μm or less. Since it is thin, the coating is lost due to wear and erosion, and there is a problem that the wear of the member rapidly progresses. In addition, the build-up weld layer of stellite has strong adhesion to the base metal, so cracking and peeling are less likely to occur, and it has excellent corrosion resistance in these molten metals, and has a relatively good durability among conventional alloys. However, since the hardness of stellite is not so high, wear due to sliding is weak and a satisfactory life cannot be obtained.

【0007】さらに、上述の問題点の解決策として、軸
スリーブや軸受け部に金属材料と比べて高硬度でこれら
の溶融金属の浸食をほとんど受けないセラミックス(窒
化珪素、炭化珪素、サイアロン、カーボン系材料等)や
セラミックスと金属の複合材を使用することも試みられ
ているが、セラミックスは本質的に靱性に乏しく、耐熱
衝撃性が小さく、使用時に熱応力破損する事例が多いた
め、これらの材料の部材が使用される上で障害となって
いる。
Further, as a solution to the above-mentioned problems, ceramics (silicon nitride, silicon carbide, sialon, carbon-based ceramics) which have a hardness higher than that of metallic materials and which are hardly eroded by these molten metals are used for the shaft sleeve and the bearing portion. (Materials etc.) and composites of ceramics and metals have also been tried, but ceramics are inherently poor in toughness, have low thermal shock resistance, and are often damaged by thermal stress during use. Is a hindrance to the use of the members.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来技術に
おける前述の問題点を解決し、これらの溶融金属に対す
る耐食性に優れ、摺動摩擦環境下で使用されても損耗が
進みにくく、強度、靱性及び耐熱衝撃性に優れ、かつ熱
応力破損しにくく、鋼板の溶融金属による連続メッキラ
イン用の部材など、これら溶融金属中で浸食と摺動摩擦
を受ける部材の材料として優れた耐用を示す硬質焼結合
金を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, is excellent in corrosion resistance against these molten metals, is less likely to wear even when used in a sliding friction environment, and has strength and toughness. Also, it is excellent in thermal shock resistance, hard to be damaged by thermal stress, and has excellent durability as a material for members that undergo erosion and sliding friction in these molten metals, such as members for continuous plating lines using molten metal of steel sheets, etc. The purpose is to provide money.

【0009】[0009]

【課題を解決するための手段】本発明は、上述の課題を
達成すべくなされたものであり、本発明の溶融亜鉛及び
溶融アルミニウム用耐食性硬質焼結合金は、x、y及び
zを原子%としてMox Coyz で表される焼結合金
の組成(x,y,z)が、Mo−Co−B系3成分組成
図上の(30,40,30)、(32,38,30)、
(30,49,21)及び(21,58,21)で表さ
れる4組成点を直線で結んだ4角形上にあって、該焼結
合金中にMoCoB型複硼化物硬質相が55〜90重量
%含有され、該硬質相がCoとMoを主成分とする金属
結合相で結合されていることを特徴とする。
The present invention has been made to achieve the above-mentioned object, and the corrosion-resistant hard sintered alloy for molten zinc and molten aluminum of the present invention contains x, y and z in atomic%. The composition (x, y, z) of the sintered alloy represented by Mo x Co y B z is (30, 40, 30), (32, 38,) on the Mo-Co-B system three-component composition diagram. 30),
There is a MoCoB type double boride hard phase of 55 to 55 on the quadrangle in which four composition points represented by (30, 49, 21) and (21, 58, 21) are connected by a straight line. 90% by weight is contained, and the hard phase is bound by a metallic binder phase containing Co and Mo as main components.

【0010】すなわち本発明の焼結合金の組成は、図1
に示したMo−Co−B系3成分組成図上において、M
x Coyz の原子%組成(x,y,z)がa(3
0,40,30)、b(32,38,30)、c(3
0,49,21)及びd(21,58,21)で表され
る4組成点を直結で結んだ4角形上にあり、該焼結合金
中にMoCoB型複硼化物硬質相が55〜90重量%含
有されていることにより、これらの溶融金属に対する耐
食性と耐磨耗性に優れた耐食性硬質焼結合金となる。な
お、溶融亜鉛及び溶融アルミニウム用というのは、これ
らの溶融金属用を意味するものである。
That is, the composition of the sintered alloy of the present invention is as shown in FIG.
On the Mo-Co-B system three-component composition chart shown in FIG.
The atomic% composition (x, y, z) of o x Co y B z is a (3
0, 40, 30), b (32, 38, 30), c (3
0,49,21) and d (21,58,21) are in the form of a quadrangle which is directly connected to four composition points, and the MoCoB type double boride hard phase is 55 to 90 in the sintered alloy. By containing the alloy in a weight percentage, a corrosion-resistant hard sintered alloy having excellent corrosion resistance and wear resistance against these molten metals is obtained. The terms for molten zinc and molten aluminum mean those for molten metals.

【0011】本発明においてMoCoB型複硼化物硬質
相は、MO、Co及びBの原子比率が概ね1:1:1の
結晶相で、PbCl2 型の結晶構造を有する複硼化物硬
質相をいう。本発明の焼結合金中にCr、Ta、Nb、
Fe等が添加された場合、これらの元素は複硼化物硬質
相中に一部固溶する結果、複硼化物の構成元素であるM
o、Co及びBの原子比率が1:1:1から若干ずれ
る。しかし、焼結合金に添加されるCr、Ta、Nb、
Fe等の添加量が請求項2及び3に記載の範囲内にあれ
ば、複硼化物硬質相の結晶構造はPbCl2 型の構造を
保持するので、本発明では、Cr、Ta、Nb、Fe等
が固溶したPbCl2 型の結晶構造を有する複硼化物結
晶相をMoCoB型複硼化物硬質相と呼ぶ。
In the present invention, the MoCoB type double boride hard phase is a crystalline phase in which the atomic ratio of MO, Co and B is approximately 1: 1: 1 and is a double boride hard phase having a PbCl 2 type crystal structure. . In the sintered alloy of the present invention, Cr, Ta, Nb,
When Fe or the like is added, these elements partially dissolve in the hard phase of the complex boride and, as a result, M is a constituent element of the complex boride.
The atomic ratio of o, Co and B is slightly deviated from 1: 1: 1. However, Cr, Ta, Nb added to the sintered alloy,
If the added amount of Fe or the like is within the range described in claims 2 and 3, the crystal structure of the complex boride hard phase retains the PbCl 2 type structure, and therefore Cr, Ta, Nb, Fe are used in the present invention. A compound boride crystal phase having a PbCl 2 type crystal structure in which the above are solid-dissolved is called a MoCoB type compound boride hard phase.

【0012】本発明において硬質焼結合金の基準組成を
上述の組成に限定した理由を、図1に示したMo−Co
−B系3成分組成図に基づいて以下に説明する。Mox
Coyz の原子%組成(x,y,z)がそれぞれa
(30,40,30)、b(32,38,30)、c
(30,49,21)及びd(21,58,21)で表
される4組成点を直線で結ぶ4角形上にある基準組成
は、1100℃〜1350℃で焼結した時に、主として
Moを含むCo基合金からなる金属結合相中にMoCo
B型複硼化物硬質相を55〜90重量%含む焼結合金が
得られる領域である。
The reason why the standard composition of the hard sintered alloy is limited to the above composition in the present invention is shown in FIG.
It will be described below based on the -B system three-component composition diagram. Mo x
The atomic% composition (x, y, z) of Co y B z is a
(30, 40, 30), b (32, 38, 30), c
(30, 49, 21) and d (21, 58, 21), the reference composition on the quadrangle connecting the four composition points with a straight line is mainly composed of Mo when sintered at 1100 ° C to 1350 ° C. MoCo in the metallic binder phase composed of a Co-based alloy containing
This is a region where a sintered alloy containing 55 to 90% by weight of the B-type double boride hard phase can be obtained.

【0013】このMoCoB型複硼化物硬質相は硬度が
高く、これらの溶融金属に対して耐食性が顕著に優れて
いるため、これらの溶融金属に対する優れた耐食性と耐
摺動磨耗性を有する硬質焼結合金が得られる。
Since this MoCoB type double boride hard phase has a high hardness and a remarkably excellent corrosion resistance to these molten metals, it has a hard calcination having excellent corrosion resistance to these molten metals and sliding wear resistance. Bond gold is obtained.

【0014】図1においてMox Coyz の原子%組
成(x,y,z)がa点とb点を結ぶ直線abより上側
(Bの多い側)の組成域では、焼結合金中に含まれる概
ねMoCoB型複硼化物硬質相の含有量が90重量%よ
り多くなって金属結合相の量が減少し、焼結合金の靱性
や耐熱衝撃性が不足するために範囲外とされた。
In FIG. 1, in the composition region in which the atomic% composition (x, y, z) of Mo x Co y B z is above the straight line ab connecting the points a and b (the side with many B), the sintered alloy is The content of the hard phase of MoCoB-type double boride contained in was more than 90% by weight, the amount of the metallic binder phase was decreased, and the toughness and thermal shock resistance of the sintered alloy were insufficient. .

【0015】また、Mox Coyz の原子%組成
(x,y,z)がd点とc点を結ぶ直線dcより下側
(Bの少ない側)の組成域では、焼結合金中に含まれる
概ねMoCoB型複硼化物硬質相の含有量が55重量%
より少なくなるため、焼結合金の硬度が小さくなって耐
磨耗性が低下するとともに、これらの溶融金属に対する
耐食性が低下するので範囲外とされた。
Further, in the composition range in which the atomic% composition (x, y, z) of Mo x Co y B z is below the straight line dc connecting the points d and c (the side where B is small), the sintered alloy is The content of MoCoB type complex boride hard phase contained in is approximately 55% by weight.
Since it is less, the hardness of the sintered alloy is reduced, the wear resistance is lowered, and the corrosion resistance to these molten metals is lowered, so that it is out of the range.

【0016】また、a点とd点を結ぶ直線adより左側
(Moの少ない側)の組成域では、金属結合相中に固溶
して、金属結合相の硬度とこれらの溶融金属に対する耐
食性を向上させる働きをするMoの金属結合相中の含有
量が少なくなって、焼結合金全体のこれらの溶融金属に
対する耐食性と耐磨耗性が低下するので範囲外とされ
た。
In the composition region to the left of the straight line ad connecting the points a and d (the side with a small amount of Mo), it forms a solid solution in the metallic binder phase to improve the hardness of the metallic binder phase and the corrosion resistance to these molten metals. The content of Mo, which functions to improve the content, in the metal binder phase is reduced, and the corrosion resistance and wear resistance of the whole sintered alloy to these molten metals are reduced, so that it is out of the range.

【0017】また、b点とc点を結ぶ直線bcより右側
の組成域では、金属結合相中に含有されるMoの量が過
剰になり、結合相のこれらの溶融金属に対する耐食性は
向上するが、焼結合金中に脆弱なCo3 Mo等の金属間
化合物が生成して焼結合金の靱性や耐熱衝撃性が損なわ
れるので範囲外とされた。
Further, in the composition region on the right side of the straight line bc connecting the points b and c, the amount of Mo contained in the metallic binder phase becomes excessive and the corrosion resistance of the binder phase to these molten metals is improved. Since the brittle intermetallic compound such as Co 3 Mo is generated in the sintered alloy and the toughness and thermal shock resistance of the sintered alloy are impaired, the content is out of the range.

【0018】本発明による硬質焼結合金の、これらの溶
融金属に対する耐食性や耐磨耗性をさらに高めた硬質焼
結合金は、図1に示したMo−Co−B系3成分組成図
上において、Mox Coyz の原子%組成(x,y,
z)がa(30,40,30)、b(32,38,3
0)、c(30,49,21)及びd(21,58,2
1)で表される4組成点を直結で結ぶ4角形上にある焼
結合金を基準組成とし、この焼結合金中にCrが(1−
0.33z)〜(40−1.2z)原子%含有され、さ
らにはTa及び/又はNbが合量で(15−0.45
z)原子%以下、Coと置換した形で含有され、さらに
該焼結合金中に概ねMoCoB型複硼化物硬質相が55
〜90重量%含有されていることを特徴としている。
The hard sintered alloy according to the present invention, which is further improved in corrosion resistance and wear resistance to these molten metals, is shown in the Mo-Co-B system three-component composition diagram shown in FIG. , Mo x Co y B z atomic% composition (x, y,
z) is a (30,40,30), b (32,38,3)
0), c (30,49,21) and d (21,58,2)
The sintered alloy on the quadrangle connecting the four composition points represented by 1) in a direct connection is used as a standard composition, and Cr in the sintered alloy is (1-
0.33z) to (40-1.2z) atomic%, and Ta and / or Nb in a total amount of (15-0.45).
z) atomic% or less, contained in a form substituted with Co, and further, in the sintered alloy, approximately 55 MoCoB type complex boride hard phases are contained.
It is characterized in that it is contained up to 90% by weight.

【0019】ここで、Cr、Ta及びNbをCoと置換
する形で焼結合金に含有させると、含有させたCr、T
a及びNbの量(原子%)だけ焼結合金中のCoの含有
量を減らすことを意味している。この場合、焼結合金中
のCoの含有量を、実際に含まれているCoの含有量に
含有させたCr、Ta及びNbの含有量を加えたものと
すれば、この焼結合金の組成はMo−Co−B系3成分
組成図上の4角形abcd上の領域と一致する。
Here, when Cr, Ta and Nb are contained in the sintered alloy in the form of replacing Co, the contained Cr, T and
This means that the Co content in the sintered alloy is reduced by the amounts of a and Nb (atomic%). In this case, if the content of Co in the sintered alloy is taken to be the content of Cr, Ta and Nb contained in the content of Co actually contained, the composition of this sintered alloy Corresponds to the region on the quadrangle abcd on the Mo-Co-B system three-component composition diagram.

【0020】焼結合金にCrを含有せしめると、Crは
焼結合金中の金属結合相と硬質相の両方に固溶し、比較
的少量、すなわち(1−0.33z)以上含まれていれ
ば焼結合金の硬度、これらの溶融金属に対する耐食性及
び耐酸化性を向上させる効果が得られる。
When Cr is contained in the sintered alloy, Cr dissolves in both the metallic bonding phase and the hard phase in the sintered alloy and is contained in a relatively small amount, that is, (1-0.33z) or more. For example, the effect of improving the hardness of the sintered alloy, the corrosion resistance to these molten metals, and the oxidation resistance can be obtained.

【0021】この場合、焼結合金が従来より過酷な条件
下、たとえばこれらの溶融金属の温度が高く部材の浸食
が激しい条件や、摺動摩擦速度や面圧が大きいために部
材の損耗が著しい条件の下で使用されてもより良好な耐
用が得られる。しかしCrの含有量が、基準組成の焼結
合金のCoと置換する形で(40−1.2z)原子%を
超えても、これらの溶融金属に対する耐食性及び耐酸化
性をさらに向上せしめる効果は得られず、金属結合相中
に金属間化合物であるCoCr相(σ相と呼ばれる)が
析出して焼結体が脆くなる。従って、Crの含有量は
(1−0.33z)〜(40−1.2z)原子%、さら
には(5−0.15z)〜(25−0.75z)原子%
とするのが好ましい。
In this case, the sintered alloy is in a more severe condition than before, for example, the temperature of these molten metals is high and the erosion of the member is severe, and the wear of the member is remarkable due to the large sliding friction velocity and the large contact pressure. Better service is obtained even when used under. However, even if the content of Cr exceeds (40-1.2z) atom% in the form of substitution with Co of the sintered alloy of the standard composition, the effect of further improving the corrosion resistance and the oxidation resistance to these molten metals is not obtained. Not obtained, the CoCr phase (referred to as σ phase), which is an intermetallic compound, precipitates in the metal binding phase, and the sintered body becomes brittle. Therefore, the Cr content is (1-0.33z) to (40-1.2z) atom%, and further (5-0.15z) to (25-0.75z) atom%.
Is preferred.

【0022】TaとNbは、焼結合金中の金属結合相と
硬質相の両方に固溶し、(1−0.33z)原子%以上
含まれていれば焼結合金の硬度と靭性を高め、焼結合金
の耐磨耗性を向上させる効果をもたらす。この場合、本
発明の焼結合金は過酷な条件下、たとえばこれらの溶融
金属の温度が高く部材の浸食が激しい条件や、摺動摩擦
速度や面圧が大きいために部材の損耗が著しい条件の下
で使用されても良好な耐用が得られる。
Ta and Nb are solid-solved in both the metal binding phase and the hard phase in the sintered alloy, and if they are contained at (1-0.33z) atomic% or more, the hardness and toughness of the sintered alloy are enhanced. , Brings an effect of improving the wear resistance of the sintered alloy. In this case, the sintered alloy of the present invention is subjected to severe conditions, for example, under the condition that the temperature of molten metal is high and the erosion of the member is severe, and that the wear of the member is significant due to the large sliding friction velocity and surface pressure. Good durability is obtained even when used in.

【0023】しかし、TaとNbを合せた含有量が、基
準組成の焼結合金のCoと置換する形で(15−0.4
5z)原子%を超えて含有されていると、焼結体の靱性
が低下する傾向を示し、また原料のコストも高くなるの
で好ましくない。従って、TaとNbを合せた含有量は
(15−0.45z)原子%以下、さらには(1−0.
03z)原子%以上、(7.5−0.225z)原子%
以下とするのが好ましい。
However, when the total content of Ta and Nb is replaced with Co of the sintered alloy having the standard composition (15-0.4).
If it is contained in excess of 5 z) atomic%, the toughness of the sintered body tends to decrease and the cost of the raw material also increases, which is not preferable. Therefore, the total content of Ta and Nb is (15-0.45z) atomic% or less, and further (1-0.
03z) atomic% or more, (7.5-0.225z) atomic%
It is preferable to set the following.

【0024】焼結合金にFeを含有せしめると、Fe
は、焼結合金中の金属結合相と硬質相の両方にCoと置
換する形で固溶すると考えられる。FeはCoと比較し
て原料の価格が安いため、基準組成の焼結合金中のCo
と置換する形で含有させると焼結合金の原料コストを低
減させることができる。しかし、Feの含有量が(20
−0.6z)原子%を超えて含まれていると、焼結体の
溶融金属に対する耐食性や強度が低下するので、Feの
含有量は(20−0.6z)原子%以下とするのが好ま
しい。
When Fe is contained in the sintered alloy, Fe
Is considered to form a solid solution in the form of replacing Co in both the metal binding phase and the hard phase in the sintered alloy. Since Fe is a cheaper raw material than Co, Co in the sintered alloy of the standard composition
If it is contained in a form that replaces with, the raw material cost of the sintered alloy can be reduced. However, if the Fe content is (20
If it is contained in excess of −0.6 z) atomic%, the corrosion resistance and strength of the sintered body with respect to the molten metal will decrease, so the Fe content should be (20−0.6 z) atomic% or less. preferable.

【0025】本発明の焼結合金を製造するには、たとえ
ばMoB、CrB、TaB2 、NbB2 、Co、Mo、
Fe等の細かい粉末原料を所要量調合し、たとえば回転
ボールミルや振動ボールミル中に入れ、エタノール等の
有機溶媒を媒体として湿式で混合粉砕する。得られたス
ラリーを減圧下で乾燥後、金型プレスや静水圧プレスな
どで加圧成形し、通常はアルゴン、真空等の非酸化性の
雰囲気中において1100℃〜1350℃の温度で焼結
する。
To produce the sintered alloy of the present invention, for example, MoB, CrB, TaB 2 , NbB 2 , Co, Mo,
A fine powder raw material such as Fe is prepared in a required amount, put in, for example, a rotary ball mill or a vibrating ball mill, and wet mixed and pulverized using an organic solvent such as ethanol as a medium. The obtained slurry is dried under reduced pressure, pressure-molded with a mold press or a hydrostatic press, and usually sintered at a temperature of 1100 ° C to 1350 ° C in a non-oxidizing atmosphere such as argon or vacuum. .

【0026】原料の組合せは必ずしも上記の組合わせで
ある必要はなく、硬質相となる複硼化物成分の原料とし
て、たとえばMo、Co及びBの粉末の組合せ、あるい
は予めアトマイズ法や固相反応法等により合成したMo
CoB型複硼化物粉末などを使用することができる。
The combination of the raw materials does not necessarily have to be the above combination, and as the raw material of the complex boride component which becomes the hard phase, for example, a combination of powders of Mo, Co and B, or the atomization method or the solid phase reaction method in advance. Mo synthesized by etc.
CoB type double boride powder or the like can be used.

【0027】また、CrB、TaB2 及びNbB2 粉末
も、たとえばCr、Ta、Nb等の単体金属の粉末や本
発明の焼結合金に含有されている成分間の各種合金粉末
あるいは化合物粉末も使用できる。いずれの場合にも、
焼結合金が所要量の各元素を含有するように原料粉末の
配合量を定めればよい。
Further, as CrB, TaB 2 and NbB 2 powders, powders of elemental metals such as Cr, Ta and Nb, and various alloy powders or compound powders among the components contained in the sintered alloy of the present invention are also used. it can. In either case,
The blending amount of the raw material powder may be determined so that the sintered alloy contains the required amount of each element.

【0028】これらの原料粉末からなる成形体を焼結す
る際、昇温過程で成形体中の各成分が固相反応し、Mo
CoB型複硼化物硬質相(但し、成分の一部分はCr、
Ta、Nb、Fe等で置換されている。)を形成する。
このMoCoB型複硼化物硬質相は、焼結合金中にC
r、Ta、Nb、Feが含有されていない場合には概ね
原子比が1:1:1のMoCoB型複硼化物硬質相とな
る。
When a compact made of these raw material powders is sintered, each component in the compact undergoes a solid phase reaction in the temperature rising process, and Mo
CoB type double boride hard phase (however, a part of the component is Cr,
It is substituted with Ta, Nb, Fe and the like. ) Is formed.
This MoCoB type double boride hard phase has a C content in the sintered alloy.
When r, Ta, Nb, and Fe are not contained, the MoCoB type compound boride hard phase having an atomic ratio of approximately 1: 1: 1 is formed.

【0029】さらに温度が上昇し、1100℃以上にな
ると、MoCoB型複硼化物にならなかった残余の成分
が溶融して液相を生成し、液相焼結が進行して成形体は
相対密度がほぼ100%の緻密な焼結合金となる。本発
明の焼結合金の特徴の一つは、液相焼結で製造されるこ
とにあり、この液相焼結の過程で、硬質相がゆるく結合
した状態から金属結合相で結合された状態に再配列する
結果、液相生成温度以下で焼結された焼結体と比較して
焼結体の強度と靱性が顕著に向上し、焼結に要する時間
も短い。
When the temperature further rises to 1100 ° C. or higher, the remaining components that have not become MoCoB type double borides are melted to form a liquid phase, and liquid phase sintering proceeds, and the compact has a relative density. Is a dense sintered alloy of almost 100%. One of the characteristics of the sintered alloy of the present invention is that it is manufactured by liquid phase sintering, and in the process of this liquid phase sintering, the hard phase is loosely bonded to the metal bonded phase. As a result of rearrangement, the strength and toughness of the sintered body are remarkably improved as compared with the sintered body sintered at the liquid phase formation temperature or less, and the time required for sintering is short.

【0030】液相焼結された本発明の焼結合金の組織
は、Co基合金からなる金属結合相中に微細なMoCo
B基複硼化物硬質相が均等に分散したものとなる。Mo
CoB型複硼化物硬質相は硬度が高く、溶融金属に対す
る耐食性に優れ、Co基合金の金属結合相は、靱性が高
く、MoやCr等を固溶していることにより純粋なCo
金属よりこれらの溶融金属に対する耐食性が高められて
いるので、焼結合金は全体としてこれらの溶融金属に対
する耐食性、耐磨耗性及び耐熱衝撃性に優れた性質を有
するものとなる。
The structure of the liquid-phase-sintered sintered alloy of the present invention is such that fine MoCo is contained in a metallic binder phase composed of a Co-based alloy.
The B-base compound boride hard phase is uniformly dispersed. Mo
The CoB-type compound boride hard phase has high hardness and excellent corrosion resistance against molten metal, and the metal-bonded phase of the Co-based alloy has high toughness and is a solid solution of Mo, Cr, etc.
Since the corrosion resistance to these molten metals is higher than that of metals, the sintered alloy as a whole has excellent corrosion resistance to these molten metals, abrasion resistance and thermal shock resistance.

【0031】[0031]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はこれらの実施例によってなんら限定さ
れるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0032】まず、焼結合金の原料として、表1に示し
た平均粒径と化学組成又は純度を有する粉末原料を用意
した。次に基準となる組成の焼結合金にCr、Ta、N
b、Feの各元素をCoと置換した形で含有せしめた表
2及び表3に示す組成を有するように、MoB、Cr
B、TaB2 、NbB2 、Co,Mo及びFeの各粉末
を表4及び表5に示した割合で調合した。
First, as a raw material for a sintered alloy, a powder raw material having the average particle diameter and the chemical composition or purity shown in Table 1 was prepared. Next, Cr, Ta, N is added to the sintered alloy of the standard composition.
MoB, Cr so as to have the compositions shown in Tables 2 and 3 in which each element of b and Fe is replaced with Co.
Powders of B, TaB 2 , NbB 2 , Co, Mo and Fe were prepared in the proportions shown in Tables 4 and 5.

【0033】調合した各原料粉末を、回転ボールミルに
入れ、エタノールを媒体として48時間湿式で混合、粉
砕した後、得られたスラリーを減圧乾燥し、1500k
g/cm2 の圧力で静水圧プレスして成形体とした。得
られた成形体を約10-3torrの真空中において12
00℃〜1350℃の温度で1時間焼成して焼結合金を
得た。
The prepared raw material powders were put into a rotary ball mill, wet mixed with ethanol as a medium for 48 hours and pulverized, and the obtained slurry was dried under reduced pressure to 1500 k.
Hydrostatic pressing was performed at a pressure of g / cm 2 to obtain a molded body. The obtained molded body was subjected to 12 in a vacuum of about 10 -3 torr.
A sintered alloy was obtained by firing at a temperature of 00 ° C to 1350 ° C for 1 hour.

【0034】次に、得られた各焼結合金の一部を切り取
って鏡面研磨し、この研磨面でビッカース硬度(荷重2
0kg)を測定した。また、焼結体から5mm×5mm
×50mmの棒状試験片を切り出し、加熱溶融した48
0℃の純亜鉛中に24時間浸漬し、試験片の浸漬後の断
面寸法と初期断面寸法(亜鉛により浸食を受けていない
健全部の寸法)との差から浸食深さを求めた。さらに一
部の焼結合金については、40mm×40mm×5mm
の板状試験片と内径20mm、外径25mm、高さ60
mmの円筒状試験片を作成した。この試験片を用いて図
2に図示した方法で、加熱溶融された480℃の純亜鉛
中において、面圧10kg/cm2 、回転速度300r
pm、試験時間5時間の磨耗試験を行い、双方の試験片
の合計損耗量から耐磨耗性を評価した。
Next, a part of each of the obtained sintered alloys is cut off and mirror-polished, and the Vickers hardness (load 2
0 kg) was measured. Also, 5 mm x 5 mm from the sintered body
A 50 mm rod-shaped test piece was cut out and melted by heating 48
The test piece was immersed in pure zinc at 0 ° C. for 24 hours, and the erosion depth was obtained from the difference between the cross-sectional dimension of the test piece after the immersion and the initial cross-sectional dimension (the dimension of a sound part not corroded by zinc). For some sintered alloys, 40 mm x 40 mm x 5 mm
Plate-shaped test piece with inner diameter 20 mm, outer diameter 25 mm, height 60
mm cylindrical test pieces were prepared. Using this test piece in the method shown in FIG. 2, in a heated and melted pure zinc at 480 ° C., a surface pressure of 10 kg / cm 2 and a rotation speed of 300 r
A wear test was performed at pm for a test time of 5 hours, and the wear resistance was evaluated from the total amount of wear of both test pieces.

【0035】また、焼結合金の耐熱衝撃性を評価するた
め、焼結合金で内径50mm、外径70mm、厚さ10
mmのリング状試験片を作成し、大気中で500℃に加
熱したものを20℃の水中に投入して急冷却し、蛍光探
傷法を用いて亀裂の発生の有無を調査した。これらの結
果を表6及び表7にまとめて示す。
In order to evaluate the thermal shock resistance of the sintered alloy, the inner diameter of the sintered alloy is 50 mm, the outer diameter is 70 mm, and the thickness is 10.
A ring-shaped test piece of mm was prepared, heated at 500 ° C. in the atmosphere, put into water at 20 ° C. and rapidly cooled, and the presence or absence of cracks was investigated using a fluorescent flaw detection method. The results are summarized in Tables 6 and 7.

【0036】さらに一部の焼結合金については、溶融ア
ルミニウム合金中での耐食性を評価するため、5mm×
5mm×50mmの棒状試験片を10重量%のSiを含
む670℃のアルミニウム合金の溶湯中に24時間浸漬
し、浸食量を測定した。また、実用上充分な強度を有し
ているかどうかを確認するため、一部の組成の焼結合金
について3mm×3mm×30mmの試験片を作り、ス
パン20mmで室温の抗折強度を測定した。これらの結
果を表6及び表7に併せて示す。
Further, for some of the sintered alloys, in order to evaluate the corrosion resistance in the molten aluminum alloy, 5 mm ×
A 5 mm × 50 mm rod-shaped test piece was immersed in a molten metal of 670 ° C. aluminum alloy containing 10% by weight of Si for 24 hours, and the amount of erosion was measured. Further, in order to confirm whether or not it has practically sufficient strength, a test piece of 3 mm × 3 mm × 30 mm was prepared for a sintered alloy having a part of the composition, and bending strength at room temperature was measured with a span of 20 mm. The results are also shown in Tables 6 and 7.

【0037】本発明の実施例である焼結合金は、硬度と
溶融亜鉛に対する耐食性が優れているため、溶融亜鉛中
で磨耗試験を行っても損耗の程度は軽微であり、熱衝撃
試験によっても亀裂の発生は認められなかった。
The sintered alloys of the examples of the present invention are excellent in hardness and corrosion resistance against molten zinc, so that even if an abrasion test is performed in molten zinc, the degree of wear is slight, and the thermal shock test also No cracks were found.

【0038】比較例1の焼結合金は、B(硼素)含有量
の多い組成を有しており、焼結合金中に含有されるMo
CoB型複硼化物硬質相が90重量%を超えている。こ
のため、硬度と溶融亜鉛に対する耐食性には優れている
が、耐熱衝撃性が劣るため鋼板の連続溶融亜鉛メッキラ
イン用の部材のように、溶融亜鉛から取り出して保守点
検がなされるなど繰り返し熱衝撃が加わるような用途に
は適さない。
The sintered alloy of Comparative Example 1 had a composition containing a large amount of B (boron), and the Mo contained in the sintered alloy.
The CoB type double boride hard phase exceeds 90% by weight. Therefore, it has excellent hardness and corrosion resistance to molten zinc, but its thermal shock resistance is inferior, so it is repeatedly subjected to thermal shock such as being taken out of molten zinc for maintenance inspection like a member for continuous hot dip galvanizing line of steel sheets. It is not suitable for applications where is added.

【0039】比較例2の焼結合金は、Bの少い組成を有
しており、焼結合金中に含有されるMoCoB型複硼化
物硬質相が55重量%未満となっている。このため、耐
熱衝撃性には優れているものの、硬度、溶融亜鉛に対す
る耐食性及び耐磨耗性が劣っている。
The sintered alloy of Comparative Example 2 had a small composition of B, and the MoCoB type double boride hard phase contained in the sintered alloy was less than 55% by weight. Therefore, although it is excellent in thermal shock resistance, it is inferior in hardness, corrosion resistance to molten zinc, and abrasion resistance.

【0040】比較例3の焼結合金は、Moの多い組成を
有しており、焼結合金の結合相中に含有されるMoの量
が多く、硬度と溶融亜鉛に対する耐食性には優れている
ものの、耐熱衝撃性が劣っている。比較例3の焼結合金
をX線回折で分析したところ、焼結合金中にCo3 Mo
金属間化合物が析出していることが明らかとなった。比
較例3の焼結合金中に含有されるMoCoB型複硼化物
硬質相の量は比較例2の焼結合金中に含有されるMoC
oB型複硼化物硬質相の量とほぼ同一であるのに硬度が
約300kg/mm2 も高く、耐熱衝撃性が劣っている
のは、焼結合金中に硬度は高いが脆弱なCo3 Mo金属
間化合物が析出しているためと考えられる。
The sintered alloy of Comparative Example 3 had a composition containing a large amount of Mo, contained a large amount of Mo in the binder phase of the sintered alloy, and had excellent hardness and corrosion resistance to molten zinc. However, it has poor thermal shock resistance. When the sintered alloy of Comparative Example 3 was analyzed by X-ray diffraction, Co 3 Mo was found in the sintered alloy.
It became clear that the intermetallic compound was deposited. The amount of the MoCoB type double boride hard phase contained in the sintered alloy of Comparative Example 3 is the same as that of MoC contained in the sintered alloy of Comparative Example 2.
The hardness is as high as about 300 kg / mm 2 although it is almost the same as the amount of the oB type double boride hard phase, and the thermal shock resistance is inferior because the sintered alloy has high hardness but is fragile Co 3 Mo. It is considered that the intermetallic compound is precipitated.

【0041】比較例4の焼結合金は、実施例2とほぼ同
一の基本組成を有する焼結合金に対して、(40−1.
2z)原子%の上限量を超えてCrを含む焼結合金であ
る。Crが上限を超えて含有されていることにより、焼
結合金中に脆弱なCoCr金属間化合物(σ相)が析出
していることがX線回折の結果明らかとなった。比較例
4の焼結合金は、このσ相が析出しているため、実施例
2の焼結合金と比較して硬度と溶融亜鉛に対する耐食性
には優れているものの、耐熱衝撃性が劣っている。
The sintered alloy of Comparative Example 4 has a composition (40-1.
2z) A sintered alloy containing Cr in an amount exceeding the upper limit of atomic%. As a result of X-ray diffraction, it became clear that a fragile CoCr intermetallic compound (σ phase) was precipitated in the sintered alloy due to the Cr content exceeding the upper limit. The sintered alloy of Comparative Example 4 is excellent in hardness and corrosion resistance to molten zinc as compared with the sintered alloy of Example 2 because the σ phase is precipitated, but is inferior in thermal shock resistance. .

【0042】比較例5、6及び7の合金は、従来鋼板の
連続溶融亜鉛メッキラインにおけるシンクロールやガイ
ドロール用の軸受け材として使用されることが多いSU
S316(ステンレス鋼)、SCH22(耐熱鋳鋼)及
びステライト(Co基耐食耐磨耗合金)である。SUS
316やSCH22は、本発明の焼結合金のように高硬
度でこれらの溶融金属に対する耐食性に優れた硬質相を
含まないため、これらの溶融金属に対する耐食性と耐磨
耗性が非常に劣っている。またステライトのこれらの溶
融金属に対する耐食性は、本発明の焼結合金とほぼ同等
であるが、ビッカース硬度が本発明の焼結合金より小さ
いため耐磨耗性が劣っている。
The alloys of Comparative Examples 5, 6 and 7 are often used as bearing materials for sink rolls and guide rolls in conventional continuous hot-dip galvanizing lines for steel sheets.
S316 (stainless steel), SCH22 (heat-resistant cast steel) and stellite (Co-based corrosion resistant wear resistant alloy). SUS
Since 316 and SCH22 do not contain a hard phase having high hardness and excellent corrosion resistance to these molten metals like the sintered alloy of the present invention, they have very poor corrosion resistance and wear resistance to these molten metals. . The corrosion resistance of stellite to these molten metals is almost the same as that of the sintered alloy of the present invention, but its wear resistance is inferior because the Vickers hardness is smaller than that of the sintered alloy of the present invention.

【0043】さらに、表6及び表7に示した10重量%
のSiを含む溶融Al合金中に浸漬した試験結果から、
本発明の硬質焼結合金は、従来材と比較して優れた耐食
性を有していることが分かる。また、室温での抗折強度
が100kg/cm2 以上あり、実用上充分な強度を有
していることが分かる。これらの試験結果から、本発明
の焼結合金は、比較例の焼結合金及び合金と比較して、
これらの溶融金属に対する優れた耐食性と耐磨耗性を有
しており、さらに耐熱衝撃性にも優れた焼結合金である
ことが分かる。
Further, 10% by weight shown in Tables 6 and 7
From the test results of immersion in a molten Al alloy containing Si,
It can be seen that the hard sintered alloy of the present invention has excellent corrosion resistance as compared with the conventional material. Further, the bending strength at room temperature is 100 kg / cm 2 or more, which shows that it has sufficient strength for practical use. From these test results, the sintered alloy of the present invention, compared with the sintered alloy and alloys of Comparative Examples,
It can be seen that the sintered alloy has excellent corrosion resistance and abrasion resistance against these molten metals and further has excellent thermal shock resistance.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【表7】 [Table 7]

【0051】[0051]

【発明の効果】本発明の硬質焼結合金は、高硬度で耐磨
耗性に優れ、かつ耐食性に優れたMoCoB型複硼化物
硬質相が55重量%以上含有されているため、溶融亜
鉛、溶融亜鉛合金、溶融アルミニウム及び溶融アルミニ
ウム合金に対する耐食性が優れている。
EFFECTS OF THE INVENTION The hard sintered alloy of the present invention contains 55% by weight or more of the MoCoB type complex boride hard phase having high hardness, excellent wear resistance, and excellent corrosion resistance. Excellent corrosion resistance to molten zinc alloy, molten aluminum and molten aluminum alloy.

【0052】また、焼結合金中にCoと置換した形でC
r、Ta、Nb等を含有せしめ、これらの元素を複硼化
物硬質相及び結合相中に固溶せしめることによって、焼
結合金のこれらの溶融金属に対する耐食性や耐磨耗性を
さらに向上せしめている。
In the sintered alloy, C in the form of substitution for Co is used.
r, Ta, Nb, etc. are contained and these elements are solid-dissolved in the double boride hard phase and the binder phase to further improve the corrosion resistance and wear resistance of the sintered alloy to these molten metals. There is.

【0053】本発明の焼結合金を鋼板の連続溶融亜鉛メ
ッキラインあるいは溶融アルミニウム合金メッキライン
用の部材に用いた場合、従来の材料と比較して顕著に優
れた耐用を得ることができ、当該部材の保守、交換の頻
度を大幅に低減することができるので、その産業上の利
用価値は多大である。
When the sintered alloy of the present invention is used for a member for a continuous hot-dip galvanizing line for steel sheets or a hot-dip aluminum alloy plating line, it is possible to obtain a markedly superior service life as compared with conventional materials. Since the frequency of maintenance and replacement of members can be greatly reduced, its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐食性硬質焼結合金の組成(基準組
成)の範囲を示すMo−Co−B系3成分組成図。
FIG. 1 is a Mo—Co—B system three-component composition diagram showing the range of the composition (reference composition) of a corrosion resistant hard sintered alloy of the present invention.

【図2】溶融亜鉛中で行った磨耗試験方法の概略を示す
正面断面図。
FIG. 2 is a front sectional view showing the outline of an abrasion test method performed in molten zinc.

【符号の説明】[Explanation of symbols]

a,b,c,d:本発明の耐食性硬質焼結合金の組成
(基準組成)の範囲を区画する4角形の頂点。
a, b, c, d: vertices of quadrangles that define the range of the composition (reference composition) of the corrosion resistant hard sintered alloy of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】x、y及びzを原子%としてMox Coy
z で表される焼結合金の組成(x,y,z)が、Mo
−Co−B系3成分組成図上の(30,40,30)、
(32,38,30)、(30,49,21)及び(2
1,58,21)で表される4組成点を直線で結んだ4
角形上にあって、該焼結合金中にMoCoB型複硼化物
硬質相が55〜90重量%含有され、該硬質相がCoと
Moを主成分とする金属結合相により結合されているこ
とを特徴とする溶融亜鉛及び溶融アルミニウム用耐食性
硬質焼結合金。
1. Mo x Co y with x, y and z as atomic%
The composition (x, y, z) of the sintered alloy represented by B z is Mo
(30, 40, 30) on the -Co-B system three-component composition diagram,
(32,38,30), (30,49,21) and (2
1,58,21) 4 connecting the 4 composition points with a straight line
It is on a polygonal shape, and the sintered alloy contains MoCoB type double boride hard phase in an amount of 55 to 90% by weight, and the hard phase is bound by a metallic binder phase containing Co and Mo as main components. Characteristic Corrosion resistant hard sintered alloy for molten zinc and molten aluminum.
【請求項2】x、y及びzを原子%としてMox Coy
z で表される焼結合金の組成(x,y,z)が、Mo
−Co−B系3成分組成図上の(30,40,30)、
(32,38,30)、(30,49,21)及び(2
1,58,21)で表される4組成点を直線で結んだ4
角形上にある焼結合金を基準組成とし、この焼結合金中
にCrが(1−0.03z)〜(40−1.2z)原子
%、Coと置換した形で含有され、該焼結合金中にMo
CoB型複硼化物硬質相が55〜90重量%含有され、
該硬質相がCo、Mo及びCrを主成分とする金属結合
相により結合されていることを特徴とする溶融亜鉛及び
溶融アルミニウム用耐食性硬質焼結合金。
2. Mo x Co y with x, y and z as atomic%
The composition (x, y, z) of the sintered alloy represented by B z is Mo
(30, 40, 30) on the -Co-B system three-component composition diagram,
(32,38,30), (30,49,21) and (2
1,58,21) 4 connecting the 4 composition points with a straight line
The sintered alloy in the shape of a prism is used as a standard composition, and Cr is contained in the sintered alloy in the form of (1-0.03z) to (40-1.2z) atom%, and is replaced by Co. Mo in gold
The CoB-type double boride hard phase is contained in an amount of 55 to 90% by weight,
A corrosion-resistant hard sintered alloy for molten zinc and molten aluminum, characterized in that the hard phase is bound by a metallic binder phase containing Co, Mo and Cr as main components.
【請求項3】該焼結合金中にTa又はNbが合量で(1
5−0.45z)原子%以下、Coと置換した形で含有
されている請求項2に記載の耐食性硬質焼結合金。
3. A total amount of Ta or Nb (1
5. The corrosion-resistant hard sintered alloy according to claim 2, wherein the content of 5-0.45 z) atomic% or less is contained in a form substituted with Co.
【請求項4】該焼結合金が1100℃以上の温度におい
て液相焼結されたものである請求項1、請求項2又は請
求項3に記載の溶融亜鉛及び溶融アルミニウム用耐食性
硬質焼結合金。
4. The corrosion-resistant hard sintered alloy for molten zinc and molten aluminum according to claim 1, 2 or 3, wherein the sintered alloy is liquid-phase sintered at a temperature of 1100 ° C. or higher. .
JP17116894A 1994-07-22 1994-07-22 Corrosion resisting sintered hard alloy for molten zinc and molten aluminum Pending JPH0835032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17116894A JPH0835032A (en) 1994-07-22 1994-07-22 Corrosion resisting sintered hard alloy for molten zinc and molten aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17116894A JPH0835032A (en) 1994-07-22 1994-07-22 Corrosion resisting sintered hard alloy for molten zinc and molten aluminum

Publications (1)

Publication Number Publication Date
JPH0835032A true JPH0835032A (en) 1996-02-06

Family

ID=15918264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17116894A Pending JPH0835032A (en) 1994-07-22 1994-07-22 Corrosion resisting sintered hard alloy for molten zinc and molten aluminum

Country Status (1)

Country Link
JP (1) JPH0835032A (en)

Similar Documents

Publication Publication Date Title
US7226671B2 (en) Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors
CN109763125B (en) High-entropy alloy coating resistant to high-temperature abrasion and preparation process and application thereof
US4197902A (en) Molds for continuous casting of metals
EP1035231B1 (en) Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer
JP4532343B2 (en) Carbide cermet sprayed coating member excellent in corrosion resistance and method for producing the same
JPS6134107A (en) Corrosion resistant layer on base body of gas turbine blade and method for providing the same
JP4997561B2 (en) Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP2003301278A (en) Method for manufacturing complex metal and complex metallic member
JP2012102362A (en) Boride cermet-based powder for thermal spraying
JPH0835032A (en) Corrosion resisting sintered hard alloy for molten zinc and molten aluminum
JP3403460B2 (en) Method for producing carbon material having non-oxide ceramic spray coating
JP3134767B2 (en) Boride cermet spraying powder
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP2011017049A (en) Boride-based cermet powder for thermal spraying
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP3134768B2 (en) Boride cermet spraying powder
JP2001040446A (en) Diamond-containing hard member and its production
JP2902542B2 (en) Roll bearing
Pashkov et al. Properties and applications of Cu-based silver free brazing filler metals made by rapid solidification technique
JPH0941115A (en) Thermal spray coating film and its forming method
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2001335905A (en) Continuous hot dip metal coating apparatus, and roll and bearing therefor
JPH05271887A (en) Continuous hot-dip metal coating roll and plating device using the roll
JPH08176771A (en) Bearing in molten metal and production thereof