JPH0585849B2 - - Google Patents

Info

Publication number
JPH0585849B2
JPH0585849B2 JP2105221A JP10522190A JPH0585849B2 JP H0585849 B2 JPH0585849 B2 JP H0585849B2 JP 2105221 A JP2105221 A JP 2105221A JP 10522190 A JP10522190 A JP 10522190A JP H0585849 B2 JPH0585849 B2 JP H0585849B2
Authority
JP
Japan
Prior art keywords
magnetostriction
gauges
relative displacement
laser beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2105221A
Other languages
Japanese (ja)
Other versions
JPH045524A (en
Inventor
Masao Yabumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10522190A priority Critical patent/JPH045524A/en
Publication of JPH045524A publication Critical patent/JPH045524A/en
Publication of JPH0585849B2 publication Critical patent/JPH0585849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、方向性電磁鋼板、無方向性電磁鋼板
等の磁性材料の磁歪特性を高精度に測定する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring magnetostrictive properties of magnetic materials such as grain-oriented electrical steel sheets and non-oriented electrical steel sheets with high precision.

[従来の技術] 磁界中に磁性材料が置かれ磁化されると伸びあ
るいは縮む磁歪現象がおこる。特に、磁性材料が
交流磁界中におかれ磁化される場合には磁化の変
化と共に伸縮するため磁界周波数に同期した磁歪
振動となり、振動ノズル源あるいは騒音の原因と
なることがある。近年、環境問題の高揚とともに
トランス、モーター、電磁弁等の磁気応用機器の
騒音を減少させることが社会的な要請となり、鉄
心に用いられる方向性電磁鋼板、無方向性電磁鋼
板等の鋼板材料、あるいはその他の磁性材料の磁
歪特性を改善することがひとつの開発課題となつ
ている。しかし、一般に磁歪による長さの変化率
は非常に小さく10-5程度であり、これらの磁歪特
性を精度よく測定することは従来困難であつた。
[Prior Art] When a magnetic material is placed in a magnetic field and magnetized, a magnetostriction phenomenon occurs in which it expands or contracts. In particular, when a magnetic material is placed in an alternating current magnetic field and magnetized, it expands and contracts as the magnetization changes, resulting in magnetostrictive vibrations that are synchronized with the magnetic field frequency, which may cause a vibrating nozzle source or noise. In recent years, with the rise of environmental issues, there has been a social demand for reducing noise from magnetic equipment such as transformers, motors, and solenoid valves. Another development challenge is to improve the magnetostrictive properties of other magnetic materials. However, the rate of change in length due to magnetostriction is generally very small, on the order of 10 -5 , and it has traditionally been difficult to accurately measure these magnetostrictive properties.

従来、方向性電磁鋼板等の磁性材料の磁歪特性
測定には、交流磁界中に置いた材料の一端を固定
しておき、他端に取り付けられた検出機構を介し
て差動トランスにより振動変位量を検出する方法
の装置が用いられてきた。しかし、この方法の装
置では、材料と差動トランスの間の検出機構の振
動伝達特性により検出される振動変位量が変化す
る現象や、検出機構の振動共振モード特性によつ
ては磁歪振動に検出機構自身の振動が重畳する現
象が起こる。このため、同一材料であつても検出
機構の材料への取付方法の微妙な違いにより測定
される磁歪特性結果が異なり、再現性を得ること
が困難であつた。
Conventionally, to measure the magnetostrictive characteristics of magnetic materials such as grain-oriented electrical steel sheets, one end of the material placed in an alternating magnetic field is fixed, and a differential transformer is used to detect the amount of vibration displacement via a detection mechanism attached to the other end. Devices have been used to detect . However, with this method, the amount of vibration displacement detected changes due to the vibration transfer characteristics of the detection mechanism between the material and the differential transformer, and magnetostrictive vibrations may be detected depending on the vibration resonance mode characteristics of the detection mechanism. A phenomenon occurs in which the vibrations of the mechanism itself are superimposed. For this reason, even if the materials are the same, the results of the measured magnetostriction characteristics differ due to subtle differences in the method of attaching the detection mechanism to the material, making it difficult to obtain reproducibility.

[発明が解決しようとする課題] 本発明は、従来の交流磁歪測定装置の磁歪振動
を精度よく検出するのが困難という問題点を解決
し、磁性材料の磁歪特性を高精度かつ再現性よく
測定可能な方法を提供することにある。
[Problems to be Solved by the Invention] The present invention solves the problem that it is difficult to accurately detect magnetostrictive vibrations in conventional AC magnetostriction measuring devices, and measures the magnetostrictive properties of magnetic materials with high precision and reproducibility. The goal is to provide a possible method.

[課題を解決するための手段] 本発明に先立ち、従来の交流磁歪測定装置の測
定誤差要因を詳細に検討した。主な誤差要因とし
て、装置の外部からの振動ノイズの影響、装置構
造物の共振現象、材料からの漏れ磁束が材料近傍
の他の磁性材料に流れることによる磁気吸引力に
よる振動、検出機構による振動伝達障害、等な考
えられた。個々の要因について測定へに影響を調
べた結果、検出機構による誤差要因がもつとも影
響が大きいことがわかつた。材料の磁歪振動を正
確に差動トランスに伝達するためには検出機構
に、剛性の強さ、軽量さ、抵抗のない支持方法、
共振を起こさない形状、材料に歪を与えない取り
付け方法、等が要求されるが、これらを同時に満
足することは非常に困難であつた。
[Means for Solving the Problems] Prior to the present invention, measurement error factors of conventional AC magnetostriction measurement devices were studied in detail. The main error factors are the influence of vibration noise from outside the device, resonance phenomena of the device structure, vibrations due to magnetic attraction force caused by magnetic flux leaking from the material flowing into other magnetic materials near the material, and vibrations caused by the detection mechanism. It was thought that there was a transmission disorder, etc. As a result of examining the influence of each factor on measurement, it was found that the error factor caused by the detection mechanism had a large influence. In order to accurately transmit the magnetostrictive vibrations of the material to the differential transformer, the detection mechanism must have high rigidity, light weight, a support method that eliminates resistance,
A shape that does not cause resonance, a mounting method that does not distort the material, etc. are required, but it has been extremely difficult to satisfy these requirements at the same time.

本発明では、上述した検出機構による磁歪測定
誤差を基本的に取り除くため、磁歪振動を伝達す
る検出機構を省略した磁歪測定方法を検討し、振
動測定に従来の差動トランス法に代わり、非接触
振動測定法を採用することが最も効果的であるこ
とを見いだした。非接触による振動測定法には、
電極間の距離による電気容量の変化に着目し、静
電容量法、反射面に斜め入射させたレーザ光の反
射光の位置の距離による変化に着目したレーザ変
位計法、反射面の移動速度によりレーザ反射光の
波長が変化するドツプラー効果に着目したレーザ
ドツプラー振動計法がある。これらの非接触振動
測定法の磁歪測定への適用を検討した結果、微小
振動の検出感度の高さ、高速応答性、計測周波数
範囲の広さ、相対振動が計測可能なことから、レ
ーザドツプラー振動計を用いることが最適である
ことを見いだした。
In the present invention, in order to basically eliminate the magnetostriction measurement error caused by the above-mentioned detection mechanism, we investigated a magnetostriction measurement method that omitted the detection mechanism that transmits magnetostriction vibrations, and used a non-contact method for vibration measurement instead of the conventional differential transformer method. We found that adopting the vibration measurement method was the most effective. Non-contact vibration measurement methods include:
The capacitance method focuses on the change in capacitance due to the distance between the electrodes, the laser displacement meter method focuses on the change in the position of the reflected light of the laser beam obliquely incident on the reflective surface, and the moving speed of the reflective surface. There is a laser Doppler vibrometer method that focuses on the Doppler effect in which the wavelength of laser reflected light changes. As a result of considering the application of these non-contact vibration measurement methods to magnetostriction measurement, we found that laser Doppler has high detection sensitivity for minute vibrations, high speed response, wide measurement frequency range, and ability to measure relative vibrations. We found that using a vibration meter is optimal.

本発明の基本的構成の一例を第1図に示す。図
中の1はサンプルを示し、サンプル1の一端は固
定端であり、サンプル固定治具10でベースプレ
ート11に固定されている。サンプル1の他の一
端は自由端であり、レーザドツプラー振動計のセ
ンサーヘツド2からレーザ光束13がサンプルの
両端を結ぶ軸に平行に入射する。一方、センサー
ヘツド3からはレーザ光束14がベースプレート
11に固定された反射器12に入射している。レ
ーザドツプラー振動計シグナルプロセツサ4はセ
ンサーヘツド2およびセンサーヘツド3で検出さ
れたレーザ反射光のドツプラー効果による周波数
変位差を検出し、サンプルの自由端と固定端との
相対変位速度を検出する。相対変位速度信号は積
分器5で積分処理により磁歪振動信号に変換さ
れ、オシロスコープ7のY軸に入力される。一
方、サンプル1は励磁コイル15に接続された励
磁電源9により励磁され、磁束検出コイル16の
起電力をプリアンプ8で増幅し積分器6で積分処
理することのよりサンプル1を通る磁束量信号と
して、オシロスコープのX軸に入力される。オシ
ロスコープ7のデイスプレイには、磁歪信号と磁
束信号のリサージユ図形が出力される。第2図は
レーザドツプラー振動計の光学系の一例を示す。
図中、21はレーザ発振器、22,23はビーム
スプリツタ、24,25は偏光ビームスプリツ
タ、26はブラツグセル、27,28は光検出
器、29,30は偏光面保存光フアイバーであ
る。第2図はデユアルビームタイプのマツハツエ
ンダー干渉計を原理とした振動計の例であるが、
レーザドツプラー効果を用いた振動計であれば他
の光学系であつてもよい。
An example of the basic configuration of the present invention is shown in FIG. 1 in the figure indicates a sample, and one end of the sample 1 is a fixed end, and is fixed to a base plate 11 with a sample fixing jig 10. The other end of the sample 1 is a free end, and a laser beam 13 from the sensor head 2 of the laser Doppler vibrometer is incident parallel to the axis connecting both ends of the sample. On the other hand, a laser beam 14 from the sensor head 3 is incident on a reflector 12 fixed to a base plate 11. The laser Doppler vibrometer signal processor 4 detects the frequency displacement difference due to the Doppler effect of the laser reflected light detected by the sensor head 2 and the sensor head 3, and detects the relative displacement speed between the free end and fixed end of the sample. . The relative displacement velocity signal is converted into a magnetostrictive vibration signal by an integrator 5 through integration processing, and is input to the Y axis of an oscilloscope 7. On the other hand, the sample 1 is excited by the excitation power supply 9 connected to the excitation coil 15, and the electromotive force of the magnetic flux detection coil 16 is amplified by the preamplifier 8 and integrated by the integrator 6, thereby generating a magnetic flux amount signal passing through the sample 1. , is input to the X-axis of the oscilloscope. A Lissage figure of the magnetostrictive signal and the magnetic flux signal is output on the display of the oscilloscope 7. FIG. 2 shows an example of the optical system of a laser Doppler vibrometer.
In the figure, 21 is a laser oscillator, 22 and 23 are beam splitters, 24 and 25 are polarizing beam splitters, 26 is a Bragg cell, 27 and 28 are photodetectors, and 29 and 30 are polarization-maintaining optical fibers. Figure 2 is an example of a vibration meter based on the dual beam type Matsuhatsu Ender interferometer.
Other optical systems may be used as long as the vibration meter uses the laser Doppler effect.

第3図は本発明の基本的構成のもうひとつの例
を示す。レーザドツプラー振動計センサーヘツド
2,3はベースプレート46に支持されているサ
ンプル1の2標点上にレーザ光反射器40,41
が設置されている。レーザ光反射器40,41の
反射面の振動がサンプル1の設置点の振動と線形
的な関係となるよう、レーザ光反射器40,41
をサンプル1へ設置する。レーザドツプラー振動
計のセンサーヘツド2,3からレーザ光反射器4
0,41へ入射するレーザ光束13,14は、前
述の2標点間を結ぶ軸に平行でかつ同じ方向から
入射する必要がある。レーザ光反射器40,41
からの反射光は、ミラー42,43を経てレーザ
ドツプラー振動計センサーヘツド2,3に入射す
る。レーザドツプラー振動計シグナルプロセツサ
4はセンサーヘツド2およびセンサーヘツド3で
検出されたレーザ反射光のドツプラー効果による
周波数変位差を検出し、サンプル1の2標点間の
相対変位速度を検出する。相対変位速度信号は積
分器5で積分処理により磁歪振動信号に変換さ
れ、オシロスコープ7のY軸に入力される。一
方、サンプル1は励磁コイル15に接続された励
磁電源9により励磁され、磁束検出コイル16の
起電力をプリアンプ8で増幅し積分器6で積分処
理することによりサンプル1を通る磁束量信号と
して、オシロスコープのX軸に入力される。オシ
ロスコープ7のデイスプレイには、磁歪信号と磁
束信号のリサージユ図形が出力される。
FIG. 3 shows another example of the basic configuration of the present invention. The laser Doppler vibrometer sensor heads 2 and 3 have laser light reflectors 40 and 41 on two gauge points of the sample 1 supported on a base plate 46.
is installed. The laser beam reflectors 40, 41 are arranged so that the vibrations of the reflecting surfaces of the laser beam reflectors 40, 41 have a linear relationship with the vibrations of the installation point of the sample 1.
is installed on sample 1. From the sensor heads 2 and 3 of the laser Doppler vibrometer to the laser light reflector 4
The laser beams 13 and 14 that are incident on the points 0 and 41 need to be parallel to the axis connecting the two gauge points mentioned above and should be incident from the same direction. Laser light reflector 40, 41
The reflected light from the laser beam passes through mirrors 42 and 43 and enters the laser Doppler vibrometer sensor heads 2 and 3. The laser Doppler vibrometer signal processor 4 detects the frequency displacement difference due to the Doppler effect of the laser reflected light detected by the sensor head 2 and the sensor head 3, and detects the relative displacement speed between the two gauge points of the sample 1. The relative displacement velocity signal is converted into a magnetostrictive vibration signal by an integrator 5 through integration processing, and is input to the Y axis of an oscilloscope 7. On the other hand, the sample 1 is excited by the excitation power supply 9 connected to the excitation coil 15, and the electromotive force of the magnetic flux detection coil 16 is amplified by the preamplifier 8 and integrated by the integrator 6, thereby generating a magnetic flux amount signal passing through the sample 1. Input to the X axis of the oscilloscope. A Lissage figure of the magnetostrictive signal and the magnetic flux signal is output on the display of the oscilloscope 7.

[実施例] 第3図にブロツク図を示した測定装置を製作
し、方向性電磁鋼板をサンプルとして磁歪特性を
測定した。サンプルの寸法は100mm×500mm×0.23
mmであり、圧延方向が長手方向である。サンプル
の両端は励磁によりサンプル内に発生する反磁界
を減少させるため、ヨークに接触させて帰磁路を
形成させた。励磁コイル両端外側のサンプル上2
標点にレーザ光反射器を設置した。レーザ光反射
器はレーザ反射面にレーザ反射テープを貼つた5
mm立方のベークライトであり、サンプル表面に接
着固定した。サンプルは正弦波電圧出力の交流励
磁電源で励磁した。磁歪信号と磁束信号はデジタ
ルタイプのオシロスコープに入力し、64回の平均
化処理を行い騒音を軽減させた。
[Example] A measuring device whose block diagram is shown in FIG. 3 was manufactured, and magnetostriction characteristics were measured using a grain-oriented electrical steel sheet as a sample. Sample dimensions are 100mm x 500mm x 0.23
mm, and the rolling direction is the longitudinal direction. Both ends of the sample were brought into contact with a yoke to form a return path in order to reduce the demagnetizing field generated within the sample due to excitation. Sample top 2 on the outside of both ends of the excitation coil
A laser beam reflector was installed at the gauge point. The laser beam reflector is made by pasting laser reflective tape on the laser reflecting surface5.
It was Bakelite of mm cubic size and was adhesively fixed to the sample surface. The sample was excited by an AC excitation power supply with a sinusoidal voltage output. The magnetostrictive signal and magnetic flux signal were input to a digital oscilloscope and averaged 64 times to reduce noise.

製作した装置による磁歪測定結果の一例を第4
図に示す。図は最大磁束密度1.9Tにおける測定
結果を示すオシロスコープのデイスプレイを写真
撮影したものであり、磁束密度と横軸とし磁歪を
縦軸としたリサージユ図形である。
An example of magnetostriction measurement results using the fabricated device is shown in the fourth section.
As shown in the figure. The figure is a photograph of an oscilloscope display showing the measurement results at a maximum magnetic flux density of 1.9T, and is a Lissage figure with magnetic flux density as the horizontal axis and magnetostriction as the vertical axis.

[発明の効果] 以上説明したように、本発明によれば交流磁界
中で磁化された磁性材料の交流磁歪特性を従来法
に比べ著しく精度よく測定できる。
[Effects of the Invention] As described above, according to the present invention, the AC magnetostriction characteristics of a magnetic material magnetized in an AC magnetic field can be measured with significantly higher accuracy than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成の一例を示したブ
ロツク図である。第2図はレーザドツプラー振動
計の光学系の一例を示したものである。第3図は
本発明の基本的構成のもうひとつの例を示したブ
ロツク図である。第4図は実施例における方向性
電磁鋼板の磁歪測定結果の一例を示したものであ
る。 1……サンプル、2,3……レーザドツプラー
振動計センサーヘツド、4……レーザドツプラー
振動計シグナルプロセツサ、5,6……積分器、
7……オシロスコープ、8……プリアンプ、9…
…励磁電源、10……サンプル固定治具、11…
…ベースプレート、12……固定反射器、13,
14……レーザ光束、15……励磁コイル、16
……磁束検出コイル。
FIG. 1 is a block diagram showing an example of the basic configuration of the present invention. FIG. 2 shows an example of the optical system of a laser Doppler vibrometer. FIG. 3 is a block diagram showing another example of the basic configuration of the present invention. FIG. 4 shows an example of the magnetostriction measurement results of grain-oriented electrical steel sheets in Examples. 1... Sample, 2, 3... Laser Doppler vibrometer sensor head, 4... Laser Doppler vibrometer signal processor, 5, 6... Integrator,
7...Oscilloscope, 8...Preamplifier, 9...
...Excitation power supply, 10...Sample fixing jig, 11...
... Base plate, 12 ... Fixed reflector, 13,
14... Laser beam flux, 15... Excitation coil, 16
...Magnetic flux detection coil.

Claims (1)

【特許請求の範囲】 1 交流磁歪中におかれた材料の2標点間の周期
的な相対変位量を測定する交流磁歪測定方法にお
いて、1標点を固定し他の1標点に2標点をむす
ぶ軸と平行にレーザ光束を入射し、反射光のドツ
プラー効果による周波数変化から2標点間の相対
変位速度を検出しさらに積分演算処理により2標
点間の相対変位量を測定することを特徴とする交
流磁歪測定方法。 2 交流磁歪中におかれた材料の2標点間の周期
的な相対変位量を測定する交流磁歪測定方法にお
いて、2標点にそれぞれ2標点をむすぶ軸と平行
かつ同じ方向にレーザ光束を入射し、それぞれの
反射光のドツプラー効果による周波数変化差から
2標点間の相対変位速度を検出しさらに積分演算
処理により2標点間の相対変位量を測定すること
を特徴とする交流磁歪測定方法。 3 標点位置にレーザ光の反射器を設置し、これ
にレーザ光を入射することを特徴とする、請求項
1または2記載の交流磁歪測定方法。
[Claims] 1. In an AC magnetostriction measurement method that measures the periodic relative displacement between two gauge points of a material placed in AC magnetostriction, one gauge point is fixed and two gauge points are set at another gauge point. Injecting a laser beam parallel to the axis connecting the points, detecting the relative displacement speed between the two gauges from the frequency change due to the Doppler effect of the reflected light, and then measuring the relative displacement between the two gauges by integral calculation processing. An AC magnetostriction measurement method characterized by: 2. In the AC magnetostriction measurement method that measures the periodic relative displacement between two gauges of a material placed in AC magnetostriction, a laser beam is applied to each of the two gauges parallel to and in the same direction as the axis connecting the two gauges. AC magnetostriction measurement characterized by detecting the relative displacement speed between two gauges from the frequency change difference due to the Doppler effect of the incident and reflected light, and further measuring the relative displacement between the two gauges by integral calculation processing. Method. 3. The alternating current magnetostriction measuring method according to claim 1 or 2, characterized in that a laser beam reflector is installed at the gauge point position and the laser beam is incident on the reflector.
JP10522190A 1990-04-23 1990-04-23 Alternating current magneto-striction measuring method Granted JPH045524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10522190A JPH045524A (en) 1990-04-23 1990-04-23 Alternating current magneto-striction measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10522190A JPH045524A (en) 1990-04-23 1990-04-23 Alternating current magneto-striction measuring method

Publications (2)

Publication Number Publication Date
JPH045524A JPH045524A (en) 1992-01-09
JPH0585849B2 true JPH0585849B2 (en) 1993-12-09

Family

ID=14401614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10522190A Granted JPH045524A (en) 1990-04-23 1990-04-23 Alternating current magneto-striction measuring method

Country Status (1)

Country Link
JP (1) JPH045524A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736634B2 (en) * 2008-03-04 2015-06-17 新日鐵住金株式会社 Evaluation method of magnetostriction or noise of magnetic steel sheet for three-phase transformer core excited by sine wave
JP5631344B2 (en) * 2012-02-27 2014-11-26 大分県 Magnetostriction measuring method and magnetostriction measuring apparatus
EP3770281B1 (en) 2018-03-22 2023-05-10 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919872A (en) * 1972-05-26 1974-02-21
JPS5421112A (en) * 1977-07-18 1979-02-17 Kee Ii Dei Kk Information transmission system to running vehicle
JPS5924275A (en) * 1982-08-02 1984-02-07 Sumitomo Special Metals Co Ltd Method and apparatus for measuring magnetostriction
JPS6263802A (en) * 1985-09-13 1987-03-20 Rikagaku Kenkyusho Optical measuring method for physical quantity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919872A (en) * 1972-05-26 1974-02-21
JPS5421112A (en) * 1977-07-18 1979-02-17 Kee Ii Dei Kk Information transmission system to running vehicle
JPS5924275A (en) * 1982-08-02 1984-02-07 Sumitomo Special Metals Co Ltd Method and apparatus for measuring magnetostriction
JPS6263802A (en) * 1985-09-13 1987-03-20 Rikagaku Kenkyusho Optical measuring method for physical quantity

Also Published As

Publication number Publication date
JPH045524A (en) 1992-01-09

Similar Documents

Publication Publication Date Title
JP3611809B2 (en) Rheometer for rapid measurement of small samples
Ghalamestani et al. Magnetostriction measurement by using dual heterodyne laser interferometers
Sun et al. Multimode interference-based fiber-optic ultrasonic sensor for non-contact displacement measurement
Restagno et al. A new surface forces apparatus for nanorheology
Jang et al. Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer
CN113028965A (en) Giant magnetoresistance detection device of magnetostrictive displacement sensor
Chen et al. Sensitivity enhancement of fiber-optic accelerometers using thin-cladding fiber Bragg gratings
Harmer Principles of optical fibre sensors and instrumentation
Tran et al. Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection
US4665363A (en) Optical fibre magnetic gradient detector
EP0074788A2 (en) Fiber coupler temperature tranducer
JP2006215018A (en) Flaw detection method and flaw detector
Dib et al. A broadband amplitude-modulated fibre optic vibrometer with nanometric accuracy
JPH0585849B2 (en)
Beer et al. The OFMET watt balance: progress report
Fernandes et al. Optical fiber interferometer for measuring the d 33 coefficient of piezoelectric thin films with compensation of substrate bending
GB2158227A (en) Photo-elastic sensor
Song et al. Angular dependence of the frequency response of an extrinsic Fabry-Perot interferometric (EFPI) fiber acoustic sensor for partial discharge detection
Philp et al. A simple fibre optic sensor for measurement of vibrational frequencies
CN105953908A (en) Low-frequency micro-nano vibration tester based on DVD optical reading head and cantilever structure
Bau et al. Contactless excitation and readout of passive sensing elements made by miniaturized mechanical resonators
JPS62501988A (en) measuring device
JP3346429B2 (en) Magnetostriction measuring device
Brecher et al. Methods and Instruments Used for the Measurement of Machine Properties
Kwaaitaal The measurement of small magnetostrictive effects by an interferometric method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 17