JPS5924275A - Method and apparatus for measuring magnetostriction - Google Patents

Method and apparatus for measuring magnetostriction

Info

Publication number
JPS5924275A
JPS5924275A JP13483982A JP13483982A JPS5924275A JP S5924275 A JPS5924275 A JP S5924275A JP 13483982 A JP13483982 A JP 13483982A JP 13483982 A JP13483982 A JP 13483982A JP S5924275 A JPS5924275 A JP S5924275A
Authority
JP
Japan
Prior art keywords
magnetostriction
sample
change
interference
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13483982A
Other languages
Japanese (ja)
Other versions
JPH0161189B2 (en
Inventor
Osamu Yamashita
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP13483982A priority Critical patent/JPS5924275A/en
Publication of JPS5924275A publication Critical patent/JPS5924275A/en
Publication of JPH0161189B2 publication Critical patent/JPH0161189B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To accurately measure the change of magnetostriction due to temp. change through the measurement temp. change by the measurement of constant of small magnetostriction, by detecting the brightness change of interference fringe based on a change amount caused by magnetostriction by a photo-voltage conversion apparatus such as a solar cell or the like as voltage variation. CONSTITUTION:Interference fringe generated when laser beam is reflected on the upper surface of a lower quartz interference plate S2 and the under surface of an upper quartz interference plate S1 is subjected to electric conversion by using a solar cell S.C. to be detected by a voltmeter V.M. When a magnetic field is applied by solenoid 3 or heating is applied, interference fringe obtained from a specimen 1 prior to applying a magnetic field and heating is displaced from interference fringe from the specimen 1 undergoing the change caused by magnetostriction and a temp. and the voltage difference of both of them is based on the extension and contraction of the specimen 1 caused by magnetostriction and the temp. When the variation amount DELTAl of the specimen 1 is smaller than the 1/4 wavelength of before and after the magnetic field is applied and the max. value Vmax and the min. value Vmin measured by heating the specimen 1 are substituted for a formula to obtain constant of magnetostriction.

Description

【発明の詳細な説明】 この発明は、磁性材料の磁歪定数を測定する方法に係り
、特に磁歪定数がΔl/1.≦1×10 と非常に小さ
い材料まで正確に測定できる磁歪定数測定方法とその装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the magnetostriction constant of a magnetic material, particularly when the magnetostriction constant is Δl/1. The present invention relates to a magnetostriction constant measuring method and device that can accurately measure even very small materials of ≦1×10 2 .

磁歪とは、強磁性体を磁化するときにわずかな変形(ひ
ずみ)を生ずる現象をいい、磁歪定数。
Magnetostriction is a phenomenon in which a slight deformation (strain) occurs when a ferromagnetic material is magnetized, and the magnetostriction constant.

Δl/1locΔe:強磁性体の変形量、lO:強磁性
体の長さ)で表わしている。この磁歪定数の測定方法に
は、磁歪による寸法変化を電気容量に変換して測定する
方法と、強磁性体にストレーンゲージ等の歪計を固着し
て歪計の抵抗変化を測定する方法とが知られている。
Δl/1locΔe: amount of deformation of the ferromagnetic material, lO: length of the ferromagnetic material). There are two methods for measuring the magnetostriction constant: one is to convert the dimensional change due to magnetostriction into capacitance, and the other is to fix a strain gauge such as a strain gauge to a ferromagnetic material and measure the resistance change of the strain gauge. Are known.

ところが、上記のいずれの測定方法も、その測定下限が
I×10 以上で6D、例えばソフトフェライト、各種
アモルファス等の磁性材料の如く、磁歪定数がΔl/1
.≦1×10 である場合は測定できず、また他に測定
できる方法も見出されていない。
However, in any of the above measurement methods, the lower limit of measurement is I×10 or more and 6D, for example, when the magnetostriction constant is Δl/1, such as for magnetic materials such as soft ferrite and various amorphous materials.
.. If ≦1×10 2 , it cannot be measured, and no other method has been found to be able to measure it.

そこで、この発明は、磁歪定数がΔlAo≦lXl0−
’と非常に小さい磁性材料の磁歪定数を測定でき、その
測定精度が著しくすぐれた測定方法並びにその装置を目
的とするものである。
Therefore, in this invention, the magnetostriction constant is ΔlAo≦lXl0−
The object of the present invention is to provide a measuring method and apparatus that can measure the magnetostriction constant of a magnetic material that is extremely small and has extremely high measurement accuracy.

すなわち、この発明は、強磁性体試料(長さlo)の磁
化方向の上下各面に当接させた一対の石英干渉板へ入射
した波長λのレーザー光線の反射光の干渉縞と、上記試
料を加熱しまたは加熱なしで磁場印加したときの磁歪に
よる変化量(Δe)に伴う上記レーザー光線の反射光の
干渉縞との、移動差に基づく干渉縞の輝度変化を太陽電
池等の光電圧変換装置により電圧変化として検出し、出
力電圧の偏差に基づいて上記試料の磁歪変化量(Δl)
を算出し、磁歪定数(Δl/1lo)を求めることを要
旨とする磁歪測定方法である。この測定方法によってΔ
l/j?。
That is, this invention combines the interference fringes of the reflected light of a laser beam of wavelength λ incident on a pair of quartz interference plates brought into contact with the upper and lower surfaces of a ferromagnetic sample (length lo) in the magnetization direction, and A photovoltaic converter such as a solar cell measures the brightness change of the interference fringes based on the movement difference between the interference fringes of the reflected light of the laser beam and the amount of change (Δe) due to magnetostriction when a magnetic field is applied with or without heating. It is detected as a voltage change, and the amount of magnetostriction change (Δl) of the above sample is determined based on the deviation of the output voltage.
This is a magnetostriction measurement method whose gist is to calculate the magnetostriction constant (Δl/1lo). With this measurement method, Δ
l/j? .

≦1×lOと従来方法では不可能な小さい磁歪定数を測
定することができ、塩度変化による磁歪変化も正確に測
定することができる。
It is possible to measure a small magnetostriction constant of ≦1×1O, which is impossible with conventional methods, and it is also possible to accurately measure magnetostriction changes due to changes in salinity.

以下に、この磁歪測定方法を本発明による磁歪測定装置
の図面に基づいて詳述する。第1図は磁歪測定装置の光
路を示す説明図であり、第2図は試料と石英干渉板の詳
細図である。また、ここでは被測定強磁性体試料を加熱
する装置を付設した例を示す。
This magnetostriction measuring method will be explained in detail below based on the drawings of the magnetostrictive measuring device according to the present invention. FIG. 1 is an explanatory diagram showing the optical path of the magnetostriction measuring device, and FIG. 2 is a detailed diagram of the sample and the quartz interference plate. Further, here, an example is shown in which a device for heating the ferromagnetic sample to be measured is attached.

光源にはレーザー光源(Q−L)を用いここではH6−
Neレーザーである。光路はまずレーザー光源(Q、L
)より下向に出たレーザー光線はガラス板(T1)によ
り水平方向に屈折し、レンズ(L)で収斂されてプリズ
ム(P)で再び屈折し下向きに強磁性体試料に挾まれて
静置してあり、また炉(2)内には試料(1)に磁場印
加するためのソレノイド(3)が配設されている。この
試料(1)は磁化方向の上下面が平行度102m以下と
なるよう研摩されている。
A laser light source (Q-L) is used as the light source, and here H6-
It is a Ne laser. The optical path begins with a laser light source (Q, L
) is refracted in the horizontal direction by the glass plate (T1), converged by the lens (L), refracted again by the prism (P), and held still by the ferromagnetic sample facing downward. A solenoid (3) for applying a magnetic field to the sample (1) is also provided in the furnace (2). This sample (1) was polished so that the upper and lower surfaces in the magnetization direction had a parallelism of 102 m or less.

2枚の石英干渉板は下石英干渉板(S、)が上下面が平
行面であり、上石英干渉板(Sl)は上面が下面に対し
て所定の傾斜面を有しており、この石英干渉板(S+)
(8g)間に試料(1)が設置される。なお、加熱炉(
2)の上部開口部にはガラス板(Ti)が載置されてお
り、ここをレーザー光線が透過する。
The two quartz interference plates are such that the lower quartz interference plate (S,) has parallel upper and lower surfaces, and the upper quartz interference plate (Sl) has an upper surface with a predetermined slope relative to the lower surface. Interference plate (S+)
Sample (1) is placed between (8g). In addition, the heating furnace (
A glass plate (Ti) is placed in the upper opening of 2), through which the laser beam passes.

以上のように構成すると、レーザー光線は上石英干渉板
(Sl)の上表面にて反射する光と上石英干渉板(Sl
)を通って入射し、下石英干渉板(S2)の上表面及び
上石英干渉板(Sl)の下表面にて反射した一対の反射
光に分れ、前記一対の反射光は干渉縞として、プリズム
(P)、レンズ(L)を通り、ガラス板(To)を透過
し、干渉縞の観測点を設定し測定するための望遠鏡等の
拡大鏡(L、 M)を通過して光電圧変換器に達する。
With the above configuration, the laser beam is reflected by the upper surface of the upper quartz interference plate (Sl) and the upper quartz interference plate (Sl).
) and is split into a pair of reflected lights that are reflected at the upper surface of the lower quartz interference plate (S2) and the lower surface of the upper quartz interference plate (Sl), and the pair of reflected lights form interference fringes. It passes through a prism (P), a lens (L), a glass plate (To), and passes through a magnifying glass (L, M) of a telescope to set and measure the observation point of interference fringes, and is converted into a photovoltage. reach the vessel.

ここでは電気変換効率が高い太陽電池(S 、 C)を
用い電気変換し、デジタル表示する電圧計(V、M)に
て電圧として検出する。
Here, electrical conversion is performed using solar cells (S, C) with high electrical conversion efficiency, and the voltage is detected as a voltage using a digitally displayed voltmeter (V, M).

検出した電圧信号は記録されるか、あるいは演算機(c
、p)に入力される。
The detected voltage signal is recorded or processed by a computer (c
, p).

一方、ソレノイド(3)により磁場印加されたとき、ま
た加熱された場合も試料(1)にレーザー光線が入射さ
れて反射光が得られるが、磁場印加、加熱前の初期の試
料(1)より得られた反射光の干渉縞と、磁歪による変
化、温度による変化を生じた試料(1)からの干渉縞と
は変位しており、この際得られる両者の電圧も偏差が生
じており、これは磁歪、温度による試料(1)の伸縮に
基づくものである。
On the other hand, when a magnetic field is applied by the solenoid (3) or when the sample (1) is heated, a laser beam is incident on the sample (1) and a reflected light is obtained. The interference fringes of the reflected light and the interference fringes from the sample (1), which have undergone changes due to magnetostriction and temperature, are displaced, and the voltages obtained at this time also differ. This is based on magnetostriction, which is the expansion and contraction of sample (1) due to temperature.

一般に干渉縞は強めあう方向では明るく、弱めあう方向
では暗くなるが、第2図に示す如く試料(1)長さが1
.のとき、上記した一対の反射光の光路差は2 goで
あり、この光路差(2Ao)が使用したレーザー光線の
波長λの整数倍例)に近似(2no:λn)すれば干渉
縞の暗色に相当して太陽電池(S、C)からの出力電圧
は低く、光路差が2n’o申(n +−!−) Xであ
れば、干渉縞の明色に相当して出力電圧は高くなる。
Generally, interference fringes are bright in the direction of mutual reinforcement and dark in the direction of destructive interference, but as shown in Figure 2, the length of the sample (1) is 1.
.. In this case, the optical path difference between the above pair of reflected lights is 2go, and if this optical path difference (2Ao) is approximated (2no:λn) to an integer multiple of the wavelength λ of the laser beam used, the color of the interference fringes becomes dark. Correspondingly, the output voltage from the solar cells (S, C) is low, and if the optical path difference is 2n'o (n +-!-)X, the output voltage will be high, corresponding to the bright color of the interference fringes. .

従って、試料(1)の磁歪、温度変化に伴う伸縮すなわ
ち、変化量(Δl)は下記(1)式により表わされる。
Therefore, the magnetostriction of sample (1), expansion and contraction due to temperature change, that is, the amount of change (Δl) is expressed by the following equation (1).

2 (Jo中λn 21’oキ(n+1)λ Δl中11’−11o中λ/4  ・・・・・・・・・
・・・・・・・・・(1)一方、試料(1)が磁歪9m
度変化によって伸縮し、反射光の干渉縞の輝度変化によ
る出力電圧は変化し、最大値(Vmax)と最小値(V
min)を示す。磁場印加前後の出力電圧をvl、v2
とすると、出力電圧の変化量IVIV21と最大、最小
出力電圧との関係を考慮する必要がある。
2 (λn in Jo 21'oki (n+1)λ λ/4 in 11'-11o in Δl ......
・・・・・・・・・(1) On the other hand, sample (1) has magnetostriction of 9m
The output voltage changes due to changes in the brightness of the interference fringes of the reflected light, and the maximum value (Vmax) and minimum value (V
min). The output voltages before and after applying the magnetic field are vl and v2
If so, it is necessary to consider the relationship between the output voltage change amount IVIV21 and the maximum and minimum output voltages.

また、強磁性材料の磁歪定数が大きい材料の場合とソフ
トフェライト等の如く小さい材料の場合とでは得られる
出力電圧の変化量も異なり、特に後者の場合は例えば2
℃〜8°C程度加熱してやる必要があり、前者はその必
要がない。
In addition, the amount of change in output voltage obtained is different depending on the case of a ferromagnetic material with a large magnetostriction constant and the case of a material with a small magnetostriction constant such as soft ferrite.
It is necessary to heat it to about 8°C to 8°C, but the former does not require heating.

そこでまず、後者のソフトフェライト等の磁歪定数が小
さい場合の磁歪による変化量(Δl)の算出方法を説明
する。
Therefore, first, a method for calculating the amount of change (Δl) due to magnetostriction in the latter case where the magnetostriction constant is small, such as soft ferrite, will be explained.

囚 ここで(1)式から試料(1)の変化量(Δl)が
レーザー光の1/4波長より小さい場合は、出力電圧は
第8図に示すように、最大値(Vmax )若しくは最
小値(Vm’in )を通過するか、あるいは全く通過
しないかのいずれかになる。最大値(Vmax )のみ
を通過する場合はVmlnを、また最小値(Vmin)
のみを通過する場合はvmaxを測定する必要があり、
さらに最大値、及び最小値を全く通過しない場合はVm
ax 、 Vm inの両方を測定する必要があり、上
記の測定には試料を加熱することが重要となる。
Here, from equation (1), if the amount of change (Δl) of sample (1) is smaller than the 1/4 wavelength of the laser beam, the output voltage will be the maximum value (Vmax) or the minimum value, as shown in Figure 8. (Vm'in) or not at all. When passing only the maximum value (Vmax), set Vmln, and also set the minimum value (Vmin)
If only passing through, it is necessary to measure vmax,
Furthermore, if the maximum value and minimum value are not passed at all, Vm
It is necessary to measure both ax and Vmin, and it is important to heat the sample for the above measurements.

磁場印加前後の出力電圧(Vl)、 (Va)と上記方
法にて測定した最大値(Vmax)あるいは最小値(V
min)を(2)式に代入して試料の変化量(Δl)が
得られ、(3)式より磁歪定数が得られる。
The output voltage (Vl), (Va) before and after applying the magnetic field, and the maximum value (Vmax) or minimum value (V
By substituting min) into equation (2), the amount of change in the sample (Δl) is obtained, and from equation (3), the magnetostriction constant is obtained.

(B)次に試料の変化!!i(Δl)がレーザー光の1
/4波長と等しいかあるいは大きい場合は、出力電圧の
変化11VI  V21はVmaX又はVminを通過
するか、あるいは両方共を通過する。上記Vminのみ
を通過する場合はVmaxを測定する必要があり、又V
maxのみを通過する場合はVmlnを測定する必要が
ある。また、 Vmax、 Vmin両方を通過する場
合はVmax、 Vminは測定する必要はないが、上
記のVmax、 Vminを測定する場合は試料を加熱
する必要がある。
(B) Next, change in the sample! ! i (Δl) is 1 of the laser beam
/4 wavelength, the change in output voltage 11VI V21 passes through VmaX or Vmin, or both. When passing only Vmin above, it is necessary to measure Vmax, and also Vmax.
When passing only max, it is necessary to measure Vmln. Further, if the sample passes through both Vmax and Vmin, it is not necessary to measure Vmax and Vmin, but when measuring the above-mentioned Vmax and Vmin, it is necessary to heat the sample.

磁場印加前後の出力電圧V、、V、と上記の如く測定し
て得られたVmaXを下記(4)式に、又■、。
The output voltages V, , V before and after applying the magnetic field, and VmaX obtained by measuring as above are expressed in the following equation (4), and (2).

v2 と測定して得られたVminを下記(5)式に代
入して、磁歪定数が得られる。
By substituting Vmin obtained by measuring v2 into the following equation (5), the magnetostriction constant can be obtained.

また、磁歪定数の大なる磁性材料は前記した如く、Vm
ax 、 Vmi n両方を通過し、Vmax、 Vm
inが既知であるので磁性材料の磁歪定数は下記(6)
式より得られる。
In addition, as mentioned above, magnetic materials with a large magnetostriction constant have Vm
Passes both ax and Vmin, and Vmax, Vm
Since in is known, the magnetostriction constant of the magnetic material is as follows (6)
It is obtained from Eq.

(m:半波数) また、この発明において、算出した磁歪定数は試料の磁
場印加による出力電圧の増減が、試料を加熱し熱膨張に
よる出力電圧の増減と同一方向であれば、正符号(伸び
)であり、その方向が反対方向であれば負符号(縞)と
なるため、出力電圧の最大値、最小値の測定のとき、磁
歪定数の正負の決定も同時に行なうことができる利点が
ある。
(m: half-wave number) In addition, in this invention, the calculated magnetostriction constant has a positive sign (elongation ), and if the direction is the opposite direction, it becomes a negative sign (stripe), so there is an advantage that when measuring the maximum value and minimum value of the output voltage, it is possible to simultaneously determine whether the magnetostriction constant is positive or negative.

以下に、この発明による実施例を示しその効果を明らか
にする。
Examples according to the present invention will be shown below to clarify its effects.

磁歪測定装置には前記した第1図の装置を使用し、試料
には長第10朋のMn−znフェライトを用いた。
The apparatus shown in FIG. 1 described above was used as the magnetostriction measuring apparatus, and Mn-zn ferrite with a length of 10 mm was used as the sample.

40(Oe)の磁場を印加する前後の出力電圧(Vt)
(■2)を測定し、ついで磁場を印加しながら温度を2
°C上昇させた場合の出力電圧の最大値(Vmax)と
最小値(Vmin)を測定し、この出力電圧信号を演算
機に入力し、予め設定した上述の計算式により磁歪定数
を算出させ、自動測定を行った。その結果を第1表に示
すとおり、従来方法では測定し得ないl×10 以Fの
磁歪定数を高精度に測定できることがわかる。
Output voltage (Vt) before and after applying a magnetic field of 40 (Oe)
Measure (■2), then increase the temperature by applying a magnetic field.
Measure the maximum value (Vmax) and minimum value (Vmin) of the output voltage when increasing the temperature by °C, input this output voltage signal to a computer, and calculate the magnetostriction constant using the above-mentioned formula set in advance. Automatic measurements were performed. As shown in Table 1, the results show that magnetostriction constants of 1×10 F or more, which cannot be measured by conventional methods, can be measured with high precision.

第    1    表Chapter 1 Table

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による磁歪測定装置の光路図であり、
第2図は試料と上下石英干渉板の詳細説明図である。 第8図は、太陽電池より出力された電圧と時間との関係
を示すグラフであり、Δl−′A/4の場合を示す。 図中、1・・・試料、2・・・加熱炉、8・・・ソレノ
イド、Q、L・・・レーザー光源、L・・・レンズ、T
1.T2・・・ガラス板、P・・・プリズム、L、M・
・・拡大鏡、S、C・・・太陽電池、V、M・・・電圧
計、c、p・・・演算機、S。 ・−・上石英干渉板、S2・・・下石英干渉板。 出願人  住友特殊金属株式会社 AM臭竿T
FIG. 1 is an optical path diagram of the magnetostriction measuring device according to the present invention,
FIG. 2 is a detailed explanatory diagram of the sample and the upper and lower quartz interference plates. FIG. 8 is a graph showing the relationship between the voltage output from the solar cell and time, and shows the case of Δl-'A/4. In the figure, 1... Sample, 2... Heating furnace, 8... Solenoid, Q, L... Laser light source, L... Lens, T
1. T2...Glass plate, P...Prism, L, M.
... Magnifying glass, S, C... Solar cell, V, M... Voltmeter, c, p... Computing machine, S. - Upper quartz interference plate, S2... Lower quartz interference plate. Applicant: Sumitomo Special Metals Co., Ltd.

Claims (1)

【特許請求の範囲】 1 強磁性体試料(長さ40)を挾む一対の干渉板へ入
射した波長λのレーザー光線による干渉縞と、上記試料
を磁場印加したときの磁歪による変化量(Δl)に伴う
上記レーザー線による干渉縞との、移動差による輝度変
化を光電圧変換装置により電圧変化として検出し、出力
電圧の偏差に基づいて磁歪変化量(Δl)を算出し、磁
歪定数(ΔII/1lo)を求めることを特徴とする磁
歪測定方法。 2 強磁性体試料(長さlO)を挾む一対の干渉板へ入
射した波長λのレーザー光線による干渉縞と、上記試料
を加熱して磁場印加したときの磁歪による変化機(Δ4
)に伴う上記レーザー光線の干渉縞との、移動差による
輝度変化を光電圧変換装置により電圧変化として検出し
、出力電圧の偏差に基づいて磁歪変化量(Δ4)を算出
し、磁歪定数(Δl/lo)を求めることを特徴とする
磁歪測定方法。 8 所定波長のレーザー光線が得られるレーザー光源と
、V−ザー光線を収斂し、屈折させて被測定強磁性体試
料まで導入し、または該試料での反射光が通過する凸レ
ンズ、プリズム等から構成した光路と、上下面が平行面
で該試料を載置する下石英干渉板と、上面が所定の傾斜
面を有し該試料上面上に載置する上石英干渉板と、上下
の石英干渉板に挾まれて静置させた該試料の外周に配置
した磁場印加のためのソレノイドと、該試料より反射し
たレーザー光線の干渉縞の観測点を設定するための拡大
鏡と、上記の反射光の干渉縞を電圧に変換する太陽電池
と、この変換電圧を測定する電圧計とから構成され、磁
歪による該試料の変化量に伴う上記反射光の干渉縞の移
動差による輝度変化を電圧変化として検出し、出力電圧
の偏差に基づいて磁歪変化量を求めることを特徴とする
磁歪測定装置。 4 上下の石英干渉板に挾まれて静置する測定試料とこ
れに磁場印加するソレノイドとを収納する加熱炉を有す
る特許請求の範囲第8項記載の磁歪測定装置。
[Claims] 1. Interference fringes caused by a laser beam of wavelength λ incident on a pair of interference plates sandwiching a ferromagnetic sample (length 40) and the amount of change (Δl) due to magnetostriction when a magnetic field is applied to the sample The luminance change due to the movement difference with the interference fringes caused by the laser beam accompanying the above is detected as a voltage change by a photovoltaic converter, and the magnetostriction change amount (Δl) is calculated based on the deviation of the output voltage, and the magnetostriction constant (ΔII/ A magnetostriction measurement method characterized by determining 1lo). 2 Interference fringes caused by a laser beam of wavelength λ incident on a pair of interference plates sandwiching a ferromagnetic sample (length lO) and a change machine (Δ4) caused by magnetostriction when the sample is heated and a magnetic field is applied.
), the brightness change due to the movement difference with the interference fringes of the laser beam is detected as a voltage change by a photovoltaic converter, and the magnetostriction change amount (Δ4) is calculated based on the deviation of the output voltage, and the magnetostriction constant (Δl/ 1. A magnetostriction measurement method characterized by determining lo). 8 Consisting of a laser light source that can obtain a laser beam of a predetermined wavelength, and a convex lens, prism, etc. that converges and refracts the V-laser beam and introduces it to the ferromagnetic sample to be measured, or through which the reflected light from the sample passes. an optical path, a lower quartz interference plate whose upper and lower surfaces are parallel to each other and on which the sample is placed; an upper quartz interference plate whose upper surface has a predetermined slope and which is placed on the upper surface of the sample; and an upper and lower quartz interference plate. A solenoid for applying a magnetic field placed around the outer periphery of the sample held still, a magnifying glass for setting an observation point for interference fringes of the laser beam reflected from the sample, and an interference fringe for the reflected light. It is composed of a solar cell that converts the voltage into a voltage, and a voltmeter that measures this converted voltage, and detects the brightness change due to the difference in movement of the interference fringes of the reflected light due to the amount of change in the sample due to magnetostriction as a voltage change, A magnetostriction measurement device characterized by determining a magnetostriction change amount based on a deviation of an output voltage. 4. The magnetostriction measuring device according to claim 8, which includes a heating furnace that houses a measurement sample that is placed between upper and lower quartz interference plates and a solenoid that applies a magnetic field to the measurement sample.
JP13483982A 1982-08-02 1982-08-02 Method and apparatus for measuring magnetostriction Granted JPS5924275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13483982A JPS5924275A (en) 1982-08-02 1982-08-02 Method and apparatus for measuring magnetostriction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13483982A JPS5924275A (en) 1982-08-02 1982-08-02 Method and apparatus for measuring magnetostriction

Publications (2)

Publication Number Publication Date
JPS5924275A true JPS5924275A (en) 1984-02-07
JPH0161189B2 JPH0161189B2 (en) 1989-12-27

Family

ID=15137664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13483982A Granted JPS5924275A (en) 1982-08-02 1982-08-02 Method and apparatus for measuring magnetostriction

Country Status (1)

Country Link
JP (1) JPS5924275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045524A (en) * 1990-04-23 1992-01-09 Nippon Steel Corp Alternating current magneto-striction measuring method
CN116626567A (en) * 2023-04-28 2023-08-22 苏州大学 Magnetostriction coefficient measuring device and measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137448A1 (en) * 2005-06-21 2006-12-28 National University Corporation Hokkaido University Sample expansion/contraction amount measuring system and sample expansion/contraction amount measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045524A (en) * 1990-04-23 1992-01-09 Nippon Steel Corp Alternating current magneto-striction measuring method
JPH0585849B2 (en) * 1990-04-23 1993-12-09 Nippon Steel Corp
CN116626567A (en) * 2023-04-28 2023-08-22 苏州大学 Magnetostriction coefficient measuring device and measuring method

Also Published As

Publication number Publication date
JPH0161189B2 (en) 1989-12-27

Similar Documents

Publication Publication Date Title
CN101371129B (en) Surface plasmon resonance sensors and methods for detecting samples using the same
Valasek Properties of Rochelle salt related to the piezo-electric effect
CN105548722A (en) Measuring system of ferromagnetic material terahertz dielectric constant
CN1667379A (en) Optical phase measurement of target
CN108387333A (en) A kind of silicon thin film material stress detecting system
CN102262073B (en) Detection method capable of reducing background influence based on waveguide coupling surface plasma resonance
JPS5924275A (en) Method and apparatus for measuring magnetostriction
Wang et al. An optical voltage sensor based on wedge interference
Cloud et al. Techniques in infrared photoelasticity: Paper discusses the equipment and experimental procedures which have been employed in the extension of photoelastic measurements into the infrared region
EP0811835A1 (en) Apparatus and method for measuring optical anisotropy
KR100686923B1 (en) Phase-shifting Method Using Waveplates in Shearography and System for Measuring Deformation Using The Same
SU1388711A1 (en) Optical strain gauge
Lin et al. Theoretical analysis of sensitivity-tunable total-internal-reflection heterodyne interferometer
SU1056083A1 (en) Oscillographic method of segnetoelectric dielectric hysteresis loop determination
JPS6227603A (en) Optical measuring apparatus of displacement
SU386287A1 (en) DEVICE FOR MEASURING DEFORMATIONS
Palmer Differential angle measurements with moire fringes
CN86200235U (en) Nonlinear meter for laser detector
SU1264084A1 (en) Current measuring method
RU2046315C1 (en) Method for measuring birefringence value
Kunz et al. Novel miniature integrated optical goniometers
SU80248A1 (en) Optical tension meter
SU855566A1 (en) Method of determination of pulse magnetic field induction maximum values
SU1682829A1 (en) Temperature determining method
RU1768963C (en) Mechanical stress measurement technique