JPH0360323A - Malfunction preventing equipment for ground overcurrent relay - Google Patents

Malfunction preventing equipment for ground overcurrent relay

Info

Publication number
JPH0360323A
JPH0360323A JP19622989A JP19622989A JPH0360323A JP H0360323 A JPH0360323 A JP H0360323A JP 19622989 A JP19622989 A JP 19622989A JP 19622989 A JP19622989 A JP 19622989A JP H0360323 A JPH0360323 A JP H0360323A
Authority
JP
Japan
Prior art keywords
circuit
current
overcurrent relay
ground fault
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19622989A
Other languages
Japanese (ja)
Other versions
JPH0757063B2 (en
Inventor
Shinichi Ono
真一 小野
Toshio Igawa
井川 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19622989A priority Critical patent/JPH0757063B2/en
Publication of JPH0360323A publication Critical patent/JPH0360323A/en
Publication of JPH0757063B2 publication Critical patent/JPH0757063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To prevent malfunction due to the excitation surge current of a transformer by providing a circuit for preventing polarized DC magnetization having a current generating circuit for applying a reversed DC current corresponding to the excitation surge current of the transformer to the secondary circuit of a CT. CONSTITUTION:The primary conductor of the main circuit in a transformer 1 is provided with a CT2 and the secondary circuit of the CT2 converted to handle a current suitable for an overcurrent relay 7 and a ground overcurrent relay 3 is provided with a circuit 5 for preventing polarized DC magnetization. The circuit 5 is operated when the amplitude of current is considerably shifted only in one direction, limits the DC current reversed according to the amplitude in one direction for a predetermined time and sets the total sum of three-phase components to zero. Thus, unbalanced current is prevented from flowing through the zero-phase circuit of the CT2 and malfunction of the ground overcurrent relay 3 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地絡過電流リレーの誤動作防止装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a malfunction prevention device for a ground fault overcurrent relay.

〔従来の技術〕[Conventional technology]

従来、変圧器の励磁突入電流による地絡過電流リレーの
誤動作を防止するには、保護継電システム〔電気書院)
(1974)の第202頁から第207頁に記載のよう
に、高調波抑制方式等がある。
Conventionally, in order to prevent malfunctions of ground fault overcurrent relays due to excitation inrush current of transformers, protective relay systems [Denki Shoin] have been used.
(1974), pages 202 to 207, there are harmonic suppression methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の第2高調波抑制式のリレーを使用した場合、次に
述べるような不都合がある。例えば22kV系の500
0kVAの3相変圧器1次の定格電流は約130Aで励
磁突入電流は100OA程度になり、そのうち第2高調
波分は50%以上、すなわち500A以上あり、IOA
接地系では遮断器の投入と同時に地絡事故が発生した時
の地絡電流はIOAである。ところが第2高調波抑制式
リレーでは第2高調波分を約15%以上含有すると動作
がロックされてしまうので、事故の検出ができなかった
When the second harmonic suppression type relay described above is used, there are the following disadvantages. For example, 500 of 22kV system
The primary rated current of a 0 kVA three-phase transformer is approximately 130 A, and the excitation inrush current is approximately 100 OA, of which the second harmonic is over 50%, or 500 A, and IOA
In a grounding system, when a ground fault occurs at the same time as the breaker is closed, the ground fault current is IOA. However, in the second harmonic suppression type relay, if the second harmonic content exceeds about 15%, the operation will be locked, making it impossible to detect an accident.

本発明は以上の点に鑑みなされたものであり、変圧器の
励磁突入電流による誤動作防止を可能とした地絡過電流
リレーの誤動作防止装置を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a malfunction prevention device for a ground fault overcurrent relay that can prevent malfunctions caused by magnetizing inrush current of a transformer.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、装置を、CTの2次回路に設け、変圧器の
励磁突入電流に見合う正負反転させた直流電流をCTの
2次回路に印加する電流発生回路を有する直流偏磁防止
回路で形成することにより、遠戚される。
The above purpose is to form a device with a DC bias prevention circuit that is installed in the secondary circuit of a CT and has a current generating circuit that applies a DC current whose polarity is reversed corresponding to the excitation inrush current of the transformer to the secondary circuit of the CT. By doing so, they become distant relatives.

〔作用〕[Effect]

上記手段を設けたので、CTの鉄心の直流偏磁が防止さ
れるようになって、CTの零相回路に不平衡電流が流れ
なくなる。
Since the above means is provided, DC bias magnetization of the iron core of the CT is prevented, and no unbalanced current flows in the zero-phase circuit of the CT.

すなわち変圧器の励磁突入電流によりCTの1次に発生
する電流が正方向または負方向の一方向のみであり、こ
のためCTの鉄心に飽和が生じることに着目し、この点
から地絡過電流リレーの誤動作防止を検討した。
In other words, we focused on the fact that the current generated in the primary of the CT due to the excitation inrush current of the transformer is only in one direction, either positive or negative, and this causes saturation in the core of the CT. We investigated ways to prevent malfunctions.

通常の負荷電流では正負のバランスがとれた正弦波と類
似な波形の電流となってCT1次に表われるが、励磁突
入電流の場合、CT1次に表われる電流は、第3図に示
されているようにR,S、T相の3相中のl相で見れば
正または負の片方向のみの電流として表われる。例えば
R相の励磁突入電流は正方向の電流であり、S相の励磁
突入電流は負方向の電流である。
In a normal load current, a current with a waveform similar to a sinusoidal wave with balanced positive and negative values appears in the CT1st order, but in the case of an excitation inrush current, the current appearing in the CT1st order is shown in Figure 3. As shown in the figure, if you look at the l phase of the three phases R, S, and T, it appears as a current in only one direction, positive or negative. For example, the R-phase magnetizing inrush current is a positive-direction current, and the S-phase magnetizing inrush current is a negative-direction current.

一方、CTの磁化はCTの一次巻線の電流に対して発生
する磁束が励磁突入電流のような正、負片方向だけの電
流では鉄心が一方向のみに磁化され、一般に云われるヒ
ステリシスループ上に磁化曲線が乗らなくなり、片方向
に偏磁される。長時間この現象が続くとCTの鉄心が飽
和に至ることがある。すなわち上述のR相のような片方
向のみの振幅を持つ電流が流れた時のCTの鉄心の磁化
が示されている第4図に示されているように、CTの鉄
心の磁化は同図(イ)に記載のように電流iの面積分に
依存するため、片方向の振幅を持つ電流iが流れると同
図(ロ)に記載されているように、鉄心は磁束密度Bが
1振幅毎に増大し、著しく磁束密度Bが増大すると鉄心
の飽和を引き起こすことになる。このようになるとCT
の2次巻線に正常な電流が流れなくなり、第5図に示さ
れているように3個のCTの2次電流の総和の零相回路
にアンバランスによる不平衡電流が流れ、地絡過電流リ
レーを誤動作させることが判った。
On the other hand, when the magnetic flux generated by the current in the primary winding of the CT is in only one direction, such as an excitation inrush current, the iron core is magnetized in only one direction, and the magnetic flux generated by the current in the primary winding of the CT is magnetized in only one direction. The magnetization curve no longer follows, and the magnetization is biased in one direction. If this phenomenon continues for a long time, the iron core of the CT may reach saturation. In other words, as shown in Figure 4, which shows the magnetization of the CT iron core when a current with an amplitude in only one direction flows, such as the R phase described above, the magnetization of the CT iron core is shown in the same figure. As shown in (B), it depends on the area integral of the current i, so if a current i with a unidirectional amplitude flows, the magnetic flux density B of the iron core will increase by one amplitude, as shown in (B) of the same figure. If the magnetic flux density B increases significantly, saturation of the iron core will be caused. When this happens, CT
Normal current no longer flows in the secondary winding of the CT, and as shown in Figure 5, an unbalanced current flows in the zero-phase circuit of the sum of the secondary currents of the three CTs, causing an earth fault overcurrent. It was discovered that the relay was malfunctioning.

そこで本発明ではCTの鉄心に対して1次巻線も2次巻
線も同じ影響を与えるので、CTの1次電流による磁束
を打ち消すように2次巻線により直流電流を流して磁束
を発生させ、CTの鉄心の飽和を防止するように作用さ
せるようにした。すなわち変圧器の励磁突入電流に見合
う正負反転させた直流電流をCTの2次回路(2次巻線
)に印加するように誤動作防止装置を形成したものであ
る。このようにすることによりCTが飽和することがな
く、CTの零相回路に不平衡電流が流れなくなって、変
圧器の励磁突入電流による誤動作防止を可能とした地絡
過電流リレーの誤動作防止装置を得ることを可能とした
ものである。
Therefore, in the present invention, since both the primary winding and the secondary winding have the same effect on the CT iron core, magnetic flux is generated by passing DC current through the secondary winding so as to cancel the magnetic flux caused by the CT's primary current. It was designed to act to prevent saturation of the CT core. That is, a malfunction prevention device is formed so as to apply a direct current whose polarity is reversed to match the excitation inrush current of the transformer to the secondary circuit (secondary winding) of the CT. By doing this, the CT does not become saturated and unbalanced current no longer flows in the zero-phase circuit of the CT, making it possible to prevent malfunctions of the earth fault overcurrent relay due to the transformer's excitation inrush current. It is possible to obtain.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図および第2図には本発明の一実施例が示されている
。同図に示されているように、3相の変圧器上の1次に
設けた3相のCT2の零相回路に設けられている地絡過
電流リレー3が、変圧器工の励磁突入電流によって誤動
作するのを防止する地絡過電流リレー3の誤動作防止装
置を、本実施例では次のように形成した。CT2の2次
回路に設け、変圧器1の励磁突入電流に見合う正負反転
させた直流電流をCT2の2次回路に印加する電流発生
回Is4を有する直流偏磁防止間M5で形成した。この
ようにすることによりCT2の鉄心の直流偏磁が防止さ
れるようになって、CT2の零相回路に不平衡電流が流
れなくなり、変圧器1の励磁突入電流による誤動作防止
を可能とした地絡過電流リレー3の誤動作防止装置を得
ることができる。
The present invention will be explained below based on the illustrated embodiments. An embodiment of the invention is shown in FIGS. 1 and 2. FIG. As shown in the figure, the ground fault overcurrent relay 3 installed in the zero-phase circuit of the three-phase CT2 installed in the primary on the three-phase transformer is overloaded by the excitation inrush current of the transformer. In this embodiment, a malfunction prevention device for the ground fault overcurrent relay 3 that prevents malfunction is formed as follows. A DC unbiased magnetization prevention gap M5 is provided in the secondary circuit of CT2 and has a current generation circuit Is4 that applies a DC current whose polarity is reversed to match the excitation inrush current of transformer 1 to the secondary circuit of CT2. By doing this, DC unbalanced magnetization of the iron core of CT2 is prevented, and unbalanced current no longer flows in the zero-phase circuit of CT2. A malfunction prevention device for the overcurrent relay 3 can be obtained.

すなわち遮断器6、変圧器1の主回路の1次導体にCT
2を設け、過電流リレー7、地絡過電流リレー3に適し
た電流に変換したCT2の2次回路(2次巻線)に直流
偏磁防止回路5を設けた。
In other words, CT is connected to the primary conductor of the main circuit of circuit breaker 6 and transformer 1.
2 was provided, and a DC bias prevention circuit 5 was provided in the secondary circuit (secondary winding) of the CT 2, which was converted into a current suitable for the overcurrent relay 7 and the ground fault overcurrent relay 3.

この直流偏磁防止回路5は電流振幅が片方向のみ著しく
振れている場合にのみ動作し、片方向の振幅に見合って
反転させた直流電流を一定時限流し。
This DC bias prevention circuit 5 operates only when the current amplitude is significantly deviated in only one direction, and flows a DC current that is inverted according to the amplitude in one direction for a certain period of time.

かつ3相分の総和が零となるように設定しである。Also, the settings are made so that the sum of the three phases becomes zero.

直流偏磁防止回路5は第2図にも示されているようにC
T2の1次巻IIA2bと対向した2次巻線2cに流れ
る電流を、電流発生回路4内のI/V変換器8により電
流を電圧に変換し、電流発生回路4内に取込む。極性判
別回路9では正、負夫々の和の総量を検出し、零となる
かならないかを判別し、零とならない場合、すられち片
方向に電流が片寄った場合に切換回路10に出力を出す
ように調整する。負荷電流および事故電流では正負両方
向に波形が表われ、総量は零となるので出力の許可は出
さない。
As shown in FIG. 2, the DC bias prevention circuit 5
The current flowing through the secondary winding 2c facing the primary winding IIA2b of T2 is converted into a voltage by the I/V converter 8 in the current generating circuit 4, and the current is introduced into the current generating circuit 4. The polarity determining circuit 9 detects the total amount of the positive and negative sums, determines whether it is zero or not, and outputs an output to the switching circuit 10 if the current is not zero or if the current is biased in one direction. Adjust so that it comes out. Load current and fault current have waveforms in both positive and negative directions, and the total amount is zero, so output permission is not issued.

上述の第3図のR相のように正方向の励磁突入電流が発
生した場合、極性判別回路9までの動作は通常の負荷電
流と同様に作用するが、極性判別回路9ではこの励磁突
入電流に対して正方向のみを検出し、切換回路10の正
出力に許可信号を与え、負出力には出力許可信号を与え
ない。この時、正電流選択増幅回路11はI/V変換器
8で与えられた正方向の電圧のみを増幅し、直流出力す
る回路となっており、励磁突入電流には有効に働き。
When a positive excitation inrush current occurs as in the R phase shown in FIG. , only the positive direction is detected, and a permission signal is given to the positive output of the switching circuit 10, and no output permission signal is given to the negative output. At this time, the positive current selection amplification circuit 11 is a circuit that amplifies only the positive voltage given by the I/V converter 8 and outputs DC, and works effectively against the excitation inrush current.

正方向のレベルを増幅し、切換回路10に出力を与える
。一方、負電流選択増幅回路12は正方向の電圧に対し
ては出力は零のため、第3図のS相のような負方向の励
磁突入電流に対しての出力は出さない。以上より、切換
回路10より出力された電圧レベルが正方向になるため
、V/I変換回路13からはこれに見合った負電流を出
力するよう設定する。
The positive level is amplified and an output is given to the switching circuit 10. On the other hand, since the output of the negative current selection amplifier circuit 12 is zero for a voltage in the positive direction, it does not output an output for an excitation inrush current in the negative direction such as the S phase in FIG. As described above, since the voltage level output from the switching circuit 10 is in the positive direction, the V/I conversion circuit 13 is set to output a negative current commensurate with this.

これによりCT2の2次巻12cに励磁突入電流(正方
向)により発生した磁束φ□を打ち消すための、磁束φ
2を発生させるために負の直流電流工2を重畳させるこ
とにより、CT2の鉄心2aの飽和を防止することがで
きる。同様に励磁突入電流(負電流)の場合も正、負逆
になって有効に働く。
This creates a magnetic flux φ to cancel the magnetic flux φ□ generated by the excitation inrush current (positive direction) in the secondary winding 12c of CT2.
By superimposing the negative DC current 2 in order to generate 2, saturation of the iron core 2a of the CT 2 can be prevented. Similarly, in the case of excitation inrush current (negative current), the positive and negative currents are reversed and work effectively.

また、負荷電流レベル検出回路14はCT2の2次巻線
2cに重畳する電流レベルを3相トータル電流調整回路
15に与え、3相トータル電流調整回路15では各相に
重畳する直流電流を監視し、3相のトータル電流を零と
するように調整する。
In addition, the load current level detection circuit 14 supplies the current level superimposed on the secondary winding 2c of the CT2 to the three-phase total current adjustment circuit 15, and the three-phase total current adjustment circuit 15 monitors the DC current superimposed on each phase. , adjust the total current of the three phases to zero.

このようにすることにより3相のトータル電流の不平衡
電流がCT2の2次回路の総和である零相回路に流れる
のを抑止し、地絡過電流リレー3が誤動作するのを防止
する。すなわち励磁突入電流が発生してもCT2の飽和
がなくなり、その結果、励磁突入電流が地絡過電流リレ
ー3の誤動作を引き起こすことがなくなる。
This prevents the unbalanced current of the three-phase total current from flowing into the zero-phase circuit, which is the sum of the secondary circuits of the CT 2, and prevents the ground fault overcurrent relay 3 from malfunctioning. That is, even if a magnetizing inrush current occurs, the CT2 is not saturated, and as a result, the magnetizing inrush current does not cause the ground fault overcurrent relay 3 to malfunction.

このように本実施例によれば、励磁突入電流発生時のC
Tの直流偏磁による飽和によって生じる零相の不平衡電
流を抑止することにより、地絡過電流リレーの誤動作を
防止すると共に、地線事故の検出ができるので、変圧器
1次の保護回路に効果がある。
In this way, according to this embodiment, when the excitation inrush current occurs, C
By suppressing the zero-phase unbalanced current caused by saturation due to DC bias magnetization of T, it is possible to prevent malfunction of the ground fault overcurrent relay and detect ground wire faults, which is effective for the primary protection circuit of the transformer. There is.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は地絡過電流リレーの変圧器の励磁
突入電流による誤動作が防止されるようになって、変圧
器の励磁突入電流による誤動作防止を可能とした地絡過
電流リレーの誤動作防止装置を得ることができる。
As described above, the present invention provides a malfunction prevention device for a ground fault overcurrent relay, which prevents malfunction of the ground fault overcurrent relay due to the magnetizing inrush current of the transformer. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の地絡過電流リレーの誤動作防止装置の
一実施例の装置構成を示すブロック図、第2図は同じく
一実施例の直流偏磁の防止を示すCTの正面図、第3図
は励磁突入電流発生時の071次の電流波形図、第4図
(イ)、(ロ)は励磁突入電流発生時のCTの鉄心の磁
化を示すもので(イ)は時間tと電流iとの関係を示す
特性図、(ロ)は時間tと磁束密度Bとの関係を示す特
性図、第5図は励磁突入電流発生時のCT2次の電流波
形図である。 1・・・変圧器、2・・・CT、2c・・・2次巻!(
2次回路)、3・・・地絡過電流リレー、4・・・電流
発生回路、5・・・直流偏磁防止回路、8・・・r/V
変換器。 9・・・極性判別回路、10・・・切換回路、11・・
・正電流選択増幅回路、12・・・負電流選択増幅回路
、13・・・V/I変換回路、14・・・付加電流レベ
ル検出回路、15・・・3相トータル電流調整回路。 第1図 1・・・変圧器 2…CT 3・・・地絡過電R9レー 4・・・電流発生回路 5・・・直R911+磁防止am 8・・・1/■変換器 9・・・極性判別回路 10・・・切換回路 11・・・正電流選択増幅回路 12・・・負電流選択増幅回路 13・・・v/■変換回路 14・・・付加電流レベル検出回路 15・・・3相トータルi流調整回路 第 図 第3z 第 図 (イ) 第 図 アンバランスにて零相電流発生
FIG. 1 is a block diagram showing the device configuration of an embodiment of the malfunction prevention device for a ground fault overcurrent relay of the present invention, FIG. 2 is a front view of a CT showing prevention of DC bias magnetization according to the embodiment, The figure shows the 071st order current waveform when the excitation inrush current is generated. Figures 4 (a) and (b) show the magnetization of the CT core when the excitation inrush current occurs, and (a) shows the time t and the current i. (b) is a characteristic diagram showing the relationship between time t and magnetic flux density B, and FIG. 5 is a CT secondary current waveform diagram when an excitation inrush current is generated. 1...Transformer, 2...CT, 2c...Secondary winding! (
Secondary circuit), 3... Earth fault overcurrent relay, 4... Current generation circuit, 5... DC bias prevention circuit, 8... r/V
converter. 9...Polarity discrimination circuit, 10...Switching circuit, 11...
- Positive current selection amplifier circuit, 12... Negative current selection amplifier circuit, 13... V/I conversion circuit, 14... Additional current level detection circuit, 15... Three-phase total current adjustment circuit. Fig. 1 1...Transformer 2...CT 3...Ground fault overcurrent R9 relay 4...Current generating circuit 5...Direct R911 + anti-magnetic am 8...1/■ converter 9... Polarity discrimination circuit 10...Switching circuit 11...Positive current selection amplifier circuit 12...Negative current selection amplifier circuit 13...V/■ conversion circuit 14...Additional current level detection circuit 15...3 Phase total i current adjustment circuit Fig. 3z Fig. (a) Fig. Zero-sequence current generation due to unbalance

Claims (1)

【特許請求の範囲】 1、3相の変圧器の1次に設けた3相のCTの零相回路
に設けられている地絡過電流リレーが、前記変圧器の励
磁突入電流によって誤動作するのを防止する地絡過電流
リレーの誤動作防止装置において、前記装置が、前記C
Tの2次回路に設けられ、前記変圧器の励磁突入電流に
見合う正負反転させた直流電流をCTの2次回路に印加
する電流発生回路を有する直流偏磁防止回路で形成され
たものであることを特徴とする地絡過電流リレーの誤動
作防止装置。 2、前記電流発生回路が、前記CTの2次回路に接続さ
れたI/V変換器と、このI/V変換器に接続された正
電流選択増幅回路、負電流選択増幅回路および極性判別
回路と、これら増幅回路および極性判別回路に接続され
た切換回路と、この切換回路に接続されたV/I変換回
路と、このV/I変換回路と前記I/V変換器との間に
接続された付加電流レベル検出回路とで構成されたもの
である特許請求の範囲第1項記載の地絡過電流リレーの
誤動作防止装置。 3、前記直流偏磁防止回路が、前記電流発生回路と、こ
の回路のV/I変換回路と付加電流レベル検出回路との
間に接続された3相トータル電流調整回路とで構成され
たものである特許請求の範囲第1項記載の地絡過電流リ
レーの誤動作防止装置。 4、前記直流偏磁防止回路が、前記CTに内蔵されたも
のである特許請求の範囲第1項記載の地絡過電流リレー
の誤動作防止装置。
[Claims] A ground fault overcurrent relay provided in a zero-phase circuit of a three-phase CT provided in the primary of a one- and three-phase transformer is prevented from malfunctioning due to the excitation inrush current of the transformer. In the device for preventing malfunction of a ground fault overcurrent relay, the device
It is formed of a DC unbalanced magnetization prevention circuit that is provided in the secondary circuit of the CT and has a current generation circuit that applies a DC current whose polarity is reversed to match the excitation inrush current of the transformer to the secondary circuit of the CT. A malfunction prevention device for a ground fault overcurrent relay, characterized by: 2. The current generation circuit includes an I/V converter connected to the secondary circuit of the CT, a positive current selection amplifier circuit, a negative current selection amplifier circuit, and a polarity discrimination circuit connected to the I/V converter. , a switching circuit connected to these amplifier circuits and polarity determination circuits, a V/I conversion circuit connected to this switching circuit, and a V/I conversion circuit connected between this V/I conversion circuit and the I/V converter. 2. A malfunction prevention device for a ground fault overcurrent relay according to claim 1, which comprises an additional current level detection circuit. 3. The DC unbalanced magnetization prevention circuit is composed of the current generation circuit and a three-phase total current adjustment circuit connected between the V/I conversion circuit and the additional current level detection circuit of this circuit. A malfunction prevention device for a ground fault overcurrent relay according to claim 1. 4. The malfunction prevention device for a ground fault overcurrent relay according to claim 1, wherein the DC bias prevention circuit is built in the CT.
JP19622989A 1989-07-28 1989-07-28 Malfunction prevention device for ground fault overcurrent relay Expired - Lifetime JPH0757063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19622989A JPH0757063B2 (en) 1989-07-28 1989-07-28 Malfunction prevention device for ground fault overcurrent relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19622989A JPH0757063B2 (en) 1989-07-28 1989-07-28 Malfunction prevention device for ground fault overcurrent relay

Publications (2)

Publication Number Publication Date
JPH0360323A true JPH0360323A (en) 1991-03-15
JPH0757063B2 JPH0757063B2 (en) 1995-06-14

Family

ID=16354348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19622989A Expired - Lifetime JPH0757063B2 (en) 1989-07-28 1989-07-28 Malfunction prevention device for ground fault overcurrent relay

Country Status (1)

Country Link
JP (1) JPH0757063B2 (en)

Also Published As

Publication number Publication date
JPH0757063B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
Guzman et al. A current-based solution for transformer differential protection. I. Problem statement
JPH07143669A (en) Circuit breaker at time of ground bad
Guzman et al. Performance analysis of traditional and improved transformer differential protective relays
EP0637865B1 (en) Transformer differential relay
JPS60210119A (en) Leakage proecting circuit
Hosemann et al. Modal saturation detector for digital differential protection
US4819119A (en) Faulted phase selector for single pole tripping and reclosing schemes
JPH0360323A (en) Malfunction preventing equipment for ground overcurrent relay
JP2000060132A (en) Power converter
Stringer The effect of DC offset on current operated relays
US3710190A (en) Fault current protective circuit for a load supplied from single or polyphase systems
Nimtaj et al. A comparison of two numerical relay low impedance restricted earth fault algorithms in power transformer
Aibangbee et al. Power Transformer Differential Relay Inrush Restraint Setting Applications
JPS6111056B2 (en)
JPH08168165A (en) Protective relay for transformer
JP3446268B2 (en) Transformer protector
Solak et al. Analysis of Power Transformer Magnetizing Inrush and Overexcitation Conditions in Case of Overvoltages due to Line-to-Ground Fault
Jogaib et al. Autotransformer Protection Case Studies, Going Above and Beyond the Traditional Cookbook
Sezi A new approach for transformer ground differential protection
JPH0510515Y2 (en)
Taberer et al. Getting the Lines Crossed—How a Three-Phase Series Fault Caused a Sequence of Relay Operations
SU410511A1 (en)
Guzmán et al. Power transformer protection
JPS594927B2 (en) Transformer protection relay method
JPS594926B2 (en) Transformer protection relay method