JPH0586128B2 - - Google Patents

Info

Publication number
JPH0586128B2
JPH0586128B2 JP59274702A JP27470284A JPH0586128B2 JP H0586128 B2 JPH0586128 B2 JP H0586128B2 JP 59274702 A JP59274702 A JP 59274702A JP 27470284 A JP27470284 A JP 27470284A JP H0586128 B2 JPH0586128 B2 JP H0586128B2
Authority
JP
Japan
Prior art keywords
differential
current
ratio
inrush current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274702A
Other languages
Japanese (ja)
Other versions
JPS61157221A (en
Inventor
Tetsuo Ookawa
Chikao Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP27470284A priority Critical patent/JPS61157221A/en
Publication of JPS61157221A publication Critical patent/JPS61157221A/en
Publication of JPH0586128B2 publication Critical patent/JPH0586128B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電力用変圧器の保護に用いられる差
動継電器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a differential relay used to protect a power transformer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

第11図に差動継電器の一般的な適用例を示
す。第11図において1は電力用変圧器、2-1
-2は電力用変圧器1の端子電流を抽出する変流
器CT、は変流器2-1,2-2の2次電流を入力
して変圧器を差動保護する差動継電器、4はしや
断器である。第12図は差動継電器の特性例を
示す図で、電力用変圧器1の入力電流I1′,出力
電流I2′に基くCT2-1,2-2の2次電流をそれぞ
れ、I1,I2としたときの特性である。電力用変圧
器1内部に事故のないケースでは差動継電器
の入力電流ろI1=I2となるので第12図における
対角線が入力電流I1,I2の存在域となる。しかる
に、電力用変圧器1の内部に事故のあるケースで
は入力電流はI1≠I2となるので差動電流Id=I1+I2
≠0となり、このIdの値が大になると第12図に
おける比率差動要素DIFあるいは高整定過電流要
素HOCの動作領域に入ることとなり、差動継電
は動作し、しや断器4を引き外し電力用変圧
器1を保護する。ここで比率差動要素DIF,高整
定過電流要素HOCの動作式は一例を示すと、そ
れぞれK1(I1+I2)−K2(|I1|+|I2|)≧K0,I1
+I2≧K3である。ただし、K0,K1,K2,K3は任
意の定数とする。第13図は差動継電器のブロ
ツク図の一例である。5-1,5-2は入力変成器、
6は加算器、7-1,7-2は整流器、8,9は加算
器、10,11はレベル検出器、12は第2調波
電流抽出回路、13は基本波電流抽出回路、14
は比較器、15はインヒビツト回路である。入力
電流I1,I2は入力変成器5を通して加算器6に導
入され、加算された後、加算器9にプラス入力さ
れる。また、入力電流I1,I2は入力変成器5-1
-2を通して整流器7-1,7-2にも導入され、そ
れぞれ導入された後加算器8にて加算され、加算
器9にマイナス入力される。加算器9の出力は
K1(I1+I2)−K2(|I1|+|I2|)となり、レベル
検出器11はK1(I1+I2)−K2(|I1|+|I2|)≧
K0のとき出力「1」を生じ、比率差動要素DIF
の出力を生じる。
FIG. 11 shows a typical application example of a differential relay. In Fig. 11, 1 is a power transformer, 2 -1 ,
2 -2 is a current transformer CT that extracts the terminal current of power transformer 1, and 3 is a differential relay that inputs the secondary current of current transformers 2 -1 and 2 -2 to differentially protect the transformer. , 4 is a breaker. FIG. 12 is a diagram showing an example of the characteristics of the differential relay 3 , in which the secondary currents of CT2 -1 and CT2 -2 based on the input current I 1 ' and output current I 2 ' of the power transformer 1 are expressed as I 1 and I2 . In the case where there is no fault inside the power transformer 1, the input current to the differential relay 3 is I 1 =I 2 , so the diagonal line in FIG. 12 is the area where the input currents I 1 and I 2 exist. However, in the case where there is a fault inside the power transformer 1, the input current becomes I 1 ≠ I 2 , so the differential current I d = I 1 + I 2
≠0, and when the value of I d becomes large, it enters the operating region of the ratio differential element DIF or the high setting overcurrent element HOC in FIG. to protect the power transformer 1. Here, the operating formulas of the ratio differential element DIF and the high-settling overcurrent element HOC are, for example, K 1 (I 1 + I 2 )−K 2 (|I 1 |+|I 2 |)≧K 0 , I 1
+I 2 ≧K 3 . However, K 0 , K 1 , K 2 , and K 3 are arbitrary constants. FIG. 13 is an example of a block diagram of the differential relay 3 . 5 -1 and 5 -2 are input transformers,
6 is an adder, 7 -1 and 7 -2 are rectifiers, 8 and 9 are adders, 10 and 11 are level detectors, 12 is a second harmonic current extraction circuit, 13 is a fundamental wave current extraction circuit, 14
1 is a comparator, and 15 is an inhibit circuit. Input currents I 1 and I 2 are introduced into an adder 6 through an input transformer 5, added together, and then input as a positive input into an adder 9. In addition, the input currents I 1 and I 2 are input to the input transformers 5 -1 ,
The signals are also introduced into rectifiers 7 -1 and 7 -2 through 5 -2 , and after being introduced into each, they are added up in an adder 8 and input as a negative input into an adder 9. The output of adder 9 is
K 1 (I 1 + I 2 )−K 2 (|I 1 |+|I 2 |), and the level detector 11 outputs K 1 (I 1 +I 2 )−K 2 (|I 1 |+|I 2 |). )≧
Produces output “1” when K 0 , ratio differential element DIF
produces an output of

また、加算器6の出力はレベル検出器10にも
入力されレベル検出器10はI1+I2≧K3のとき出
力「1」を生じ、高整定電流要素HOCの出力を
生じる。
The output of the adder 6 is also input to the level detector 10, and the level detector 10 produces an output "1" when I 1 +I 2 ≧K 3 , thereby producing the output of the high-settling current element HOC.

さらに、加算器6の出力は第2調波電流抽出回
路12,基本波電流抽出回路13にも導入され、
それぞれの出力は比較器14に導入され、基本波
電流I1fに対する第2調波電流I2fの比が所定の値
Keを越えたとき、すなわち|I2f|/|I1f|≧Keのとき
比 較器14は出力し、インヒビツト回路15の禁止
入力を生じ、インヒビツト回路に入力される被禁
止入力のレベル検出器11の出力すなわち、比率
差動要素の出力をロツクする。なお説明の便宜上
第2調波電流抽出回路12,基本波電流抽出回路
13および比較器14から成る回路を励磁突入電
流検出回路という。もし、比較器14の出力がな
ければ比率差動要素の出力はロツクされることな
く、インヒビツト回路は出力を生じる。
Furthermore, the output of the adder 6 is also introduced into the second harmonic current extraction circuit 12 and the fundamental wave current extraction circuit 13.
Each output is introduced into the comparator 14, and the ratio of the second harmonic current I 2f to the fundamental wave current I 1f is a predetermined value.
When the value exceeds K e , that is, |I 2f |/|I 1f |≧K e , the comparator 14 outputs an output, generating an inhibit input to the inhibit circuit 15, and detecting the level of the inhibited input input to the inhibit circuit. The output of the converter 11, ie, the output of the ratio differential element, is locked. For convenience of explanation, the circuit consisting of the second harmonic current extraction circuit 12, the fundamental wave current extraction circuit 13, and the comparator 14 will be referred to as an excitation inrush current detection circuit. If the output of comparator 14 is absent, the output of the ratiometric differential element will not be locked and the inhibit circuit will produce an output.

次に、第13図に記述した励磁突入電流検出回
路16の必要性について説明する。第11図にお
いてしや断器4を投入したときには良く知られて
いる様に変圧器1に励磁突入電流が流れる。第1
4図に励磁突入電流の1例を示す。この励磁突入
電流の大きさは投入位相,残留磁束,背後電源等
により異なるが、変圧器1の内部事故時と同様に
差動電流Id=I1+I2=I1≠0を生じるのでその大
きさによつては比率差動要素DIFの動作領域に入
ることがあり、そのため差動継電器は変圧器1
の事故でないにもかかわらず動作することがあ
る。この不要応動を防止する為に、一例として第
13図に示した励磁突入電流検出回路16を用い
る訳である。励磁突入電流は第14図に一例を示
した様に、第2調波分を多く含有する特徴ある波
形となつている。よつて、基本波に対する第2調
波の含有率が一定値以上になつたときに、励磁突
入電流と判定し、比率差動要素DIFの出力をロツ
クすれば差動継電器の不要応動を防止すること
ができる訳である。なお、高整定過電流要素
HOCについては一般に励磁突入電流により不要
応動しないレベルに整定するので前記対策は不要
である。以上の如く、従来より第2調波検出回路
は用いられて来たが、励磁突入電流発生時は比率
差動要素DIFがロツクされる為に、同時に変圧器
に内部事故が発生した場合は高整定過電流要素
HOCのみに頼らざるを得なかつた。また、励磁
突入電流発生時を考慮すると、一般に比率差動要
素DIFに比べて動作時間が高速である高整定過電
流要素HOCが高速を要求されないケースすなわ
ち、高整定過電流要素HOCが比率差動要素と同
様の動作時間で良い様なケースでも比率差動要素
DIFが励磁突入電流発生時にロツクされるので、
高整定過電流要素HOCを削除することができず、
回路規模が大となり経済性、小型化等の点で難点
があつた。
Next, the necessity of the excitation inrush current detection circuit 16 described in FIG. 13 will be explained. When the shield breaker 4 is turned on in FIG. 11, an excitation inrush current flows through the transformer 1, as is well known. 1st
Figure 4 shows an example of magnetizing inrush current. The magnitude of this magnetizing inrush current differs depending on the turning-on phase, residual magnetic flux, backing power supply, etc., but it produces a differential current I d = I 1 + I 2 = I 1 ≠ 0, as in the case of an internal fault in transformer 1, so it is Depending on the size, it may fall within the operating range of the ratio differential element DIF, so the differential relay 3 is connected to the transformer 1.
It may operate even though there is no accident. In order to prevent this unnecessary response, an excitation inrush current detection circuit 16 shown in FIG. 13 is used as an example. As shown in an example in FIG. 14, the excitation inrush current has a characteristic waveform containing a large amount of second harmonic components. Therefore, when the content rate of the second harmonic with respect to the fundamental wave exceeds a certain value, it is determined that it is an excitation inrush current, and the output of the ratio differential element DIF is locked to prevent unnecessary response of the differential relay 3 . This means that it is possible to do so. In addition, the high-settling overcurrent element
Regarding HOC, the above-mentioned countermeasures are not necessary because the excitation inrush current generally settles to a level that does not cause unnecessary response. As mentioned above, the second harmonic detection circuit has been used conventionally, but since the ratio differential element DIF is locked when the excitation inrush current occurs, if an internal fault occurs in the transformer at the same time, the Settling overcurrent element
We had no choice but to rely solely on HOC. Also, considering the time when magnetizing inrush current occurs, there is a case in which the high-settling overcurrent element HOC, which generally has a faster operating time than the ratio-differential element DIF, does not require high speed. Ratio differential elements can also be used in cases where the operating time is similar to that of elements.
Since DIF is locked when magnetizing inrush current occurs,
Unable to remove high settling overcurrent element HOC,
The circuit scale became large, and there were difficulties in terms of economy, miniaturization, etc.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決する為になされたも
のであり、信頼性あるいは経済性、小型化等で優
れた電力用変圧器保護用差動継電器を提供するこ
とを目的とするものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a differential relay for protecting a power transformer that is excellent in terms of reliability, economy, and miniaturization.

〔発明の概要〕[Summary of the invention]

本発明は励磁突入電流検出時に比率差動要素の
特性を高整定過電流要素と同等の特性あるいは任
意の所定の特性に低感度化させることにより、励
磁突入電流検出時にも比率差動要素をロツクする
ことを不要とし、信頼性あるいは経済性、小型化
等で優れた電力用変圧器保護用差動継電器を実現
するものである。
The present invention locks the ratio differential element even when detecting magnetizing inrush current by reducing the sensitivity of the ratio differential element to a characteristic equivalent to that of a high-settling overcurrent element or an arbitrary predetermined characteristic when detecting magnetizing inrush current. The purpose of the present invention is to realize a differential relay for protecting power transformers which is superior in terms of reliability, economy, and miniaturization.

〔発明の実施例〕[Embodiments of the invention]

〈実施例の構成〉 本発明の一実施例である第1図を用いて以下説
明する。
<Configuration of Embodiment> An embodiment of the present invention will be described below using FIG. 1.

第1図において第13図と対応する部分には同
一符号をつけて重複する説明は省略する。第1図
において加算器8の出力は可変増幅器17を通し
て加算器9に導入され、また加算器9の出力は可
変レベル検出器18でレベル検出され可変レベル
検出器18の出力は比率差動要素DIFの出力とな
る。また、比較器14の出力は可変増幅器17及
び可変レベル検出器18の制御信号として各々に
導入される構成である。
In FIG. 1, parts corresponding to those in FIG. 13 are given the same reference numerals, and redundant explanation will be omitted. In FIG. 1, the output of the adder 8 is introduced into the adder 9 through the variable amplifier 17, and the output of the adder 9 is level detected by the variable level detector 18, and the output of the variable level detector 18 is input to the ratio differential element DIF. The output is Further, the output of the comparator 14 is introduced as a control signal to the variable amplifier 17 and the variable level detector 18, respectively.

〈実施例の作用〉 第1図において、励磁突入電流が存在しないと
きには励磁突入電流検出回路16は動作しないの
で比較器14は「0」出力となる。比較器14の
出力が「0」のときは可変増幅器17のゲインは
1となり、また、レベル検出器18のレベル検出
値はK0/K1となり、比率差動要素DIFの動作式は第 13図の場合と同様の動作式K1(I1+I2)−K2(|
I1|+|I2|)≧K0となり、その特性も第12図
と同様となる。励磁突入電流が存在するときには
励磁突入電流検出回路16は動作するので比較器
14は「1」出力となる。比較器14の出力が
「1」のときは可変増幅器17のゲインは0とな
り、また、レベル検出器18のレベル検出値は
K3となり、比率差動要素DIFの動作式は高整定
過電流要素HOCと同様の動作式I1+I2≧K3とな
り、その特性も第12図の高整定過電流要素
HOCと同様の特性となる。この励磁突入電流検
出時の比率差動要素DIFの特性の変化の模様を表
わしたのが第2図である。この様に励磁突入電流
検出時には比率差動要素DIFの特性が高整定過電
流要素HOCの特性迄低感度化するので比率差動
要素DIFが不要応動することはない。さらに高整
定過電流要素HOCと同等の動作領域は確保され
ているので、高整定過電流要素のフエイルセーフ
機能を果すことが可能となり、信頼度が向上す
る。また、高整定過電流要素HOCの動作時間が
比率差動要素DIFと同等の動作時間で良い場合に
は高整定過電流要素HOCを不要とすることが可
能となり、経済性、回路の小型化等の点で優れた
差動継電器を提供することが可能となる。
<Operation of the Embodiment> In FIG. 1, when there is no magnetizing inrush current, the magnetizing inrush current detection circuit 16 does not operate, so the comparator 14 outputs "0". When the output of the comparator 14 is "0", the gain of the variable amplifier 17 is 1, the level detection value of the level detector 18 is K 0 /K 1 , and the operating formula of the ratio differential element DIF is the 13th The operating formula K 1 (I 1 + I 2 )−K 2 (|
I 1 |+|I 2 |)≧K 0 , and its characteristics are also similar to those shown in FIG. When the magnetizing inrush current exists, the magnetizing inrush current detection circuit 16 operates, so the comparator 14 outputs "1". When the output of the comparator 14 is "1", the gain of the variable amplifier 17 is 0, and the level detection value of the level detector 18 is
K 3 , and the operating formula of the ratio differential element DIF is the same as that of the high-settling overcurrent element HOC: I 1 +I 2 ≧K 3 , and its characteristics are also the same as that of the high-settling overcurrent element in Figure 12.
It has the same characteristics as HOC. FIG. 2 shows the pattern of changes in the characteristics of the ratio differential element DIF when detecting this excitation inrush current. In this way, when the excitation inrush current is detected, the characteristics of the ratio differential element DIF are reduced in sensitivity to the characteristics of the high-settling overcurrent element HOC, so the ratio differential element DIF does not react unnecessarily. Furthermore, since the same operating range as the high-settling overcurrent element HOC is secured, it is possible to perform the fail-safe function of the high-settling overcurrent element, improving reliability. In addition, if the operating time of the high-settling overcurrent element HOC is the same as that of the ratio differential element DIF, it is possible to eliminate the need for the high-settling overcurrent element HOC, resulting in economic efficiency, circuit miniaturization, etc. It becomes possible to provide a differential relay that is excellent in this respect.

〈実施例の効果〉 前述した様に、本発明に用いることにより信頼
性の高いあるいは経済性、小型化等の点で優れた
差動継電器を得ることが可能となりその効果は多
大である。
<Effects of Examples> As described above, by using the present invention, it is possible to obtain a differential relay that is highly reliable, economical, compact, etc., and the effects are significant.

〈他の実施例〉 (i) 第1図の実施例では比率差動要素DIFの変化
後の特性を高整定過電流要素HOCと同様とし
たが可変増幅器17のゲインを任意の値K〓,
レベル検出器18のレベル検出値を任意の値
K〓としても良く、その場合の動作式はK1(I1
I2)−K〓(|I1|+|I2|)≧K〓となり、その特
性の一例を第3図に示す。
<Other Embodiments> (i) In the embodiment shown in FIG. 1, the characteristics after changing the ratio differential element DIF are the same as those of the high-settling overcurrent element HOC, but the gain of the variable amplifier 17 can be set to an arbitrary value K〓,
Set the level detection value of the level detector 18 to an arbitrary value.
K〓 may also be used, and the operating formula in that case is K 1 (I 1 +
I 2 )−K〓(|I 1 |+|I 2 |)≧K〓, and an example of its characteristics is shown in FIG.

(ii) 第1図の例では励磁突入電流検出時比率差動
要素DIF自相制御の例について述べたが第4図
に示す如く1相の励磁突入電流検出回路16が
動作時は各相の比率差動継電器の比率差動要素
DIFを全て制御する様にしても良い。第4図に
おいて19は論理和回路である。
(ii) In the example of FIG. 1, an example of ratio differential element DIF self-phase control was described during magnetizing inrush current detection, but as shown in FIG. Ratio differential elements of ratio differential relays
It may be possible to control all DIFs. In FIG. 4, 19 is an OR circuit.

(iii) さらに、第5図に示す如く2相の励磁突入電
流検出回路16が動作時、各相の比率差動継電
器の比率差動要素DIFを全て制御する様にして
も良い。第5図において20は論理積回路、2
1は論理和回路である。
(iii) Furthermore, as shown in FIG. 5, the two-phase excitation inrush current detection circuit 16 may control all the ratio differential elements DIF of the ratio differential relays of each phase during operation. In FIG. 5, 20 is an AND circuit;
1 is an OR circuit.

(iv) 第1図の例では励磁突入電流検出を行う励磁
突入電流検出回路16が自相の差動電流Id中の
第2調波電流I2fと基本波電流I1fの比により検
出を行うものであつたが、第6図に示す如く第
2調波電流I2fとして各相の差動電流Id中の第2
調波電流の和|I2fa|+|I2fb|+|I2fc|とし
ても良い。この場合検出式は a相継電器は|I2fa|+|I2fb|+|I2fc|/|I1fa
|≧ Ke b相継電器は|I2fa|+|I2fb|+|I2fc|/|I1fb
|≧ Ke c相継電器は|I2fa|+|I2fb|+|I2fc|/|I1fc
|≧ Ke となる。
(iv) In the example shown in Fig. 1, the magnetizing inrush current detection circuit 16 that detects the magnetizing inrush current detects the magnetizing inrush current based on the ratio of the second harmonic current I 2f and the fundamental wave current I 1f in the self-phase differential current I d . However, as shown in Fig. 6, the second harmonic current I 2f in the differential current I d of each phase is
The sum of harmonic currents | I 2fa | + | I 2fb | + | I 2fc | may be used. In this case, the detection formula for the a-phase relay is |I 2fa |+|I 2fb |+|I 2fc |/|I 1fa
|≧ K e b-phase relay is |I 2fa |+|I 2fb |+|I 2fc |/|I 1fb
|≧ K e c-phase relay is |I 2fa |+|I 2fb |+|I 2fc |/|I 1fc
|≧K e .

第6図において22は加算器である。 In FIG. 6, 22 is an adder.

(v) さらに、第7図に示す如く自相の基本波電流
I1fの代りに各相の差動電流Id中の基本波電流の
和|I1fa|+|I1fb|+|I1fc|としても良い。
この場合、検出式は各相継電器共に
|I2fa|+|I2fb|+|I2fc|/|I1fa|+|I1fb|+
|I1fc|≧Keとなる。第7 図において23,24は加算器である。
(v) Furthermore, as shown in Figure 7, the fundamental wave current of the own phase
Instead of I 1f , the sum of the fundamental wave currents in the differential current I d of each phase may be |I 1fa |+|I 1fb |+|I 1fc |.
In this case, the detection formula for each phase relay is |I 2fa | + | I 2fb | + | I 2fc | / | I 1fa | + | I 1fb | +
|I 1fc |≧K e . In FIG. 7, 23 and 24 are adders.

(vi) さらに、第8図に示す如く基本波電流として
各相基本波電流のうちの最大のものを用いる
Max〔|I1fa|,|I1fb|,|I1fc|〕として良い。
この場合検出式は各相継電器共に
|I2fa|+|I2fb|+|I2fc|/Max〔|I1fa|,|I1f
b
|,|I1fc|〕≧Keとなる。
(vi) Furthermore, as shown in Figure 8, the maximum fundamental wave current of each phase is used as the fundamental wave current.
Max [|I 1fa |, |I 1fb |, |I 1fc |] may be used.
In this case, the detection formula for each phase relay is |I 2fa |+|I 2fb |+|I 2fc |/Max[|I 1fa |, |I 1f
b
|, |I 1fc |]≧K e .

第8図において23は加算器、25は最大値抽
出回路である。
In FIG. 8, 23 is an adder and 25 is a maximum value extraction circuit.

(vii) 第1図の実施例では比率差動継電器の比率特
性を決める抑制量として各端子電流の和|I1
+|I2|を用いたが、第9図の如く各端子電流
のうち最大のものMax〔|I1|,|I2|〕としも
良い。この場合の動作式はK1(I1+I2)−K2
Max〔|I1|,|I2|〕≧K0となる。第9図にお
いて26は最大値抽出回路である。
(vii) In the embodiment shown in Fig. 1, the sum of each terminal current |I 1 | is used as the suppression amount that determines the ratio characteristics of the ratio differential relay.
+|I 2 | is used, but the maximum value of each terminal current Max [|I 1 |, |I 2 |] may also be used as shown in FIG. The operating formula in this case is K 1 (I 1 + I 2 )−K 2
Max [|I 1 |, |I 2 |]≧K 0 . In FIG. 9, 26 is a maximum value extraction circuit.

(viii) 第1図の例では2巻線の電力変圧器保護用比
率差動継電器について示したが3巻線以上の電
力変圧器保護用比率差動継電器についても同様
に適用することが可能であり、一例として3巻
線変圧器保護用比率差動継電器の場合を第10
図に示す。この場合継電器の動作式は比率差動
要素DIFはK1(I1+I2+I3)−K2(|I1|+|I2
+|I3|)≧K0,高整定過電流要素はI1+I2+I3
≧K3となる。第10図において27,28は
加算器である。
(viii) Although the example in Figure 1 shows a ratio differential relay for protection of a power transformer with two windings, it can be similarly applied to a ratio differential relay for protection of a power transformer with three or more windings. As an example, the case of a ratio differential relay for protection of a three-winding transformer is
As shown in the figure. In this case, the operating formula of the relay is that the ratio differential element DIF is K 1 (I 1 + I 2 + I 3 ) − K 2 (|I 1 | + | I 2 |
+|I 3 |)≧K 0 , the high settling overcurrent element is I 1 + I 2 + I 3
K3 . In FIG. 10, 27 and 28 are adders.

(ix) 電力用変圧器の保護上高整定過電流要素
HOCの動作時間が比率差動要素DIFと同様で
良い場合には高整定過電流要素回路29を省略
することが可能である。この場合回路規模が小
となり、継電器の小型化,低コスト化が可能と
なる。
(ix) High setting overcurrent elements for protection of power transformers
If the operating time of the HOC is the same as that of the ratio differential element DIF, the high-settling overcurrent element circuit 29 can be omitted. In this case, the circuit scale becomes small, and the relay can be made smaller and lower in cost.

〔発明の効果〕〔Effect of the invention〕

本発明を用いることにより励磁突入電流検出
時、比率差動継電器の比率差動要素がロツクされ
ることなく、高整定過電流要素だけの動作に頼る
必要がなくなり比率差動継電器の信頼性が大幅に
向上する。また、高整定過電流要素の動作時間が
比率差動要素並で良い場合には高整定過電流要素
を不要とすることが可能となり継電器の大幅な小
型化低コスト化が可能となり、その効果の大なる
ところ顕著である。
By using the present invention, the ratio differential element of the ratio differential relay is not locked when magnetizing inrush current is detected, and there is no need to rely on the operation of only the high-settling overcurrent element, greatly increasing the reliability of the ratio differential relay. improve. In addition, if the operating time of the high-settling overcurrent element is comparable to that of a ratio differential element, the high-settling overcurrent element can be eliminated, making it possible to significantly reduce the size and cost of the relay, and to increase its effectiveness. It is noticeable in large areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の差動継電器のブロツク図例、
第2図、第3図は夫々本発明の差動継電器の特性
例を示す図、第4図ないし第10は本発明の他の実
施例のブロツク図、第11図は差動継電器の適用
例を示す図、第12図は差動継電器の特性例を示
す図、第13図は従来の差動継電器のブロツク
図、第14図は励磁突入電流の波形図である。 1…電力用変圧器、2…変流器、…差動継電
器、4…しや断器、16…励磁突入電流検出回
路。
FIG. 1 is an example of a block diagram of the differential relay of the present invention.
Figures 2 and 3 are diagrams showing characteristic examples of the differential relay of the present invention, Figures 4 to 10 are block diagrams of other embodiments of the present invention, and Figure 11 is an example of application of the differential relay. 12 is a diagram showing an example of the characteristics of a differential relay, FIG. 13 is a block diagram of a conventional differential relay, and FIG. 14 is a waveform diagram of an excitation inrush current. DESCRIPTION OF SYMBOLS 1...Power transformer, 2...Current transformer, 3 ...Differential relay, 4...Shipping breaker, 16...Magnetizing inrush current detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 変圧器の各端子に流れる電流に対応した電気
量を入力して動作量および抑制量を作り、これら
動作量,抑制量およびレベル検出値が予定の関係
になると動作し出力を生じる比率差動特性を有す
る変圧器保護用差動継電装置において、前記電気
量から基本波と第2調波の比が所定値以上のとき
動作する励磁突入電流検出手段と、この励磁突入
電流検出手段が動作したとき、前記比率差動特性
の抑制量あるいはレベル検出値の少なくともいず
れか一方を変更し低感度側に特性を移す特性変更
手段とを具備することを特徴とする変圧器保護用
差動継電装置。
1 A ratio differential that inputs the amount of electricity corresponding to the current flowing through each terminal of the transformer to create the operating amount and suppression amount, and operates and produces an output when the operating amount, suppression amount, and level detection value meet the predetermined relationship. In the differential relay device for protecting a transformer, the magnetizing inrush current detection means operates when the ratio of the fundamental wave to the second harmonic is equal to or higher than a predetermined value based on the quantity of electricity, and the magnetizing inrush current detection means operates. and a characteristic changing means for changing at least one of the suppression amount or the level detection value of the ratio differential characteristic to shift the characteristic to a lower sensitivity side when Device.
JP27470284A 1984-12-28 1984-12-28 Differential relay device for protecting transformer Granted JPS61157221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27470284A JPS61157221A (en) 1984-12-28 1984-12-28 Differential relay device for protecting transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27470284A JPS61157221A (en) 1984-12-28 1984-12-28 Differential relay device for protecting transformer

Publications (2)

Publication Number Publication Date
JPS61157221A JPS61157221A (en) 1986-07-16
JPH0586128B2 true JPH0586128B2 (en) 1993-12-10

Family

ID=17545365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27470284A Granted JPS61157221A (en) 1984-12-28 1984-12-28 Differential relay device for protecting transformer

Country Status (1)

Country Link
JP (1) JPS61157221A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312060A (en) * 1976-07-20 1978-02-03 Matsushita Electric Ind Co Ltd Stabilized power apparatus
JPS57132727A (en) * 1981-02-05 1982-08-17 Tokyo Shibaura Electric Co Transformer protecting relay unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312060A (en) * 1976-07-20 1978-02-03 Matsushita Electric Ind Co Ltd Stabilized power apparatus
JPS57132727A (en) * 1981-02-05 1982-08-17 Tokyo Shibaura Electric Co Transformer protecting relay unit

Also Published As

Publication number Publication date
JPS61157221A (en) 1986-07-16

Similar Documents

Publication Publication Date Title
CN100490266C (en) System for power transformer differential protection
EP0169313B1 (en) Transformer protective relay
JPH0586128B2 (en)
JPS6074932A (en) Current limiting device
SU743105A1 (en) Device for differential protection of transformer
JPS6111056B2 (en)
JPH08168165A (en) Protective relay for transformer
JP2773808B2 (en) Earthing transformer protection relay
JPS5852838Y2 (en) transformer protection device
JPH0510515Y2 (en)
JPH04261329A (en) Protective device for capacitor bank
JPS60255010A (en) Differential relay
SU1134983A1 (en) Device for protecting generator against single-phase short circuits
SU922939A1 (en) Device for differential protection of multi-winding tranformer with voltage regulation under load
JPS6321420B2 (en)
JPS6277019A (en) Transformer protecting relaying device
JPH0667115B2 (en) Ratio differential relay for transformer protection
JPH0530636A (en) Ratio differential relay
JPS6147048B2 (en)
JPS6146116A (en) Transformer protective relaying device
JPH0243412B2 (en)
JPS60180435A (en) Transformer protecting relay
JPH0642765B2 (en) Ratio differential relay
JPH0360323A (en) Malfunction preventing equipment for ground overcurrent relay
JPS6346651B2 (en)