JPH0585620B2 - - Google Patents

Info

Publication number
JPH0585620B2
JPH0585620B2 JP60248417A JP24841785A JPH0585620B2 JP H0585620 B2 JPH0585620 B2 JP H0585620B2 JP 60248417 A JP60248417 A JP 60248417A JP 24841785 A JP24841785 A JP 24841785A JP H0585620 B2 JPH0585620 B2 JP H0585620B2
Authority
JP
Japan
Prior art keywords
less
temperature
annealing
bake
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60248417A
Other languages
Japanese (ja)
Other versions
JPS62109927A (en
Inventor
Yaichiro Mizuyama
Kazumasa Yamazaki
Masato Yamada
Makoto Motojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24841785A priority Critical patent/JPS62109927A/en
Publication of JPS62109927A publication Critical patent/JPS62109927A/en
Publication of JPH0585620B2 publication Critical patent/JPH0585620B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は焼付硬化性および加工性の優れた冷延
鋼板の製造方法に関するものである。 (従来の技術) 近年、自動車業界においては、燃費向上のため
の車体の軽量化あるいは衝突時に乗員の安全性を
確保する必要があることなどから高強度鋼板の使
用が多くなつている。また、車体のスタイルから
難加工性部品が多くなり、超加工性鋼板の使用が
多くなつている。ことに、自動車のドア等外板は
板厚を薄くして軽量化を推進している。しかし、
板厚を薄くしていくと弾性がなくなる傾向を示
し、指で押しても凹むことがある。そこで、プレ
スするときは加工しやすく、使用するときに硬く
なる鋼板が望まれ、プレス後の塗装焼付の熱を利
用して鋼板を硬くしようと焼付硬化性を利用した
鋼板が使用されている。焼付硬化性鋼板は鋼板の
製造の過程で固溶炭素を残し、塗装焼付時の歪時
効によつて硬化させる機構であり、固溶炭素が残
存しているために、常温でも時効してプレスする
ときにすでに硬化してしまいプレス割れをおこす
こともある。焼付硬化性鋼板の欠点である常温時
効劣化の防止の方策が望まれている。 従来の焼付硬化性鋼板の製造は箱型焼鈍では特
公昭57−17064号公報に示されている如くC:
0.015%程度の固溶炭素の残存する領域でP:
0.06%程度添加して、TS=35キロ級とし、また、
連続焼鈍ではC:0.03%、P:0.03%程度として
TS=35キロ級としている。 さらに、超加工性鋼板として、特開昭59−
74232号公報に示される如く、極低炭素鋼、C:
0.0030%にNb:0.0018%、Ti:0.0010%を含有し
た焼付硬化性鋼板としている。 (発明が解決しようとする問題点) しかしながら、残存させる固溶炭素の量は成
分、焼鈍温度、時間、冷却速度等の条件で変化し
て焼付硬化量は変わつてしまう。この焼付硬化量
の変化はまだ容認できるとしても、固溶炭素の変
化による常温時効の劣化は防止しなければならな
い。固溶炭素の増加によつて、焼付硬化量が大き
くなるとともに、常温時効も悪くなる傾向にあ
り、焼付硬化量は大きくても、常温時効性の優れ
た鋼板が望まれている。 本発明は固溶炭素の増加によつて、焼付硬化量
は大きくなるものの、常温時効性も劣化するとい
う問題点を解決しようとするものである。 (問題点を解決するための手段) 本発明の要旨はC:0.005%以下、Si:0.8%以
下、Mn:1.0%以下、P:0.1%以下、Al:0.1%
以下、N:0.005%以下を含有し、かつ、Ti、Nb
を複合添加することを必須条件とし、Tiは48/14
〔N(%)−0.003%〕≦Ti(%)、Ti(%)<〔48/12

(%)+48/14N(%)〕、0.003%≦Ti<0.025%の3
条件を満たす範囲内で含有し、Nbは93/12〔C
(%)−0.005%〕≦Nb(%)≦93/12〔C(%)−0.00
1
%〕かつ、0.003%≦Nb(%)<0.025%を満たす範
囲内で含有し、Nb(%)+Ti(%)<0.04%を満た
す成分とし、さらに、Cr:0.03〜0.35%、V:
0.01〜0.15%、Mo:0.02〜0.16%、W:0.02〜
0.30%のうち1種または、2種以上を必須元素と
して含有し、又は更にB:0.0002〜0.0030%を含
有し、残部をFeおよび不可避的元素からなる鋼
を常法の熱間圧延で熱延鋼帯とした後、常法の冷
間圧延後、箱型焼鈍で再結晶温度以上、750℃以
下の温度で焼鈍することまたは連続焼鈍で再結晶
温度以上、900℃以下の温度で焼鈍することを特
徴とする焼付硬化性および加工性の優れた冷延鋼
板の製造方法である。 焼付硬化性鋼板は固溶炭素を残存させることに
よつて歪時効を利用しているために、常温時効に
より、プレス前に材質の劣化がおこり、プレス割
れの原因となることがある。焼付硬化性鋼板はプ
レス前の材質が軟質で加工性に優れ、塗装焼付に
よつて硬化して、利用するとき、硬質になること
が期待されている。しかし、従来の製造方法では
固溶炭素の調整が困難でプレス前の軟質と塗装焼
付後の硬質という関係が両立しない欠点を有して
いた。 そこで、本発明者は鋭意検討した結果、超加工
性鋼板としてのNb、Ti添加極低炭素鋼板に、
Cr、V、Mo、Wのうち1種、または、2種以上
を必須元素として含有することによつて、常温時
効はなく、塗装焼付後に硬質となる焼付硬化性鋼
板としての具備すべき本来の性質とすることを知
見した。 Cr等の添加によつて、固溶炭素は減少して、
常温時効はなくなる。しかしながら、炭素が完全
な炭化物として析出せずに、Cr等の析出以前の
弱い結合状態あるいはクラスター状に存在し、塗
装焼付時の熱によつて、固溶炭素となり、焼付硬
化性に寄与する機構で、常温時効はなく、塗装焼
付後に硬質となる焼付硬化性鋼板としての本来具
備すべき性質を付与しうることを知見した。 本発明者はかかる知見に基づいて構成されたも
ので、以下、本発明について詳細に説明する。 第1図はC:0.0025%、Si:0.009%、Mn:
0.21%、P:0.01%、Ti:0.015%、Nb:0.005%
を含有した鋼を基本成分として、Cr量を0.01〜
0.4%の範囲で変化させた鋼を溶製し常法に従い
熱間圧延で仕上温度890℃、巻取温度720℃で巻取
り、常法に従い冷間圧延を施し、板厚0.8mmの鋼
板とした後、連続焼鈍で800℃の温度にて1分間
保持し、ついで100℃/secで冷却した後、400℃
×3minの過時効処理を行い、スキンパス1%を
施したときのCr含有量と焼付硬化量および降伏
伸びとの関係について調べた図である。図から、
Cr含有の有無にかかわらず、焼付硬化量は大き
いが、降伏伸びは減少している。このことは、
Crの添加によつて、常温時効はなく、塗装焼付
後に硬質となる焼付硬化性鋼板としての具備すべ
き本来の性質となつている。 化学成分を限定する理由はつぎのとおりであ
る。 Cは0.005%を超えて含有すると固溶炭素が多
くなり、常温時効性が悪くなる。Cを固定するた
めにNbの添加量が多くなり、経済的にも不利で
ある。そのために、Cの上限を0.005%とした。 Siは0.8%以下含有し、Cを固溶させる効果で
焼付硬化性に好影響を与える。また、Cを低くし
たとき、鋼板の強度低下を招くので、その強度低
下を補うために含有する。しかし、0.8%を超え
て含有すると鋼板表面の酸化膜が多くなり、さら
に、加工性が劣化するため、その上限を0.8%と
した。 Mnは1.0%を超えて含有すると加工性が低下す
るので1.0%を上限とした。 Pは少ないと加工性は向上するが、固溶体元素
として添加する。しかし、その量が0.1%を超え
ると加工性が悪くなるため、0.1%を上限とした。 Alは0.1以下を含有し、NをAlNとして固定し、
常温時効の劣化を防止するためで、その上限を
0.1%としたのはそれ以上含有してもNの固定す
る量を超えるし、Nを固定した残りが加工性を劣
加させるためである。 Nは0.005%以下を含有し、できるだけ少ない
ことが望ましく、Tiの添加量を少なくできるし、
常温時効性を向上させるため、その上限を0.005
%とした。 Bは必要に応じて含有せしめるが、焼鈍工程に
おける急冷による焼き入れ強化元素であり、ま
た、焼付硬化性を向上させる元素であり、その含
有量が0.0002%未満であるとその効果がなくなる
ため、その下限を0.0002%とし、また、0.00030
%を超えて含有すると熱間圧延工程で、疵が発生
しやすくなり、鋼板の表面性状を著しく損なうの
で、その上限を0.0030%とする。 TiとNbは複合添加を必須条件として添加す
る。まず、TiはNを固定して常温時効性を向上
させること、Cとの結合を少なくして焼付硬化性
を向上させること、および、固溶Tiとして鋼中
に残存し加工性を損なわないことを条件に、48/1
4〔N(%)−0.003%〕≦Ti(%)、Ti(%)<〔48/
12
C(%)+48/14N(%)〕、0.003%≦Ti<0.025%の
3条件を満たす範囲内で含有し、Nbとの競合に
よつて加工性の優れた焼付硬化性鋼板とする。 NbはCと結合して常温時効性を向上させ、し
かも、その結合の不完全なことを利用して焼付硬
化性を向上させること、および、固溶Nbとして
鋼中に残存し加工性を損なわないことを条件に、
93/12〔C(%)−0.005%〕≦Nb(%)≦93/12〔

(%)−0.001%〕かつ、0.003%≦Nb(%)<0.025
%を満たす範囲内で含有し、Nb(%)+Ti(%)<
0.04%を満たす成分とし、Tiとの競合によつて加
工性の優れた焼付硬化性鋼板とする。 Cr、V、Mo、Wのうち1種または、2種以上
を必須元素として含有するのは、いずれも炭化物
形成元素であり、Cとの結合により、固溶炭素の
減少で、常温時効を向上させ、しかも、塗装焼付
時にはその熱で分解し、固溶炭素が増加して、焼
付硬化性が向上する効果があるためであり、その
下限をそれぞれCr:0.03%、V:0.01%、Mo:
0.02%、W:0.02%としたのは上記の効果を得る
ためである。また、その上限をそれぞれCr:0.35
%、V:0.15%、Mo:0.16%、W:0.30%とした
のはそれ以上含有しても上記の効果を得るための
含有量を超えるためであり、しかも、それ以上含
有すると炭化物形成元素であり、Cを完全な炭化
物として固定してしまい、焼付硬化性が得られな
いためである。 つぎに、製造工程について述べる。 熱間圧延工程は常法で熱延鋼帯とするが、仕上
温度をA3変態点以上とするのが望ましく、それ
未満とすると圧延の歪がのこり、組織を均一にで
きないためである。また、巻取温度をA1変態点
以下とするのが望ましいのは、それ以上で巻取る
と巻取後の冷却が遅く組織が不均一になるためで
ある。また、スケールの生成量が多く酸洗性が劣
るためである。 冷間圧延工程は常法でその圧延率は40〜90%が
望ましい。 焼鈍温度の範囲は箱型焼鈍で下限を再結晶温度
以上、上限を750℃以下とするのはそれを超える
焼鈍温度で焼鈍すると炭化物が大きくなり、加工
性を劣化させるためである。また、連続焼鈍で下
限を再結晶温度以上、上限を900℃以下とするの
はそれを超える焼鈍温度で焼鈍すると炭化物が大
きくなり、加工性を劣化させるためである。さら
に、連続焼鈍では焼鈍後、冷却して過時効処理を
行い、固溶炭素を調整して焼付硬化性を調整する
ことも可能である。 以上、本発明に従えば、焼付硬化性および加工
性の優れた冷延鋼板を経済的に製造することが可
能である。 (実施例) つぎに、実施例をあげて本発明を詳細に説明す
る。 実施例 1 造塊法あるいは連続鋳造法によつて製造した第
1表に示す鋼を連続熱延で第2表に示す製造条件
で熱間圧延、酸洗、冷間圧延、焼鈍を行い、焼鈍
後得られた鋼板の諸特性について調査した。 第3表からわかるとおり、本発明法以外の比較
法では所望の特性値が得られず、それに比し本発
明法の製造では所望の特性値が得られることがわ
かる。
(Industrial Application Field) The present invention relates to a method for manufacturing a cold rolled steel sheet with excellent bake hardenability and workability. (Prior Art) In recent years, high-strength steel plates have been increasingly used in the automobile industry due to the need to reduce the weight of vehicle bodies to improve fuel efficiency and to ensure the safety of passengers in the event of a collision. Additionally, due to the style of car bodies, there are many parts that are difficult to process, and the use of super-processable steel sheets is increasing. In particular, efforts are being made to reduce the thickness and weight of automobile doors and other exterior panels. but,
As the thickness of the plate decreases, it tends to lose its elasticity, and even when pressed with a finger, it may dent. Therefore, there is a desire for a steel plate that is easy to press and harden when used, and steel plates that utilize bake-hardening properties are being used to harden the steel plate by utilizing the heat from the baking of the paint after pressing. Bake-hardenable steel sheets have a mechanism in which solute carbon is left in the steel sheet manufacturing process, and the steel sheets are hardened through strain aging during paint baking.Because solute carbon remains, the steel sheets can be aged and pressed even at room temperature. Sometimes it has already hardened, causing press cracks. There is a need for measures to prevent aging deterioration at room temperature, which is a drawback of bake-hardenable steel sheets. Conventional manufacturing of bake-hardenable steel sheets involves box-type annealing as shown in Japanese Patent Publication No. 57-17064.
P in the area where about 0.015% of solid solution carbon remains:
Add about 0.06% to make TS = 35 kg class, and
For continuous annealing, C: 0.03%, P: about 0.03%
TS = 35 kg class. Furthermore, as a super-formable steel sheet, JP-A-59-
As shown in Publication No. 74232, ultra-low carbon steel, C:
It is a bake-hardenable steel sheet containing 0.0030%, Nb: 0.0018%, and Ti: 0.0010%. (Problems to be Solved by the Invention) However, the amount of solid solution carbon to remain varies depending on conditions such as components, annealing temperature, time, cooling rate, etc., and the amount of bake hardening changes. Even if this change in the amount of bake hardening is still acceptable, deterioration due to room temperature aging due to changes in solute carbon must be prevented. As the amount of solute carbon increases, the amount of bake hardening increases and the room temperature aging tends to deteriorate, so a steel sheet with excellent room temperature aging properties is desired even though the amount of bake hardening increases. The present invention aims to solve the problem that, although the amount of bake hardening increases due to an increase in solute carbon, the aging property at room temperature also deteriorates. (Means for Solving Problems) The gist of the present invention is C: 0.005% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.1% or less, Al: 0.1%.
Contains N: 0.005% or less, and Ti, Nb
The essential condition is the composite addition of Ti, and Ti is 48/14
[N (%) - 0.003%] ≦ Ti (%), Ti (%) < [48/12
C
(%) +48/14N (%)], 0.003%≦Ti<0.025% 3
Contains within the range that satisfies the conditions, and Nb is 93/12 [C
(%)-0.005%〕≦Nb(%)≦93/12[C(%)-0.00
1
%] and is contained within the range satisfying 0.003%≦Nb(%)<0.025%, Nb(%) + Ti(%)<0.04%, and further Cr: 0.03 to 0.35%, V:
0.01~0.15%, Mo: 0.02~0.16%, W: 0.02~
A steel containing one or more of 0.30% as an essential element, or further containing 0.0002 to 0.0030% of B, with the remainder consisting of Fe and unavoidable elements, is hot rolled by a conventional hot rolling method. After forming the steel strip, after cold rolling in a conventional manner, annealing is performed at a temperature above the recrystallization temperature and below 750℃ using box type annealing, or annealing is performed at a temperature above the recrystallization temperature and below 900℃ using continuous annealing. This is a method for producing a cold rolled steel sheet with excellent bake hardenability and workability. Bake-hardenable steel sheets utilize strain aging by leaving solute carbon behind, so aging at room temperature can cause deterioration of the material before pressing, which may cause press cracks. Bake-hardenable steel sheets are soft and have excellent workability before being pressed, and are expected to harden by baking the paint and become hard when used. However, conventional manufacturing methods have had the disadvantage that it is difficult to adjust the amount of solid solute carbon, and that the relationship between softness before pressing and hardness after baking is incompatible. Therefore, as a result of intensive study, the present inventors found that ultra-low carbon steel sheets with Nb and Ti additions as ultra-formable steel sheets.
By containing one or more of Cr, V, Mo, and W as essential elements, there is no aging at room temperature and the original properties of a bake-hardenable steel sheet that become hard after painting is baked. We found that it is a property of By adding Cr etc., solid solution carbon decreases,
Room temperature aging disappears. However, carbon does not precipitate as a complete carbide, but exists in a weakly bonded state or cluster form before precipitation of Cr, etc., and becomes solid solution carbon by the heat during paint baking, which contributes to bake hardenability. It was discovered that the steel sheet does not age at room temperature and can be given the properties that a bake-hardenable steel sheet should have, which becomes hard after painting and baking. The present inventor was constructed based on this knowledge, and the present invention will be described in detail below. Figure 1 shows C: 0.0025%, Si: 0.009%, Mn:
0.21%, P: 0.01%, Ti: 0.015%, Nb: 0.005%
The basic component is steel containing Cr, and the amount of Cr is 0.01~
Steel with a change in the range of 0.4% was melted, hot-rolled according to a conventional method at a finishing temperature of 890℃ and a coiling temperature of 720℃, and then cold-rolled according to a conventional method to obtain a steel plate with a thickness of 0.8mm. After that, it was continuously annealed at 800℃ for 1 minute, then cooled at 100℃/sec, and then heated to 400℃.
FIG. 3 is a diagram examining the relationship between Cr content, bake hardening amount, and yield elongation when overaging treatment was performed for 3 minutes and a skin pass of 1% was applied. From the figure,
Regardless of the presence or absence of Cr content, the amount of bake hardening is large, but the yield elongation is reduced. This means that
Due to the addition of Cr, there is no aging at room temperature, which is an inherent property of a bake-hardenable steel sheet that becomes hard after painting is baked. The reason for limiting the chemical components is as follows. When C is contained in an amount exceeding 0.005%, the amount of solid solution carbon increases, and room temperature aging properties deteriorate. In order to fix C, the amount of Nb added increases, which is economically disadvantageous. For this reason, the upper limit of C was set at 0.005%. Si contains 0.8% or less, and has a positive effect on bake hardenability due to the effect of dissolving C. Furthermore, when C is lowered, the strength of the steel sheet decreases, so Ni is included to compensate for the decrease in strength. However, if the content exceeds 0.8%, an oxide film will increase on the surface of the steel sheet and workability will deteriorate, so the upper limit was set at 0.8%. If Mn is contained in an amount exceeding 1.0%, processability will decrease, so 1.0% is set as the upper limit. A small amount of P improves workability, but it is added as a solid solution element. However, if the amount exceeds 0.1%, processability deteriorates, so 0.1% was set as the upper limit. Al contains 0.1 or less, N is fixed as AlN,
This is to prevent deterioration due to aging at room temperature, and the upper limit is
The reason why it is set at 0.1% is because even if it is contained more than that, it exceeds the amount of N that is fixed, and the remainder after fixing N deteriorates workability. N content is preferably 0.005% or less, and it is desirable to keep it as low as possible, so that the amount of Ti added can be reduced.
In order to improve room temperature aging properties, the upper limit has been set to 0.005.
%. B is included as necessary, but it is an element that strengthens hardening by rapid cooling in the annealing process, and is an element that improves bake hardenability, and if its content is less than 0.0002%, the effect will be lost. The lower limit is 0.0002%, and 0.00030
If the content exceeds 0.0030%, scratches are likely to occur during the hot rolling process and the surface quality of the steel sheet will be significantly impaired, so the upper limit is set at 0.0030%. Ti and Nb are added as a combined addition. First, Ti fixes N and improves room temperature aging properties, reduces bonding with C and improves bake hardenability, and remains in the steel as solid solution Ti so that it does not impair workability. 48/1, subject to
4 [N (%) - 0.003%] ≦ Ti (%), Ti (%) < [48/
12
C (%) + 48/14N (%)], 0.003%≦Ti<0.025%, and competes with Nb to produce a bake-hardenable steel sheet with excellent workability. Nb combines with C to improve room-temperature aging properties, and also improves bake hardenability by taking advantage of the incomplete bonding, and remains in the steel as solid solution Nb, impairing workability. provided that there is no
93/12 [C (%) - 0.005%] ≦Nb (%) ≦ 93/12 [
C
(%) −0.001%] and 0.003%≦Nb(%)<0.025
%, Nb (%) + Ti (%) <
The content satisfies 0.04%, and the competition with Ti creates a bake-hardenable steel sheet with excellent workability. Containing one or more of Cr, V, Mo, and W as essential elements are all carbide-forming elements, and their combination with C reduces solid solution carbon and improves room temperature aging. In addition, during paint baking, the heat decomposes and increases solid solute carbon, which has the effect of improving bake hardenability.
The reason for setting the content to 0.02% and W: 0.02% is to obtain the above effect. Also, the upper limit of each is Cr: 0.35
%, V: 0.15%, Mo: 0.16%, and W: 0.30% because even if it is contained more than that, it exceeds the content required to obtain the above effect, and furthermore, if it is contained more than that, it will cause carbide-forming elements. This is because C is fixed as a complete carbide and bake hardenability cannot be obtained. Next, the manufacturing process will be described. The hot rolling process produces a hot rolled steel strip using a conventional method, but it is desirable to set the finishing temperature to the A3 transformation point or higher; if it is lower than that, rolling distortion will remain and the structure will not be uniform. The reason why it is desirable to set the winding temperature to below the A1 transformation point is because if the winding temperature is higher than this, the cooling after winding will be slow and the structure will become non-uniform. Another reason is that the amount of scale produced is large and the pickling properties are poor. The cold rolling process is a conventional method, and the rolling ratio is preferably 40 to 90%. The range of annealing temperature is set at a lower limit of the recrystallization temperature or higher and an upper limit of 750° C. or lower for box type annealing because annealing at an annealing temperature exceeding that temperature increases carbides and deteriorates workability. Further, in continuous annealing, the lower limit is set to be higher than the recrystallization temperature and the upper limit is set to 900°C or lower because annealing at an annealing temperature exceeding that increases carbide size and deteriorates workability. Furthermore, in continuous annealing, after annealing, it is possible to perform an overaging treatment by cooling and adjust the solute carbon to adjust the bake hardenability. As described above, according to the present invention, it is possible to economically produce a cold rolled steel sheet with excellent bake hardenability and workability. (Example) Next, the present invention will be explained in detail by giving examples. Example 1 The steel shown in Table 1 manufactured by the ingot method or continuous casting method was continuously hot rolled, pickled, cold rolled, and annealed under the manufacturing conditions shown in Table 2. Afterwards, various properties of the obtained steel plate were investigated. As can be seen from Table 3, the desired characteristic values could not be obtained by the comparative methods other than the method of the present invention, whereas the desired characteristic values could be obtained by the method of the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 以上説明してきたように、本発明に従えば、焼
付硬化性および加工性の優れた冷延鋼板を経済的
に製造することが可能である。
[Table] (Effects of the Invention) As explained above, according to the present invention, it is possible to economically produce a cold rolled steel sheet with excellent bake hardenability and workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr含有量と焼付硬化量および降伏伸
びとの関係を示す図である。
FIG. 1 is a diagram showing the relationship between Cr content, bake hardening amount, and yield elongation.

Claims (1)

【特許請求の範囲】 1 C:0.005%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.1%以下、 Al:0.1%以下、 N:0.005%以下 を含有し、 かつTi、Nbを複合添加することを心須条件
とし、Tiは48/14〔N(%)−0.003%〕≦Ti
(%)、Ti(%)<〔48/12C(%)+48/14N(%)〕

0.003%≦Ti<0.025%の3条件を満たす範囲内
で含有し、Nbは93/12〔C(%)−0.005%〕≦
Nb(%)≦93/12〔C(%)−0.001%〕かつ、
0.003%≦Nb(%)<0.025%を満たす範囲内で含
有し、Nb(%)+Ti(%)<0.04%を満たす成分
とし、 さらに、Cr:0.03〜0.35%、V:0.01〜0.15
%、Mo:0.02〜0.16%、W:0.02〜0.30%のう
ち1種または、2種以上を必須元素として含有
し、 残部をFeおよび不可避的元素からなる鋼を、
常法の熱間圧延で熱延鋼帯とした後、常法の冷間
圧延後、箱型焼鈍で再結晶温度以上、750℃以下
の温度で焼鈍することまたは連続焼鈍で再結晶温
度以上、900℃以下の温度で焼鈍することを特徴
とする焼付硬化性および加工性の優れた冷延鋼板
の製造方法。 2 C:0.005%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.1%以下、 Al:0.1%以下、 N:0.005%以下 を含有し、 かつ、Ti、Nbを複合添加することを必須条件
とし、Tiは48/14〔N(%)−0.003%〕≦Ti(%)、
Ti(%)<〔48/12C(%)+48/14N(%)〕、0.003

≦Ti<0.025%の3条件を満たす範囲内で含有し、
Nbは93/12〔C(%)−0.005%〕≦Nb(%)≦93/12
〔C(%)−0.001%〕かつ、0.003%≦Nb(%)<
0.025%を満たす範囲内で含有し、Nb(%)+Ti
(%)<0.04%を満たす成分とし、 さらに、Cr:0.03〜0.35%、V:0.01〜0.15%、
Mo:0.02〜0.16%、W:0.02〜0.30%のうち1種
または、2種以上を必須元素として含有し、 更にB:0.002〜0.030%を含有し、 残部をFeおよび不可避的元素からなる鋼を常
法の熱間圧延で熱延鋼帯とした後、常法の冷間圧
延後、箱型焼鈍で再結晶温度以上、750℃以下の
温度で焼鈍することまたは連続焼鈍で再結晶温度
以上、900℃以下の温度で焼鈍することを特徴と
する焼付硬化性および加工性の優れた冷延鋼板の
製造方法。
[Claims] 1 Contains C: 0.005% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.1% or less, Al: 0.1% or less, N: 0.005% or less, and Ti, Nb. The condition is that Ti should be added in combination, and Ti should be 48/14 [N (%) - 0.003%] ≦Ti
(%), Ti (%) <[48/12C (%) + 48/14N (%)]
,
Contains within the range that satisfies the three conditions of 0.003%≦Ti<0.025%, and Nb is 93/12 [C (%) - 0.005%]≦
Nb (%) ≦93/12 [C (%) - 0.001%] and
Contains within the range of 0.003% ≦ Nb (%) < 0.025%, Nb (%) + Ti (%) < 0.04%, and furthermore, Cr: 0.03 to 0.35%, V: 0.01 to 0.15
%, Mo: 0.02 to 0.16%, W: 0.02 to 0.30%, and the steel contains one or more of the following as essential elements, with the remainder consisting of Fe and unavoidable elements.
After making a hot rolled steel strip by conventional hot rolling, after conventional cold rolling, box annealing is performed at a temperature above the recrystallization temperature and 750°C or below, or continuous annealing is performed at a temperature above the recrystallization temperature, A method for producing a cold-rolled steel sheet with excellent bake hardenability and workability, characterized by annealing at a temperature of 900°C or less. 2 Contains C: 0.005% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.1% or less, Al: 0.1% or less, N: 0.005% or less, and Ti and Nb are added in combination. is the essential condition, Ti is 48/14 [N (%) - 0.003%] ≦ Ti (%),
Ti (%) <[48/12C (%) + 48/14N (%)], 0.003
%
Contains within the range that satisfies the three conditions of ≦Ti<0.025%,
Nb is 93/12 [C (%) - 0.005%] ≦Nb (%) ≦93/12
[C (%) - 0.001%] and 0.003%≦Nb (%)<
Contains within the range satisfying 0.025%, Nb (%) + Ti
(%) <0.04%, and further Cr: 0.03 to 0.35%, V: 0.01 to 0.15%,
Steel containing one or more of Mo: 0.02 to 0.16% and W: 0.02 to 0.30% as essential elements, further containing B: 0.002 to 0.030%, and the balance consisting of Fe and inevitable elements. After making it into a hot-rolled steel strip by conventional hot rolling, after conventional cold rolling, box annealing is performed at a temperature above the recrystallization temperature and 750°C or below, or continuous annealing is performed at a temperature above the recrystallization temperature. , a method for producing cold-rolled steel sheets with excellent bake hardenability and workability, characterized by annealing at a temperature of 900°C or less.
JP24841785A 1985-11-06 1985-11-06 Manufacture of cold rolled steel sheet superior in baking hardenability and workability Granted JPS62109927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24841785A JPS62109927A (en) 1985-11-06 1985-11-06 Manufacture of cold rolled steel sheet superior in baking hardenability and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24841785A JPS62109927A (en) 1985-11-06 1985-11-06 Manufacture of cold rolled steel sheet superior in baking hardenability and workability

Publications (2)

Publication Number Publication Date
JPS62109927A JPS62109927A (en) 1987-05-21
JPH0585620B2 true JPH0585620B2 (en) 1993-12-08

Family

ID=17177805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24841785A Granted JPS62109927A (en) 1985-11-06 1985-11-06 Manufacture of cold rolled steel sheet superior in baking hardenability and workability

Country Status (1)

Country Link
JP (1) JPS62109927A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793351B2 (en) * 1998-06-30 2006-07-05 新日本製鐵株式会社 Cold rolled steel sheet with excellent bake hardenability
KR101523860B1 (en) 2010-11-22 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet of strain aging hardening type with excellent aging resistance after paint baking and process for producing same
KR102468037B1 (en) 2020-11-05 2022-11-17 주식회사 포스코 Cold rolled steel sheet and metal plated steel sheet having excellent bake hardenability and anti-aging properties and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839766A (en) * 1981-09-01 1983-03-08 Kobe Steel Ltd High strength cold rolled steel plate with superior baking hardenability and deep drawability
JPS5931827A (en) * 1982-08-13 1984-02-21 Nippon Steel Corp Production of quench hardenable steel plate for ultra deep drawing
JPS5938337A (en) * 1982-08-28 1984-03-02 Nippon Steel Corp Manufacture of steel plate with burning hardenability for extremely deep drawing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839766A (en) * 1981-09-01 1983-03-08 Kobe Steel Ltd High strength cold rolled steel plate with superior baking hardenability and deep drawability
JPS5931827A (en) * 1982-08-13 1984-02-21 Nippon Steel Corp Production of quench hardenable steel plate for ultra deep drawing
JPS5938337A (en) * 1982-08-28 1984-03-02 Nippon Steel Corp Manufacture of steel plate with burning hardenability for extremely deep drawing

Also Published As

Publication number Publication date
JPS62109927A (en) 1987-05-21

Similar Documents

Publication Publication Date Title
JPH032224B2 (en)
JPH0564215B2 (en)
JPH0474824A (en) Production of hot rolled steel plate excellent in baking hardenability and workability
JPH0585620B2 (en)
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JPS58126956A (en) High-strength steel sheet with superior press workability
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JPH02125817A (en) Manufacture of high strength cold rolled steel sheet having 35-45kg/mm2 ts level by continuous annealing
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP2682327B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in bake hardenability and deep drawability
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JPS6369923A (en) Production of cold rolled steel sheet for deep drawing having excellent baking hardenability
JPH0730408B2 (en) Method for producing hot-rolled thin steel sheet having bake hardenability by normal temperature aging
JPS6411088B2 (en)
JP2784207B2 (en) Method of manufacturing hot rolled steel sheet for processing and thermomechanical processing method of hot rolled steel sheet
JPH0573807B2 (en)
JP2735380B2 (en) Method for producing cold rolled steel sheet for processing having aging resistance, surface distortion resistance and dent resistance
JPS6330970B2 (en)
JPH0774412B2 (en) High-strength thin steel sheet excellent in workability and resistance to placement cracking and method for producing the same
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH0238647B2 (en) CHOKOCHORYOKUKOHANNOSEIZOHOHO
JPS639579B2 (en)
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPS5934778B2 (en) Nb-added cold-rolled steel sheet with excellent hardening properties during paint baking treatment