JPS6111056B2 - - Google Patents

Info

Publication number
JPS6111056B2
JPS6111056B2 JP53024256A JP2425678A JPS6111056B2 JP S6111056 B2 JPS6111056 B2 JP S6111056B2 JP 53024256 A JP53024256 A JP 53024256A JP 2425678 A JP2425678 A JP 2425678A JP S6111056 B2 JPS6111056 B2 JP S6111056B2
Authority
JP
Japan
Prior art keywords
current
output
phase
circuit
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53024256A
Other languages
Japanese (ja)
Other versions
JPS54116654A (en
Inventor
Fumio Ando
Michiharu Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2425678A priority Critical patent/JPS54116654A/en
Publication of JPS54116654A publication Critical patent/JPS54116654A/en
Publication of JPS6111056B2 publication Critical patent/JPS6111056B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電流差動継電装置の改良に係り、特に
優れた感度を持ち、しかも投入電流による電流差
動要素の不要動作を阻止し得る電流差動継電装置
に関する。 3相変圧器や発電機の事故検出のため電流差動
継電装置が広く使用されている。第1図は、この
電流差動継電装置の使用例を2巻線変圧器の単結
線図につき示すもので、同図において、変圧器1
と電源2との間にはしや断器3が介挿され、変圧
器1の入力側および出力側に夫々取付けた主変流
器4A,4Bの検出電流IA,IBが電流差動継電
器5にインプツトされ、両検出電流IA,IBの差
が一定限度を越えた際、前記しや断器3が引はず
されるよう構成されている。 第2図は、第1図における電流差動継電器5の
1相分の回路構成例を示している。同図におい
て、51A,51Bは高調波通過フイルタであつ
て、これらは第3図の曲線51A,51Bの周波
数特性を有しており、これらのフイルターを通過
した入力電流IA,IBは抵抗52A,52Bにイ
ンプツトされて電圧値に変換される。これらの抵
抗52A,52Bの出力は加算器53に導かれて
ベクトル的に加算される。加算器53の出力の一
部は直接、瞬時値比較回路54にインプツトさ
れ、他の一部は基本波通過フイルタ55を経て瞬
時値比較回路54にインプツトされる。この瞬時
値比較回路54の出力は低周波通過フイルタ56
に抵抗される。なお、この低周波通過フイルタ5
6および前記基本波通過フイルタ55としては
夫々第3図の曲線56,55に示す特性を有する
ものが使用される。これらのフイルタ56,55
の出力は夫々全波整流回路57,58で整流され
た後、瞬時値比較回路59に導かれ、比較演算さ
れる。なお、この瞬時値比較回路としてはアナロ
グ・デジタル変換機能を兼備するものが使用され
ており、そのデジタル出力は可逆積分特性を有す
るタイマ60および限時復帰特性を有するタイマ
61を経て出力端子に出力する。 上述のように構成した従来の電流差動継電装置
の作動を場合分けして説明すると次の通りであ
る。 (1) 変圧器の内部事故時の応動 第1図の如き一端電源の手続において変圧器
の内部F1点で事故が生じた場合、各部のタイ
ムチヤートは第4図に示すようになる。即ち、
変圧器の各巻線電流中、電源側の電流IAは第
4図イのようにある一定値に保たれるが、負荷
側の電流IBは同図ロのように零となる。従つ
て、高調波通過フイルター51A,51Bを通
つた後、加算器53で加算して得られる電気量
は同図ハに示すように電流値IAに比例する。 ここで動作電気量|iop|は第2図の加算器
53の出力電気量を基本波通過フイルタ55を
通した後、全波整流回路58で整流して得られ
たもので、その波形は第4図ニに示すようにな
る。一方、抑制電気量|ires|は加算器53の
出力と、基本波通過フイルタ55の出力とを瞬
時値比較回路54にインプツトしてベクトル和
をとり、これを更に低周波通過フイルタ56を
通した後、全波整流回路で整流して得られるも
のであり、従つて、事故電流IAが基本成波分
だけであれば、各フイルタの過波特性を無視す
ると、第4図ホに示すように零となる。瞬時値
比較回路59では、直流基準電気量k0が与えら
れ、 |iop|−|ires|−|k0|>0 を演算し、デジタル量として出力する。この出
力波形は第4図ヘに示すように、ロジツクレベ
ル“1”の時間t1が“0”の時間t2より長いか
ら、可逆積分特性を持つタイマ60は同図トの
ように次第に充電される。この充電レベルが上
昇して可逆積分タイマの動作レベルEに達する
と、その瞬間(作動開始後t時間後)に出力が
ロジツク“1”となり、復帰限時特性を有する
タイマ61を介して(可逆積分タイマ60の出
力波形は動作条件が成立しても“1”、“0”の
断続信号となる)連続信号に変換され、電流差
動継電装置の出力として、しや断器3(第1
図)の引はずし信号が出力される。 (2) 外部事故時の応動 第1図のF2点で外部事故が発生した場合の
装置各部のタイムチヤートは第5図のようにな
る。即ち、この場合の事故電流は主変流器4
A,4B中を等しく流過するから、電流差動継
電装置5への流入電流IA,IBは第5図イ,ロ
に示すように、絶対値が等しく、逆位相とな
る。従つて、加算器53の出力は変流器4A,
4Bや高調波通過フイルタ51A,51Bの誤
差を無視すれば零となり、また、その後に続く
各回路の出力は事故前と変らない。従つて電流
差動継電装置の出力は零であり、しや断器の不
要引はずしは行なわない。 (3) 変圧器の投入電流に対する応動 第1図に示す一端電源の系統でしや断器5を
投入したときの変圧器の投入電流I rush A
は第6図イのようになる。これは変圧器の残留
磁束の状態、しや断器投入時の電源電圧の位
相、変圧器の背後インピーダンス(電源側)お
よび変圧器自体の構造(例えば鉄心の量や材
質、巻線数)等により異なるが、一般には第1
表に示すように、基本波電流だけでなく、直流
分および第2調波電流以上の高調波電流を含有
している。
The present invention relates to improvements in current differential relay devices, and particularly to a current differential relay device that has excellent sensitivity and can prevent unnecessary operation of current differential elements due to applied current. Current differential relay devices are widely used to detect faults in three-phase transformers and generators. Figure 1 shows an example of the use of this current differential relay device in a single connection diagram of a two-winding transformer.
A chopper or disconnector 3 is inserted between the power source 2 and the power source 2, and the detected currents I A and I B of the main current transformers 4A and 4B installed on the input side and the output side of the transformer 1, respectively, are current differential. It is input to the relay 5, and when the difference between the detected currents I A and I B exceeds a certain limit, the shield breaker 3 is tripped. FIG. 2 shows an example of the circuit configuration for one phase of the current differential relay 5 in FIG. 1. In the figure, 51A and 51B are harmonic passing filters, which have the frequency characteristics of curves 51A and 51B in Figure 3, and the input currents I A and I B that have passed through these filters are resistors. The signals are input to 52A and 52B and converted into voltage values. The outputs of these resistors 52A and 52B are led to an adder 53 and added vectorially. A part of the output of the adder 53 is directly input to the instantaneous value comparison circuit 54, and the other part is inputted to the instantaneous value comparison circuit 54 through the fundamental wave passing filter 55. The output of this instantaneous value comparison circuit 54 is passed through a low frequency pass filter 56.
is resisted. Note that this low frequency pass filter 5
6 and the fundamental wave passing filter 55 have characteristics shown in curves 56 and 55 in FIG. 3, respectively. These filters 56, 55
The outputs of are rectified by full-wave rectifier circuits 57 and 58, respectively, and then led to an instantaneous value comparison circuit 59 for comparison calculation. As this instantaneous value comparison circuit, a circuit having an analog-to-digital conversion function is used, and its digital output is outputted to the output terminal via a timer 60 having reversible integration characteristics and a timer 61 having time-limited return characteristics. . The operation of the conventional current differential relay device configured as described above will be explained in different cases as follows. (1) Response in case of an accident inside the transformer If an accident occurs at point F1 inside the transformer during the one-end power supply procedure as shown in Figure 1, the time chart for each part will be as shown in Figure 4. That is,
Among the currents in each winding of the transformer, the current I A on the power source side is kept at a constant value as shown in Figure 4 (A), but the current I B on the load side becomes zero as shown in Figure 4 (B). Therefore, after passing through the harmonic pass filters 51A and 51B, the amount of electricity obtained by adding the electricity in the adder 53 is proportional to the current value I A as shown in FIG. Here, the operating quantity of electricity |iop| is obtained by passing the output quantity of electricity from the adder 53 in FIG. It becomes as shown in Figure 4 D. On the other hand, the suppressed electrical quantity |ires| is obtained by inputting the output of the adder 53 and the output of the fundamental wave pass filter 55 to the instantaneous value comparison circuit 54 to obtain a vector sum, which is then further passed through the low frequency pass filter 56. After that, it is obtained by rectifying it with a full-wave rectifier circuit. Therefore, if the fault current I A is only the fundamental component, and ignoring the overwave characteristics of each filter, the result shown in Figure 4 E is obtained. becomes zero. The instantaneous value comparison circuit 59 receives the DC reference electric quantity k 0 , calculates |iop|−|ires|−|k 0 |>0, and outputs it as a digital quantity. As shown in FIG. 4, this output waveform is such that the time t 1 for the logic level "1" is longer than the time t 2 for the logic level "0", so the timer 60, which has reversible integration characteristics, is gradually charged as shown in FIG. Ru. When this charge level rises and reaches the operation level E of the reversible integral timer, the output becomes logic "1" at that moment (t hours after the start of operation), and the output becomes logic "1" (reversible integral timer The output waveform of the timer 60 is converted into a continuous signal (which becomes an intermittent signal of “1” and “0” even if the operating conditions are met), and is sent to the breaker 3 (the first one) as the output of the current differential relay device.
The trip signal shown in Figure) is output. (2) Response in case of an external accident If an external accident occurs at point F2 in Figure 1, the time chart for each part of the equipment is shown in Figure 5. In other words, the fault current in this case is the main current transformer 4.
Since they flow equally through A and 4B, the currents I A and I B flowing into the current differential relay device 5 have equal absolute values and opposite phases, as shown in FIG. 5 A and B. Therefore, the output of the adder 53 is the current transformer 4A,
4B and the harmonic pass filters 51A and 51B, it becomes zero, and the output of each subsequent circuit remains the same as before the accident. Therefore, the output of the current differential relay is zero, and no unnecessary tripping of the breaker occurs. (3) Response to the turning-on current of the transformer The turning-on current I rush A of the transformer when the power circuit breaker 5 is turned on in the one-end power supply system shown in Fig. 1
becomes as shown in Figure 6A. This includes the state of the residual magnetic flux of the transformer, the phase of the power supply voltage when the circuit breaker is turned on, the impedance behind the transformer (on the power supply side), and the structure of the transformer itself (for example, the amount and material of the iron core, the number of turns), etc. Although it varies depending on the
As shown in the table, it contains not only a fundamental wave current but also a direct current component and a harmonic current higher than the second harmonic current.

【表】 説明の便宜上、しや断器投入時の投入電流I
rushが基本波電流I1fと第2調波電流I2fで定
まるものとすると、動作電気量|iop|はI
rushを基本波フイルタ55を通して得られた
電気量であり(I2fの洩れ分は無視できる)、ま
た、抑制電気量ires(全波整流前の電気量)は
I rushを瞬時値比較回路54と低周波通過
フイルタ35を通して得られた電気量で与えら
れる。この電気量は第7図に示すように各種フ
イルタの周波数特性で定まる第2調波(2f点)
におけるa1点とa2点の差である。また、I1fの場
合は、加算器53の出力と基本波通過フイルタ
55の出力の差電流は等しく、従つて瞬時値比
較回路54における基本波のベクトル和電流は
零となる。この電気量iresは全波整流器57で
全波整流され、第6図ホに示すような波形|
ires|になる。ここで|iop|と|ires|の比較
が瞬時値比較回路59で行なわれるが、前述の
ように内部事故時および外部事故時には零であ
つた|ires|が変圧器の投入電流では有値とな
つており、前例とは異なる挙動を示す。即ち例
えば、I1fに対するI2fの比が15%以上含有され
ている場合には、瞬時値比較回路59の出力波
形|iop|−|ires|−k0>0は第6図ヘに示
すようにロジツク“1”の時間t1とロジツク
“0”の時間t2はt1<t2となり、可逆積分タイマ
60の出力は動作レベルEにまで充電されな
い。従つて、限時復帰タイマ61には出力が生
じず、電流差動継電装置5はしや断器3の引は
ずしを行なわない。 しかしながら、第2表に示すように、3相変
圧器の各相の投入電流におけるI1fとI2fの比率
は各相の投入位相が異なるので、各相とも15%
以上になるとは限らない。従つて、一般的に使
用されているI2f/I1f=15%の抑制をした場合
でも第2表の値の場合はR相の電流差動継電装
置が不要動作してしまう。このように、しや断
器の投入時に電流差動継電装置が不要動作する
ことは実回線では到底許容されない。
[Table] For convenience of explanation, the input current I when closing the circuit breaker is
Assuming that rush is determined by the fundamental wave current I 1 f and the second harmonic current I 2 f, the operating electrical quantity |iop|
rush is the amount of electricity obtained through the fundamental wave filter 55 (the leakage of I 2 f can be ignored), and the suppression amount of electricity ires (the amount of electricity before full-wave rectification) is the amount of electricity obtained by passing I rush through the instantaneous value comparison circuit 54. is given by the amount of electricity obtained through the low frequency pass filter 35. This amount of electricity is the second harmonic (point 2f) determined by the frequency characteristics of various filters, as shown in Figure 7.
This is the difference between A 1 point and A 2 point. Further, in the case of I 1 f, the difference current between the output of the adder 53 and the output of the fundamental wave passing filter 55 is equal, and therefore the vector sum current of the fundamental wave in the instantaneous value comparison circuit 54 becomes zero. This quantity of electricity IRES is full-wave rectified by a full-wave rectifier 57, and the waveform shown in FIG.
ires|become. Here, |iop| and |ires| are compared in the instantaneous value comparison circuit 59, but as mentioned above, |ires|, which was zero at the time of an internal fault and an external fault, has a value at the transformer input current. The behavior is different from the previous example. That is, for example, if the ratio of I 2 f to I 1 f is 15% or more, the output waveform of the instantaneous value comparison circuit 59 |iop|−|ires|−k 0 >0 is shown in FIG. As shown, the time t 1 for logic "1 " and the time t 2 for logic "0" are t 1 <t 2 , and the output of the reversible integral timer 60 is not charged to the operating level E. Therefore, no output is generated in the time-limited return timer 61, and the current differential relay device 5 does not trip the circuit breaker 3. However, as shown in Table 2, the ratio of I 1 f and I 2 f in the input current of each phase of a three-phase transformer is 15% for each phase because the input phase of each phase is different.
It doesn't necessarily have to be more than that. Therefore, even if the commonly used suppression of I 2 f/I 1 f is 15%, the R-phase current differential relay device will operate unnecessarily in the case of the values shown in Table 2. In this way, unnecessary operation of the current differential relay device when the circuit breaker is turned on is completely unacceptable in an actual circuit.

【表】 第2表に示すR相の値の様な変圧器の投入電
流に対しては不要動作が生じないようにする方
法の一つは高調波抑制の感度I2f/I1f=15%を
例えば5%程度とし、高感度にすることであ
る。しかしながら、このような方法を採用する
と、内部事故が発生した場合、事故電流に第3
調波電流I3f等の高調波電流成分を含有するケ
ースでは電流差動継電装置が誤不動作するおそ
れがある。即ち、第1図に示す回路において負
荷端がケーブル系統で構成されているような場
合、変圧器に内部事故が発生すると、ケーブル
のリアクタンスLと静電容量Cとから定まる周
波数f=1/2π√の振動電流が流れるが、こ
れが前述の第3調波であると仮定し、その含有
量(第3調波電流I3fの電源端側から流入する
基本波電流I1fに対する割合)を20%、変圧器
の投入時に重畳する第2調波電流I2fのI1fに対
する含有率を第2表のR相のように9%とする
と、高調波抑制電気量|ires|3fと|ires|2f
は|ires|3f>|ires|2fとなる。すなわち、
I1fに対するI2fの含有率9%のときの|ires|2f
を1PUとすれば、I1fに対するI3fの含有率20%
のときの|Ires|3fは20%/9%≒2.2PUとな
る。このような場合、第8図のタイムチヤート
に示すように瞬時値比較回路59の出力波形
(|iop|−|ires|−k0>0)はロジツク
“1”の時間t1よりもロジツク“0”の時間
“t2”の方が長くなり可逆積分タイマ60の出
力は同図トに示すように動作レベルEに達せ
ず、従つて電流差動継電器は誤不動作となる。 上述のように電流差動継電器のI2f/I1fを高
くして、変圧器の投入電流より導出される|
ires|2fの最小値で電流差動継電器が不動作と
なるようにすると、変圧器の内部事故時に重畳
する高調波電流により高調波抑制がかかり、誤
不動作となることがある。このように従来の高
調波抑制方式の電流差動継電器では変圧器の投
入時の投入電流に対して確実に正不動作とし、
かつ、内部事故時に重畳する高調波電流に対し
て確実に正動作させることは非常に難かしかつ
た。 本発明は上述の従来装置の欠点を除去すべくな
されたものである。即ち本発明は変圧器の投入時
に発生する投入電流検出要素を設け、1相でも投
入電流検出要素が動作した場合に、これを条件と
して他相の投入電流検出要素の検出感度を変える
ことによつて動作を容易にし、投入電流による電
流差動要素の不要動作を阻止する電流差動継電装
置を提供することを目的とする。 以下、図示の実施例につき本発明の詳細を説明
する。第9図に示す本発明の実施例において、第
2図におけると同一の回路要素には同一記号を用
いている。また、第2図では1相分のみを図示し
てあるが、第9図ではR,S,Tの3相分の全装
置を図示してある。なお、S相およびT相はブラ
ツクボツクスとしてあるが、その内容はR相にお
けると同様である。 電流差動継電装置に流入するIRA,IRBは変圧
器のR相巻線の1次側および2次側の検出電流で
あり、ISA,ISBおよびITA,ITBも夫々S相お
よびT相巻線の検出電流である。また、R相のブ
ロツク図において、62Rは加算器53の出力を
受けてその第2調波を通過させると共にその電気
量を直流に変換させる変換回路である。この変換
回路の周波数特性は第10図に示す通りである。
変換回路62の出力|i2f|DCは後述する他相か
らの出力と共に感度操作回路62Rにインプツト
され、所定の変換率kを乗算され、k|i2f|DC
として、全波整流回路58の出力|iop|および
直流電気量k′0と共に瞬時値比較回路64Rにイ
ンプツトされる。この瞬時値比較回路64Rの出
力は限時動作タイマ65Rに導かれて連続信号と
され、NOT回路66Rで符号反転された後、限
時復帰タイマ61の出力と共にAND回路67R
を経てR相出力となる。 NOT回路66Rの出力はまた、S相およびT
相のAND回路68S,68Tを介してS相およ
びT相の感度操作回路(図示せず)にインプツト
される。これと同様にS相およびT相のNOT回
路66S,66Tの出力はAND回路68Rを感
度操作回路63Rにインプツトされる。上記にお
いて、AND回路68R,68S,68Tはいず
れも他2相の投入出力検出要素の出力(この出力
は動作時にロジツク“0”となる)のOR条件を
得るためのものであり、また、感度操作回路63
R(他相におけるものも同じ)は他2相の投入電
流検出要素の動作条件により自相の投入電流検出
要素の感度を変えるため、変換kを操作するもの
である。従つて66S,66Tの出力はR相の投
入電流検出要素の感度操作のためのAND回路6
8RでOR条件が得られており、同様にS相の投
入電流検出要素については66R,66Tの出力
が、またT相のそれについては66R,66Sの
OR条件により投入電流検出要素の感度操作が行
なわれる。 上述のように構成した本発明装置において、各
種系統現象に対する応動を場合分けして説明する
と次の通りである。 (1) 変圧器の内部事故時の応動 第1図のF1点でR相1φGの内部事故が発
生したときのR相電流差動継電装置の各部のタ
イムチヤートは第4図に示すものと同一モード
となる。すなわち、内部事故時に高調波電流が
重畳しない瞬時値比較回路64Rの出力は |iop|+k′0>|i2f|DC であり、k|i2f|DCは零であるから“0”で
ある。従つてNOT回路66Rの出力は連続
“1”状態となり電流差動継電器の出力は第4
図につき説明したのと同一となる。 (2) 外部事故時の応動 第1図のF2点でR相1φGの外部事故が発
生したときのR相電流差動継電装置の各部のタ
イムチヤートは第5図に示すものと同一モード
となる。すなわち、外部事故時には事故電流は
主変流器4A,4Bを等しく通過するから|
iop|は零となる。従つて、瞬時値比較回路5
9の出力は |iop|−|ires|−k0>0 の条件が成立せず、連続“0”の状態からなる
電流差動継電装置の出力は前述のように第5図
におけると等しくなる。他方、瞬時値比較回路
64Rの出力は |iop|+k′0>|i2f|DC であり、|iop|とk|i2f|DCはいずれも零で
あるからロジツク“0”であるが、瞬時値比較
回路59の出力が“0”であるから電流差動継
電装置は不要動作をすることはない。 (3) 変圧器の投入電流に対する応動 第1図に示す一端電源系統において、しや断
器3を投入した各相の電流の一例が第2表のよ
うになることは前述した通りであり、また、変
圧器の投入電流に重畳する高調波電流成分は第
2調波成分I2fが多く、かつ3相中1相以上は
必ずI2f/I1fの比が多い。ここで基本波通過フ
イルタ55で導出された基本波成分iopを全波
整流回路58で整流して得た|iop|と第2調
波通過フイルタ62Rで導出された第2調波成
分の直流量|i2f|DCを感度操作回路63Rに
導いて得たk|i2f|DC(k:感度操作条件で
定まる変換率)によつて定まる投入電流検出要
素の検出感度を I2f/I1f=k・|i2f|DC/|iop|=20% に定めたと仮定すると、第2表に示す変圧器の
投入電流においては第11図に示すようにR相
の投入電流検出要素64Rの出力はI2f/I1f=
9%であるため、S相およびT相のNOT回路
66S,66Tの電流差動継電装置が“1”で
ある間は“0”であるけれども、他2相の投入
電流検出要素64S,64Tの出力はI2fのI1f
に対する含有率が38%と高いので、各々 |iop|+k′0<k|i2f|DC になつた時点で“1”となる。ここで各相にお
ける限時動作タイマ65R、(他の2相は図示
せず)の時間t65を t65=(半サイクル)+(マージン) に設定することにより、|iop|+k′0のピーク
値がk|i2f|DCより小になる値で投入電流検
出要素の検出感度が定まる。 このように、3相中の1相でも投入電流検出
要素が動作した場合(第9図でNOT回路66
R,66S,66Tの出力が“0”となる)、
他相の投入電流検出要素の検出感度を変るべく
63Rおよび図示しない63S,63Tに各々
条件を与え、前述のk|i2f|DCのk値を変え
る操作が行なわれる。このk値の変更は例えば
第12図に示す回路で実現することができる。
この第12図はR相の投入電流検出要素の感度
操作回路63Rと瞬時値比較回路64Rの回路
の一例であるが、他の2相(S相、T相)の投
入電流検出要素の出力が共に“0”であると第
12図で68Rの出力は“1”となる。ここ
で、電界効果トランジスタ63−1R,63−
2Rは68Rの出力が“1”のときは63−1
Rのソース・ドレイン間が導通し、逆に68R
の出力が“0”のときは63−2Rのソース・
ドレイン間が導通状態になるようにNOT回路
63−3Rの条件を加味して各々のゲート電位
を定める。また、第12図において瞬時値比較
回路64Rは演算増巾回路64−1Rと演算抵
抗R1,R2,R5およびバイアス抵抗R6で構成さ
れている。 上記において、感度操作用の抵抗R3,R4
R3>R4と定めることにより、R相の投入電流
検出要素の検出感度は (イ) 他2相の投入電流検出要素が不動作のと
き:I2f/I1fの検出感度は |iop|・R5/R2+k′0R5/R1 <|i2f|DCR5/R3(k=R5/R3) …(1) で与えられ、 (ロ) 他2相の投入電流検出要素の内、1相でも
動作したとき、I2f/I1fの検出感度は |iop|・R5/R2+k′0R5/R1< |i2f|DCR5/R4(k=R5/R4) ……(2) で与えられる。 (1)式と(2)式から明らかなように、R3>R4
と定めることにより、(2)式の方がより小さな
|i2f|DCの値で動作することが分る。 以上の如く、第2表に示すようなI2f量を含
有する投入電流においては、3相の内1相は必
ずI1fに対するI2fの含有量が高くなつているか
ら1相でも投入電流検出要素が動作した場合、
第11図でx点で他2相の投入電流検出要素の
検出感度を高感度にすれば、変圧器の投入電流
に対しては3相とも投入電流検出要素が確実に
作動し、投入電流による電流差動要素の不要動
作を阻止することができ、かつ、次に述べる高
調波電流が重畳する内部事故の場合には投入電
流検出要素の不要応動を避けることができる。 (4) 内部事故における高調波電流重畳時の応動 第1図に示す一端電源系統において負荷側が
充電容量の大きなケーブル等に接続されている
場合、F1点で1φG R相内部事故が生じた
とするとケーブル側から流入する電流は第3調
波成分が多いので、第3調波電流I3fであると
仮定できる。また、第9図における第2調波検
出回路の第2調波フイルタ62Rが第10図の
周波数特性を有するものと仮定すると、瞬時値
比較回路64RのI2f/I1fの検出感度を20%と
したとき、I1fに対するI2fの含有率が I2f/I1f×1/0.25=80% 以下では64Rの出力は“0”である。すな
わち、内部事故時に非電源側から流入するI3f
の、電源端側から流入するI1fに対する比が80
%以下では電流差動継電装置は正動作できる。
また、第2表の変圧器の投入電流を基にすれ
ば、64RのI2f/I1fの検出感度は30%でも十
分であり、従つてこの値を用いたときの内部事
故におけるI3f/I1fは30%×1/0.25=120%まで
許容できることになる。また、内部事故時の
I1fに対する第5調波電流I5fの許容値は第10
図に示すフイルタ62R,62S,62Tの周
波数特性より、I2f/I1fの検出感度を20%とし
たとき、20%×1/0.05=400%以下となる。 上述のように、本発明装置においては、内部
事故時のI1fに対するI5fの重畳許容値は従来装
置による場合の数倍から数10倍に達し、誤不動
作はなくなる。 次に本発明のいくつかの変形応用例を例示して
おく。 (1) 前述の説明では投入電流検出要素の感度操作
を第2調波電流|i2f|DCを変えることで行な
う場合を示したが、本発明は第13図に示すよ
うに基本波電気量|iop|の値を68Rの条件
で変えるようにしてもよい。すなわち本発明で
は、他2相中1相でも投入電流検出要素が動作
した際、それを条件としてk|i2f|DCが大き
くなるようにkを変える代りに第13図の感度
操作回路63′Rにおいてk′|iop|のk′をそれ
と同じ条件で小さくなるように変えてもよい。 (2) 前記の例では、動作電気量として基本波I1f
を全波整流した|iop|を用い、第2調波電気
量I2fを直流変換した|i2f|DCと比較する場合
を示したが、第14図に示すように、直流変換
回路58′により|iop|も直流に変換した値で
|i2f|DCと比較するようにしてもよい。 (3) 本発明の装置は変圧器保護用に限らず、発電
機保護にも同様にして利用できる。 (4) 本発明は前述の2巻線変圧器の保護用のほ
か、第15図に示すように3巻線変圧器用の電
流差動継電装置5′についても適用できる。 (5) 前述の例では従来の電流差動継電装置に変圧
器の投入電流検出用として投入電流検出装置を
付加する例を説明したが、本発明は第16図に
示すように54,56,57の高調波抑制回路
のない差動継電装置としてもよい。 (6) 前述の例では62Rを第2調波通過フイルタ
としたが、内部事故時に発生する高調波成分の
含有率が高くない系統に適用する場合は、フイ
ルタ62Rとして第17図に示すような特性の
ものを用い、第2調波以上の電気量がI1fに対
して一定値以上になつた際出力が生ずるように
してもよい。(他相も同じ) (7) 前述の例では、電流差動要素と投入電流検出
要素の組合せについて説明したが、第18図に
示すように投入電流検出要素単独の装置につい
ても本発明の考え方を適用することができる。
なお第18図中の参照記号は第9図におけると
同様である。 (8) 本発明は第19図に示すように、比率抑制を
もつた電流作動要素においても前記と同様に適
用することができる。これは第20図に示すよ
うな回路構成で実現できる。同図において、1
00,101は基本波通過フイルタ、102,
103は全波整流回路、104は加算器、10
5は直流変換回路を示す。 以上、本発明につきいくつかの変更応用例を列
挙したが、いずれの場合も、変圧器等の投入電流
による電流差動継電装置の不要動作を阻止する投
入電流検出要素の検出感度を不要に高感度にする
ことがなく、投入電流検出要素の検出が容易とな
り、確実に電流差動要素の不要動作を阻止するこ
とができる。従つて、内部事故時に事故電流に重
畳する高調波電流の含有許容率を高くでき、優れ
た機能の電流差動継電装置が得られる。
[Table] One way to prevent unnecessary operations from occurring for transformer input currents such as the R-phase values shown in Table 2 is the harmonic suppression sensitivity I 2 f / I 1 f = For example, 15% is set to about 5% to achieve high sensitivity. However, if such a method is adopted, if an internal fault occurs, the fault current will be replaced by a third
In cases where harmonic current components such as harmonic current I 3 f are included, the current differential relay device may malfunction. That is, in the circuit shown in Fig. 1, when the load end is configured with a cable system, if an internal fault occurs in the transformer, the frequency f = 1/2π determined from the reactance L and capacitance C of the cable. An oscillating current of √ flows, but assuming that this is the third harmonic mentioned above, its content (ratio of the third harmonic current I 3 f to the fundamental wave current I 1 f flowing from the power supply end side) is 20%, and if the content ratio of the second harmonic current I 2 f superimposed when the transformer is turned on to I 1 f is 9% as in the R phase in Table 2, the harmonic suppression electricity amount |ires|3f and |ires|2f
is |ires|3f>|ires|2f. That is,
|ires|2f when the content of I 2 f to I 1 f is 9%
If is 1PU, the content of I 3 f to I 1 f is 20%
When |Ires|3f becomes 20%/9%≒2.2PU. In such a case, as shown in the time chart of FIG. 8, the output waveform of the instantaneous value comparison circuit 59 (|iop|−|ires|−k 0 >0) is longer than the logic “1” time t 1 . 0" time "t 2 " is longer and the output of the reversible integral timer 60 does not reach the operating level E as shown in FIG. As mentioned above, by increasing I 2 f / I 1 f of the current differential relay, it is derived from the transformer's input current |
If the current differential relay is made to be inoperative at the minimum value of ires | 2f, the harmonics will be suppressed by the superimposed harmonic current in the event of an internal fault in the transformer, which may cause it to malfunction. In this way, the conventional harmonic suppression type current differential relay ensures positive and negative operation in response to the input current when the transformer is turned on.
Moreover, it is extremely difficult to ensure correct operation in response to superimposed harmonic currents in the event of an internal fault. The present invention has been made to eliminate the drawbacks of the prior art devices mentioned above. That is, the present invention provides a closing current detecting element that is generated when the transformer is turned on, and when the closing current detecting element operates even in one phase, the detection sensitivity of the closing current detecting element of other phases is changed based on this condition. It is an object of the present invention to provide a current differential relay device that facilitates operation and prevents unnecessary operation of current differential elements due to applied current. The invention will now be described in detail with reference to the illustrated embodiments. In the embodiment of the invention shown in FIG. 9, the same symbols are used for the same circuit elements as in FIG. Although FIG. 2 shows only one phase, FIG. 9 shows the entire device for three phases, R, S, and T. Although the S phase and T phase are shown as black boxes, the contents are the same as in the R phase. I RA and I RB flowing into the current differential relay device are the detection currents on the primary and secondary sides of the R-phase winding of the transformer, and I SA , I SB and I TA , I TB are also S These are the detected currents of the phase and T-phase windings. In the R-phase block diagram, 62R is a conversion circuit that receives the output of the adder 53, passes its second harmonic, and converts the amount of electricity into direct current. The frequency characteristics of this conversion circuit are as shown in FIG.
The output of the conversion circuit 62 |i 2 f | DC is input to the sensitivity operation circuit 62R together with outputs from other phases, which will be described later, and multiplied by a predetermined conversion rate k .
is input to the instantaneous value comparison circuit 64R together with the output |iop| of the full-wave rectifier circuit 58 and the DC electricity quantity k'0 . The output of this instantaneous value comparison circuit 64R is led to a time-limited operation timer 65R and made into a continuous signal, and after its sign is inverted by a NOT circuit 66R, it is combined with the output of the time-limited return timer 61 to an AND circuit 67R.
After that, it becomes the R phase output. The output of the NOT circuit 66R is also connected to the S phase and T
The signals are input to S-phase and T-phase sensitivity operation circuits (not shown) via phase AND circuits 68S and 68T. Similarly, the outputs of the S-phase and T-phase NOT circuits 66S and 66T are inputted to an AND circuit 68R and a sensitivity operation circuit 63R. In the above, the AND circuits 68R, 68S, and 68T are all for obtaining the OR condition of the output of the input output detection element of the other two phases (this output becomes logic "0" during operation), and also for obtaining the sensitivity Operation circuit 63
R (the same applies to the other phases) is used to manipulate the conversion k in order to change the sensitivity of the closing current detection element of the own phase depending on the operating conditions of the closing current detection elements of the other two phases. Therefore, the outputs of 66S and 66T are connected to the AND circuit 6 for sensitivity operation of the R-phase input current detection element.
The OR condition is obtained with 8R, and similarly, the output of 66R and 66T is obtained for the S-phase closing current detection element, and the output of 66R and 66S is obtained for the T-phase.
The sensitivity of the input current detection element is controlled by the OR condition. In the apparatus of the present invention configured as described above, the response to various system phenomena will be explained as follows. (1) Response in the event of an internal fault in the transformer Figure 4 shows the time chart of each part of the R-phase current differential relay when an R-phase 1φG internal fault occurs at point F in Figure 1 . The same mode as . In other words, the output of the instantaneous value comparison circuit 64R in which no harmonic current is superimposed during an internal fault is |iop|+k′ 0 > |i 2 f | DC , and since k | i 2 f | DC is zero, it is “0”. It is. Therefore, the output of the NOT circuit 66R becomes a continuous "1" state, and the output of the current differential relay becomes the fourth one.
It is the same as explained with reference to the figure. (2) Response in case of external fault When an external fault of R phase 1φG occurs at point F2 in Fig. 1 , the time chart of each part of the R phase current differential relay device is in the same mode as shown in Fig. 5. becomes. In other words, in the event of an external fault, the fault current equally passes through the main current transformers 4A and 4B.
iop| becomes zero. Therefore, the instantaneous value comparison circuit 5
For the output of 9, the condition |iop|−|ires|−k 0 >0 does not hold, and the output of the current differential relay device consisting of a continuous “0” state is the same as that in Fig. 5, as described above. Become. On the other hand , the output of the instantaneous value comparison circuit 64R is |iop| However, since the output of the instantaneous value comparison circuit 59 is "0", the current differential relay device does not perform unnecessary operations. (3) Response to transformer turning-on current As mentioned above, in the one-end power supply system shown in Figure 1, an example of the current of each phase when the breaker 3 is turned on is as shown in Table 2. Furthermore, the harmonic current component superimposed on the transformer's input current has a large amount of the second harmonic component I 2 f, and one or more of the three phases always has a large ratio of I 2 f/I 1 f. Here, the fundamental wave component iop derived by the fundamental wave pass filter 55 is rectified by the full wave rectifier circuit 58 to obtain |iop| and the DC amount of the second harmonic component derived by the second harmonic pass filter 62R. |i 2 f | The detection sensitivity of the input current detection element determined by k | i 2 f | DC (k: conversion rate determined by sensitivity operating conditions) obtained by guiding DC to the sensitivity operation circuit 63R is I 2 f/ Assuming that I 1 f=k・|i 2 f| DC /|iop|=20%, for the transformer closing current shown in Table 2, the R phase closing current is detected as shown in Figure 11. The output of element 64R is I 2 f/I 1 f=
9%, so while the current differential relay device of the S-phase and T-phase NOT circuits 66S, 66T is "1", the current is "0", but the other two phase closing current detection elements 64S, 64T are "0". The output of I 2 f is I 1 f
Since the content is as high as 38%, it becomes "1" when |iop|+k′ 0 <k|i 2 f| DC , respectively. Here, by setting the time t 65 of the time-limited operation timer 65R (other two phases are not shown) in each phase to t 65 = (half cycle) + (margin), the peak of |iop|+k′ 0 The detection sensitivity of the input current detection element is determined by the value smaller than k|i 2 f| DC . In this way, if the input current detection element operates even in one of the three phases (in Figure 9, the NOT circuit 66
R, 66S, 66T output becomes “0”),
In order to change the detection sensitivity of the input current detection element of the other phase, conditions are given to each of 63R and 63S and 63T (not shown), and the above-mentioned k value of k|i 2 f| DC is changed. This change in k value can be realized, for example, by the circuit shown in FIG.
This Figure 12 shows an example of the circuit of the sensitivity operation circuit 63R and the instantaneous value comparison circuit 64R of the R-phase input current detection element, but the output of the other two phases (S phase, T phase) input current detection element is If both are "0", the output of 68R in FIG. 12 will be "1". Here, field effect transistors 63-1R, 63-
2R is 63-1 when the output of 68R is “1”
The source and drain of R are conductive, and conversely, 68R
When the output is “0”, the source of 63-2R
Each gate potential is determined in consideration of the conditions of the NOT circuit 63-3R so that the drains are in a conductive state. Further, in FIG. 12, the instantaneous value comparison circuit 64R is composed of an arithmetic amplification circuit 64-1R, arithmetic resistors R 1 , R 2 , R 5 and a bias resistor R 6 . In the above, resistors R 3 and R 4 for sensitivity operation are
By setting R 3 > R 4 , the detection sensitivity of the R-phase closing current detection element is (a) When the other two phase closing current detection elements are inactive: The detection sensitivity of I 2 f/I 1 f is | iop|・R 5 /R 2 +k′ 0 R 5 /R 1 <|i 2 f| DC R 5 /R 3 (k=R 5 /R 3 ) ...(1), (b) Other 2 When even one phase of the phase closing current detection elements is activated, the detection sensitivity of I 2 f/I 1 f is |iop|・R 5 /R 2 +k′ 0 R 5 /R 1 < |i 2 f| DC R 5 /R 4 (k=R 5 /R 4 ) ...(2) is given. As is clear from equations (1) and (2), R 3 > R 4
By setting , it can be seen that equation (2) operates with a smaller value of |i 2 f |DC. As mentioned above, in the input current containing the amount of I 2 f as shown in Table 2, one of the three phases always has a higher content of I 2 f than I 1 f, so even one phase When the making current detection element operates,
In Figure 11, if the detection sensitivities of the other two phase's closing current detecting elements are made high at point Unnecessary operation of the current differential element can be prevented, and unnecessary response of the input current detection element can be avoided in the case of an internal fault in which harmonic currents are superimposed, which will be described below. (4) Response when harmonic current is superimposed in an internal fault In the one-end power supply system shown in Figure 1, when the load side is connected to a cable with a large charging capacity, assume that a 1φG R phase internal fault occurs at point F1 . Since the current flowing from the cable side has many third harmonic components, it can be assumed that the current is the third harmonic current I 3 f. Furthermore, assuming that the second harmonic filter 62R of the second harmonic detection circuit in FIG. 9 has the frequency characteristics shown in FIG. 10, the detection sensitivity of I 2 f/I 1 f of the instantaneous value comparison circuit 64R When the content of I 2 f to I 1 f is 20%, the output of 64R is “0” when it is less than I 2 f/I 1 f×1/0.25=80%. In other words, I 3 f flowing from the non-power supply side in the event of an internal accident
The ratio of I 1 f flowing in from the power supply end is 80.
% or less, the current differential relay device can operate normally.
Also, based on the input current of the transformer in Table 2, the detection sensitivity of 64R I 2 f / I 1 f is sufficient at 30%, and therefore, when this value is used, the I 3 f/I 1 f can be allowed up to 30% x 1/0.25 = 120%. In addition, in the event of an internal accident
The allowable value of the fifth harmonic current I 5 f for I 1 f is the 10th harmonic current I 5 f.
According to the frequency characteristics of the filters 62R, 62S, and 62T shown in the figure, when the detection sensitivity of I 2 f/I 1 f is set to 20%, it becomes 20%×1/0.05=400% or less. As described above, in the device of the present invention, the allowable superimposition value of I 5 f on I 1 f in the event of an internal accident reaches several to several tens of times that of the conventional device, and malfunctions are eliminated. Next, some modified application examples of the present invention will be illustrated. (1) In the above explanation, the sensitivity of the input current detection element is controlled by changing the second harmonic current | i 2 f | The value of the amount |iop| may be changed under the condition of 68R. That is, in the present invention, when the closing current detection element operates in one of the other two phases, instead of changing k so that k|i 2 f| In 'R, k' of k'|iop| may be changed to become smaller under the same conditions. (2) In the above example, the fundamental wave I 1 f is used as the operating quantity of electricity.
The case where the second harmonic electricity quantity I 2 f is converted into DC using |i 2 f | DC which is full-wave rectified is shown, but as shown in Fig. 14, the DC conversion circuit 58', |iop| may also be compared with |i 2 f| DC using the value converted to direct current. (3) The device of the present invention can be used not only for protecting transformers but also for protecting generators. (4) The present invention can be applied not only to the protection of the two-winding transformer described above, but also to a current differential relay device 5' for a three-winding transformer as shown in FIG. (5) In the above example, an example was explained in which a closing current detection device was added to the conventional current differential relay device for detecting the closing current of a transformer. , 57 may be used as a differential relay device without a harmonic suppression circuit. (6) In the above example, 62R was used as the second harmonic passing filter, but if it is applied to a system where the content of harmonic components that occur during an internal accident is not high, the filter 62R as shown in Figure 17 can be used. It is also possible to use a characteristic type so that an output is generated when the amount of electricity of the second harmonic or higher exceeds a certain value with respect to I 1 f. (Same for other phases) (7) In the above example, the combination of the current differential element and the making current detecting element was explained, but as shown in Fig. 18, the idea of the present invention can also be applied to a device with a making current detecting element alone. can be applied.
Note that the reference symbols in FIG. 18 are the same as in FIG. 9. (8) As shown in FIG. 19, the present invention can be similarly applied to a current-operated element with ratio suppression. This can be realized with a circuit configuration as shown in FIG. In the same figure, 1
00, 101 is a fundamental wave passing filter, 102,
103 is a full-wave rectifier circuit, 104 is an adder, 10
5 indicates a DC conversion circuit. As mentioned above, several modified application examples of the present invention have been listed, but in all cases, the detection sensitivity of the closing current detection element that prevents unnecessary operation of the current differential relay device due to the closing current of a transformer, etc. is unnecessary. It is possible to easily detect the input current detection element without increasing the sensitivity, and to reliably prevent unnecessary operation of the current differential element. Therefore, the content tolerance of harmonic current superimposed on the fault current at the time of an internal fault can be increased, and a current differential relay device with excellent functionality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電流差動継電装置の使用例を示す結線
図、第2図は従来の電流差動継電装置の1相分の
回路構成例を示すブロツク図、第3図は第2図に
示す各種フイルターの特性曲線図、第4図は第1
図のF1点で内部事故が生じた場合における第2
図の回路各部のタイムチヤート、第5図は第1図
のF2点で外部事故が生じた場合における第2図
の回路各部のタイムチヤート、第6図および第8
図は変圧器の投入電流に対する第2図の回路の各
部の応動を示すタイムチヤート、第7図は第2図
に示す回路における各フイルターの出力を示す特
性図、第9図は本発明装置の一実施例を示すブロ
ツク図、第10図は変換回路62Rの周波数特性
図、第11図は本発明装置における変圧器の投入
電流に対応する応動を示すタイムチヤート、第1
2図は本発明装置における感度操作回路の実施例
を示す回路図、第13図と第14図は本発明にお
ける投入電流検出要素の変形例の回路図、第15
図は3巻線変圧器の単結線図、第16、第18、
第20図は夫々本発明装置の他の変形例の回路
図、第17図は本発明において使用するフイルタ
ーの一例の特性曲線図、第19図は本発明におい
て比率抑制方式を用いる場合の特性図である。 1……変圧器、2……電源、3……しや断器、
4A,4B……主変流器、5,5′……電流差動
継電器、51A,51B……高調波通過フイル
タ、52A,52B……抵抗、53,104……
加算器、54,59,64R……瞬時値比較回
路、55,100,101……基本波通過フイル
タ、56……低周波通過フイルタ、57,58,
102,103……全波整流回路、58′,10
5……直流変換回路、60……可逆積分タイマ、
61,61R……限時復帰タイマ、62R……第
2調波通過フイルタ、63R,63R′……感度
操作回路、63−1R,63−2R……電界効果
トランジスタ、63−3R……NOT回路、64
−1R……演算増巾回路、65R……限時動作タ
イマ、|iop|……動作電気量、|ires|……抑
制電気量、k0,k′0……直流基準電気量、E……
可逆積分タイマの動作レベル、IA,IB……電流
差動継電器の流入電流、IRA,IRB……電流差動
継電器の流入電流(R相)、ISA,ISB……電流
差動継電器の流入電流(S相)、ITA,ITB……
電流差動継電器の流入電流(T相)、I rush…
…しや断器投入時の流入電流、k,k′……変換
率。
Fig. 1 is a wiring diagram showing an example of the use of a current differential relay device, Fig. 2 is a block diagram showing an example of the circuit configuration for one phase of a conventional current differential relay device, and Fig. 3 is a diagram showing an example of the circuit configuration for one phase of a conventional current differential relay device. The characteristic curve diagrams of various filters are shown in Figure 4.
F in the diagram The second point in case an internal accident occurs at one point
Figure 5 is a time chart for each part of the circuit in Figure 1. Figure 5 is a time chart for each part of the circuit in Figure 2 when an external accident occurs at point F in Figure 1. Figures 6 and 8 are time charts for each part of the circuit in Figure 2.
The figure is a time chart showing the response of each part of the circuit shown in Fig. 2 to the input current of the transformer, Fig. 7 is a characteristic diagram showing the output of each filter in the circuit shown in Fig. 2, and Fig. 9 is a diagram showing the response of each part of the circuit shown in Fig. 2 to the input current of the transformer. A block diagram showing one embodiment, FIG. 10 is a frequency characteristic diagram of the conversion circuit 62R, and FIG. 11 is a time chart showing the response corresponding to the input current of the transformer in the device of the present invention.
2 is a circuit diagram showing an embodiment of the sensitivity operation circuit in the device of the present invention, FIGS. 13 and 14 are circuit diagrams of modified examples of the input current detection element in the present invention, and FIG.
The figure is a single connection diagram of a three-winding transformer, No. 16, No. 18,
Fig. 20 is a circuit diagram of another modification of the device of the present invention, Fig. 17 is a characteristic curve diagram of an example of a filter used in the present invention, and Fig. 19 is a characteristic diagram when the ratio suppression method is used in the present invention. It is. 1...Transformer, 2...Power supply, 3...Shiya disconnector,
4A, 4B... Main current transformer, 5, 5'... Current differential relay, 51A, 51B... Harmonic passing filter, 52A, 52B... Resistor, 53, 104...
Adder, 54, 59, 64R... Instantaneous value comparison circuit, 55, 100, 101... Fundamental wave passing filter, 56... Low frequency passing filter, 57, 58,
102, 103...Full wave rectifier circuit, 58', 10
5...DC conversion circuit, 60...Reversible integral timer,
61, 61R... Time-limited return timer, 62R... Second harmonic pass filter, 63R, 63R'... Sensitivity operation circuit, 63-1R, 63-2R... Field effect transistor, 63-3R... NOT circuit, 64
-1R... Arithmetic amplification circuit, 65R... Limited time operation timer, |iop|... Operating electricity amount, |ires|... Suppression electricity amount, k 0 , k' 0 ... DC reference electricity amount, E...
Operation level of reversible integral timer, I A , I B ... Inflow current of current differential relay, I RA , I RB ... Inflow current of current differential relay (R phase), I SA , I SB ... Current difference Inflow current of moving relay (S phase), I TA , I TB ......
Current differential relay inflow current (T phase), I rush...
...Inflow current when the circuit breaker is closed, k, k'... Conversion rate.

Claims (1)

【特許請求の範囲】 1 電力系統の各端の電流を検出してそれらのベ
クトル和を得、それが所定の値以上になつた際に
出力を生ずる電流差動要素と、前記電力系統にお
ける電流に含まれる高調波成分と基本波成分の比
が所定の値をこえた際に出力を生ずる投入電流検
出要素とを前記電力系統の各相毎に設け、これら
の各相の投入電流検出要素のうち少くとも1相が
動作した際、他相の投入電流検出要素の検出感度
を高感度側に制御すると共に、自相の電流差動要
素の出力を阻止するよう構成したことを特徴とす
る電流差動継電装置。 2 特許請求の範囲第1項記載の装置において、
主変流器によつて検出した保護区間両端の電流値
を夫々高調波通過フイルタを通して加算器でベク
トル的に加算し、得られた出力と、これを基本波
通過フイルタを通して得られ出力とを瞬時値比較
回路で比較演算し、この比較結果を低周波通過フ
イルタを通した後、整流し、この整流により得た
抑制電気量と前記基本波通過フイルタの出力を整
流して得た動作電気量とを直流基準電気量と共に
瞬時値比較回路で比較して可逆積分タイマおよび
限時復帰タイマを通して自相のしや断器引はずし
出力とすると共に、前記加算器の出力をフイルタ
を通して得た高調波電流成分を感度操作回路を通
して前記動作電気量および直流基準電気量と共に
瞬時値比較回路で比較演算し、この比較結果を限
時動作タイマおよびNOT回路を通して得た電気
信号を前記自相しや断器の引はずし抑止力とする
と共に他相の感度操作回路に加えるようにした電
流差動継電装置。 3 特許請求の範囲第2項記載の装置において、
感度操作回路が、一対の電界効果トランジスタの
ドレイン端子を感度調整用素子を介して出力端子
に接続し、ソース端子を互いに接続して高調波通
過フイルタに接続し、ゲート端子には他相のしや
断器引はずし抑制電気量を互いに逆極性にインプ
ツトするよう構成されていることを特徴とする電
流差動継電装置。 4 特許請求の範囲第1項記載の装置において、
電流差動要素が、電力系統の各端の電流のベクト
ル和と各端電流を処理して得た抑制電流の割合が
所定の値に達した際に差動する電流比率差動要素
で構成されていることを特徴とする電流差動継電
装置。 5 特許請求の範囲第1項記載の装置において、
電力系統の電流中に含まれる高調波電流成分と基
本波電流成分の比が所定の値に達した際に出力を
生ずる投入電流検出装置を各相に設け、これらの
装置の少なくとも1組が動作した際に他相の投入
電流検出装置の検出感度を高感度側に制御するよ
うにした電流差動継電装置。
[Scope of Claims] 1. A current differential element that detects the currents at each end of the power system, obtains their vector sum, and produces an output when the vector sum exceeds a predetermined value, and a current in the power system. A switching current detection element that generates an output when the ratio of harmonic components and fundamental wave components contained in the power grid exceeds a predetermined value is provided for each phase of the power system, A current characterized in that, when at least one of the phases operates, the detection sensitivity of the input current detection element of the other phase is controlled to a high sensitivity side, and the output of the current differential element of the current phase is blocked. Differential relay device. 2. In the device according to claim 1,
The current values at both ends of the protection zone detected by the main current transformer are added vectorially by an adder through harmonic passing filters, and the obtained output is instantaneously added to the output obtained by passing this through a fundamental wave passing filter. A value comparison circuit performs a comparison operation, and the comparison result is passed through a low frequency pass filter and then rectified, and the suppressed electricity amount obtained by this rectification is combined with the operating electricity amount obtained by rectifying the output of the fundamental wave pass filter. is compared with the DC reference quantity of electricity in an instantaneous value comparison circuit and outputted as the self-phase loss and disconnection trip output through a reversible integral timer and a time-limited recovery timer, and the harmonic current component obtained by passing the output of the adder through a filter. is passed through the sensitivity operation circuit, and is compared with the operating electricity quantity and the DC reference electricity quantity in the instantaneous value comparison circuit, and the comparison result is used as an electric signal obtained through the time-limited operation timer and the NOT circuit to trip the self-phase switch or disconnector. A current differential relay device that serves as a deterrent and is added to the sensitivity control circuit of other phases. 3. In the device according to claim 2,
The sensitivity operation circuit connects the drain terminals of the pair of field effect transistors to the output terminal via the sensitivity adjustment element, connects the source terminals to each other and connects them to a harmonic passing filter, and connects the gate terminal to the output terminal of the other phase. What is claimed is: 1. A current differential relay device characterized in that the current differential relay device is configured to input electrical quantities with opposite polarities to each other. 4. In the device according to claim 1,
The current differential element is composed of a current ratio differential element that operates differentially when the vector sum of the currents at each end of the power system and the ratio of the suppression current obtained by processing the current at each end reach a predetermined value. A current differential relay device characterized by: 5. In the device according to claim 1,
Each phase is provided with a power-on current detection device that generates an output when the ratio of harmonic current components and fundamental wave current components contained in the power system current reaches a predetermined value, and at least one set of these devices is activated. A current differential relay device that controls the detection sensitivity of the input current detection device of the other phase to the high sensitivity side when
JP2425678A 1978-03-03 1978-03-03 Current differential relay device Granted JPS54116654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2425678A JPS54116654A (en) 1978-03-03 1978-03-03 Current differential relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2425678A JPS54116654A (en) 1978-03-03 1978-03-03 Current differential relay device

Publications (2)

Publication Number Publication Date
JPS54116654A JPS54116654A (en) 1979-09-11
JPS6111056B2 true JPS6111056B2 (en) 1986-04-01

Family

ID=12133155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2425678A Granted JPS54116654A (en) 1978-03-03 1978-03-03 Current differential relay device

Country Status (1)

Country Link
JP (1) JPS54116654A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150041U (en) * 1983-03-28 1984-10-06 豊田工機株式会社 reduction gear
JPH0667115B2 (en) * 1986-03-28 1994-08-24 日新電機株式会社 Ratio differential relay for transformer protection
JP5441625B2 (en) * 2009-11-06 2014-03-12 三菱電機株式会社 Busbar protection device
JP5645578B2 (en) * 2010-10-04 2014-12-24 三菱電機株式会社 Current differential protection relay

Also Published As

Publication number Publication date
JPS54116654A (en) 1979-09-11

Similar Documents

Publication Publication Date Title
US4502086A (en) Differential protective relay
EP0316203B1 (en) Protective relay
US3852642A (en) Sensing amplifier and trip circuit particularly for ground fault circuit interrupter
US3895263A (en) Grounded neutral detector drive circuit for two pole ground fault interrupter
JPS60210119A (en) Leakage proecting circuit
US3219918A (en) Current limiting apparatus
JPS6111056B2 (en)
US2295398A (en) Electrical protective device
Michelson Rectifier relay for transformer protection
Stringer The effect of DC offset on current operated relays
JPS6184008A (en) Three-phase transformer
ITMI20011327A1 (en) DIFFERENTIAL SWITCH FOR PROTECTION AGAINST EARTH LEAKAGE CURRENTS
Solak et al. Analysis of Power Transformer Magnetizing Inrush and Overexcitation Conditions in Case of Overvoltages due to Line-to-Ground Fault
JPS5852838Y2 (en) transformer protection device
SU639045A2 (en) Null sequence protection relay
RU2284082C2 (en) Protective device for electrical equipment of high-voltage substations and power transmission lines
SU743102A1 (en) Device for protective cut-out of electric equipment in ac mains
JPS6338688Y2 (en)
SU982136A1 (en) Method of redundancy protection of transformer
KR830000034B1 (en) Protective relay
Mortlock et al. Neutral earthing of three-phase systems, with particular reference to large power stations
GB535446A (en) Improvements in and relating to earth leakage protective systems
JPS594927B2 (en) Transformer protection relay method
Cimadevilla et al. CT saturation and its influence on protective relays
SU99407A1 (en) Voltage relay