JPS5931827A - Production of quench hardenable steel plate for ultra deep drawing - Google Patents

Production of quench hardenable steel plate for ultra deep drawing

Info

Publication number
JPS5931827A
JPS5931827A JP13989782A JP13989782A JPS5931827A JP S5931827 A JPS5931827 A JP S5931827A JP 13989782 A JP13989782 A JP 13989782A JP 13989782 A JP13989782 A JP 13989782A JP S5931827 A JPS5931827 A JP S5931827A
Authority
JP
Japan
Prior art keywords
steel
temperature
annealing
amount
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13989782A
Other languages
Japanese (ja)
Other versions
JPS6145689B2 (en
Inventor
Yoshikuni Tokunaga
徳永 良邦
Noriyuki Iida
飯田 則幸
Masato Yamada
正人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13989782A priority Critical patent/JPS5931827A/en
Publication of JPS5931827A publication Critical patent/JPS5931827A/en
Publication of JPS6145689B2 publication Critical patent/JPS6145689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a titled steel plate virtually irrespectively of cooling rates by adding Ti and Nb in combination within a specific range to a dead soft steel contg. Si, Mn, P, Al, N and annealing the steel continuously at the recrystallization temp. or above after hot rolling and cold rolling. CONSTITUTION:The steel which consists of <=0.007% C, <=0.8% Si, <=1.0% Mn, <=0.15% P, 0.01-0.1% Al, <=0.01% N and other impurities, and with which the combined addition of Ti and Nb in the following range is an essential requirement is used: Ti is added in (48/14)(N%-0.002%)<Ti%<=(48/14)N% range and Nb is added in the range satisfying (93/12)(C%-0.005)<=Nb%<=(93/12)(C%-0.001) and <=0.020% Nb. The steel is subjected to hot rolling and cold rolling, then to continuous annealing at the ecrystallization temp. or above and the AC3 point or below.

Description

【発明の詳細な説明】 本発明は超深絞り用焼付硬化性鋼板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a bake-hardenable steel plate for ultra-deep drawing.

近年、自動車産業界では車体軽量化による燃費向上と安
全性の追求から高強度鋼板に対する要望が高まりつつあ
る。一方、自動車の販売性は車体のスタイリングで左右
される風潮にあることから、従来に増して鋼板のプレス
成形性が重要視されてきた。このような背景から、プレ
ス成形時には良好な成形性を示し、塗装焼付後に、降伏
強度、引張強度の上昇する特性、即ち焼料硬化性を有す
る鋼板に対する要求が高まっている。本発明はかかる要
求を満足する超深絞り用焼付硬化性鋼板の製造方法に関
するものである。
In recent years, demand for high-strength steel sheets has been increasing in the automobile industry in pursuit of improved fuel efficiency and safety through lighter vehicle bodies. On the other hand, as the salability of automobiles is increasingly influenced by the styling of the car body, more emphasis has been placed on the press formability of steel sheets than ever before. Against this background, there is an increasing demand for a steel sheet that exhibits good formability during press forming and has the property of increasing yield strength and tensile strength after baking the paint, that is, has bake hardenability. The present invention relates to a method for manufacturing a bake-hardenable steel sheet for ultra-deep drawing that satisfies such requirements.

焼付硬化性を有しない超深絞り用鋼板の製造方法に関す
るものとしては、Tiキルド鋼板(%公昭44−180
66号公報)及び゛Nbキルド鋼板(特公昭54−12
45号公報)の2つの系統のものが知られている。しか
しながらこれらの鋼板は、鋼板中のCXNを完全にTi
あるいはNb等の析出物として固定して℃・るために、
プレス成1ヒ後の塗装焼イス1時に歪時効現象が起こら
ず、従って111刊硬化性な有1〜ないものて゛ある。
Regarding the manufacturing method of ultra-deep drawing steel sheets that do not have bake hardenability, Ti killed steel sheets (% Kosho 44-180
66 Publication) and Nb killed steel plate (Special Publication No. 1984-12)
45) are known. However, in these steel sheets, the CXN in the steel sheets is completely replaced by Ti.
Or, in order to fix it as a precipitate such as Nb,
There are some products that do not cause strain aging phenomenon during the first coating and baking process after pressing, and therefore have no 111 hardening properties.

次に、焼(=1硬化性を伺与した超深絞り用鋼板σ)製
造法としては、Nb添加鋼にお℃・て鋼中のC,N、A
I含有計に応じてNbを添加し、Nb (a t%)/
(固溶C(at%)十固1N(at%))をある範囲内
に制限することにより、鋼板中の固溶C1固溶N量をコ
ントロールし、さらに焼鈍後の冷却速18iを制御する
ことを特徴とする方法(特公昭55−+ 41526号
、55−141.555号公報)がある。
Next, as a method for producing ultra-deep drawing steel sheet σ with 1 hardenability, Nb-added steel is heated at °C to produce carbon, nitrogen, and a
Add Nb according to the I content meter, Nb (a t%)/
By restricting (solid solute C (at%) 1N (at%)) within a certain range, the amount of solid solute C1 and solid solute N in the steel sheet is controlled, and the cooling rate 18i after annealing is further controlled. There is a method (Japanese Patent Publication Nos. 55-41526 and 55-141.555) characterized by this.

1、かじながら、実際に調査検討してみると、かかる製
1告法には次のような欠点がある。ます熱延巻取温度、
焼鈍温度、焼鈍後の冷却速度に月ず4)制限であイ)。
1. Upon careful investigation and consideration, we found that this manufacturing method has the following drawbacks. hot rolling winding temperature,
4) There are limitations on the annealing temperature and cooling rate after annealing.

Nb添加鋼では熱延で高温を取(巻取1品tw ;70
0 ℃)を必要とする。通常の巻取温度では冗全再結晶
温度が非常に尚く/c−)で、連続切、鈍炉の可能温度
範囲(通常は約850 ’C以下)では未再結晶部が残
っていたり、またNb敏の多少によって拐質の変動が大
きし・。
Nb-added steel is hot-rolled at high temperatures (rolling 1 item tw; 70
0°C). At normal coiling temperatures, the redundant recrystallization temperature is very low/c-), and in the continuous cutting and blunt furnace temperature range (usually about 850'C or less), unrecrystallized parts may remain. Also, the quality of the particles varies greatly depending on the degree of Nb sensitivity.

高温巻取を行なった場4合には、熱延コイルのコイル長
手方向端部を除いては約SOO〜850℃の焼鈍温度で
高いr値の鋼板が鼾られることは種々報告されている通
りである。しかシフ、高温巻取を行なうと見・うことは
、スケールが厚くなり酸洗能率を極端に落1−だけでな
く、コイル端部は冷却速度が速℃・ために通常の巻取温
度と同じ程度の材質となり、十分な利質が得られな(・
ので歩留の低下はNbキルト鋼では特に犬き℃・ものが
ある。
It has been variously reported that when high-temperature coiling is performed, a steel plate with a high r value is scorched at an annealing temperature of approximately SOO to 850°C, except for the longitudinal ends of the hot-rolled coil. It is. However, when sifting and high-temperature winding is performed, not only does the scale become thick and the pickling efficiency is extremely reduced, but also the cooling rate at the end of the coil is faster than normal winding temperature. The materials are of the same quality, and sufficient profit cannot be obtained (・
Therefore, the decrease in yield is particularly severe in Nb quilted steel.

第2は焼鈍温度と焼鈍後の冷却速度の問題である。前記
の公知技術にある如く、高温(約900℃す、上)で焼
鈍すると熱延で析出してし・たNb(C,N)ある(・
はAINが再溶解するために固溶N1固溶Cが増加し7
時効性が大きくなる。また、焼鈍後の冷却速度を該特許
にあるように、400℃までを50℃/see以下ある
(・は、400℃までを50℃/sec以上かつ400
 ℃から200℃までを10℃/sec以下という様に
、徐冷しなければ、固溶N、固溶Cの影響により遅時効
性とならないのである。Nb添加鋼の場合に特に問題と
なるのは、高温で再溶解する入INであり、常温時効性
に2:↑して問題となるのはこのN時効によるものであ
る。
The second problem is the annealing temperature and the cooling rate after annealing. As in the above-mentioned known technology, when annealing at a high temperature (approximately 900°C or above), Nb(C,N) precipitates during hot rolling.
As AIN redissolves, solute N1 and solid solute C increase and 7
The statute of limitations increases. In addition, as stated in the patent, the cooling rate after annealing is 50°C/sec or less up to 400°C (・ means 50°C/sec or more up to 400°C and 400°C
Unless it is slowly cooled from 10° C. to 200° C. at a rate of 10° C./sec or less, it will not have slow aging properties due to the influence of solid solute N and solid solute C. In the case of Nb-added steel, a particular problem is in-in which is remelted at high temperatures, and it is this N aging that causes a 2:↑ problem in room temperature aging.

第3の欠点は亜鉛めっき特性である。一般に溶融亜鉛め
っきを行なった場合、鋼中のSi含有袖か約(1,3%
を越えるとめつき密着性が劣化するとされている。これ
は鋼板表面に濃化するSiKよって薄(・酸・化膜が生
成され、地鉄と溶融11j鉛との反応が良好に進まない
ためとされる。
The third drawback is the galvanizing properties. Generally, when hot-dip galvanizing is performed, the Si content in the steel is approximately (1.3%).
It is said that if it exceeds this, the plating adhesion will deteriorate. This is said to be because a thin (oxidized) film is formed due to SiK concentrating on the surface of the steel plate, and the reaction between the base iron and molten 11j lead does not proceed well.

かかる理由から溶融亜鉛めっきを行な5拐料では、表面
濃化Si歇を抑えろため鋼中のSi含有Mを約03%以
下に制限して製造に供してきた。
For this reason, hot-dip galvanizing steel has been produced by limiting the Si-containing M content in the steel to about 0.3% or less in order to suppress the surface concentration of Si.

しかしながら引張強度40 Kg/mA以上の鋼板を製
造する場a、二次加]L割れの問題からP含有量が制限
され、その能の合金元素を添加して高強度化しな(jれ
ばならなし・にもかかわらず、かかるめ−)き密着性の
観点からSiおよびMnを添加できな(・ため、実質上
40 K97mAを超える引張強度を有する性能の良好
な亜鉛めっき超深絞り可焼料硬化性鋼板は非常に難しく
・。以−ヒのS+の表面濃化現象は、徐冷却時における
一般現象−であり、現在まで解決されなし・問題点であ
った。
However, when manufacturing steel sheets with a tensile strength of 40 Kg/mA or more, the P content is limited due to the problem of secondary stress cracking, and it is necessary to add alloying elements with this ability to increase the strength. Despite the fact that Si and Mn cannot be added from the viewpoint of adhesion to the plating, it is a zinc-plated ultra-deep drawable sinterable material with good performance that has a tensile strength that substantially exceeds 40K97mA. It is very difficult to harden steel sheets.The surface concentration phenomenon of S+ described below is a general phenomenon during slow cooling, and has remained an unsolved problem until now.

本発明者等は、従来技術であるNb添加鋼のもつこれら
の欠点を詳細に検削した結果、本質的な原因は次の3点
であるという結論を得た。
As a result of a detailed examination of these defects of conventional Nb-added steel, the present inventors came to the conclusion that the essential causes are the following three points.

(1)熱延巻取時の温度履歴に大きく影響されるA1.
Hの析出。(2)焼鈍温度および焼鈍後の冷却速度に依
存して固溶C1固溶N量が変化すること。
(1) A1, which is greatly affected by the temperature history during hot rolling and winding.
Precipitation of H. (2) The amount of solid solution C1 and solid solution N changes depending on the annealing temperature and the cooling rate after annealing.

(3)焼鈍後の冷却速度に依存する合金元素の粒界ある
いは表面への濃化の3点である。
(3) Concentration of alloying elements at grain boundaries or on the surface depends on the cooling rate after annealing.

(1)につし・では、実際Nb添加鋼ではNbは炭化物
を形成するが、窒化物形成傾向は比較的弱く、窒素はA
INとして析出して見・る。AINは通常の巻取温度で
は形成され難く、巻取温度を700℃以」二にしないと
熱延板中では析出せず、冷延後の連続焼鈍時に微細析出
物として析出し、結晶粒の成長を抑制し、降伏強度を高
くしたり、伸びを低下させる等の材質劣化を引き起こす
(1) In Nb-added steel, Nb actually forms carbides, but the tendency to form nitrides is relatively weak, and nitrogen is
It is precipitated and viewed as IN. AIN is difficult to form at normal coiling temperatures, and does not precipitate in hot-rolled sheets unless the coiling temperature is lower than 700°C, and precipitates as fine precipitates during continuous annealing after cold rolling, resulting in formation of crystal grains. It suppresses growth and causes material deterioration such as increasing yield strength and decreasing elongation.

(jY−’)て、高温巻取をした場合でも、熱延コイル
長丁力向中心部はAINが析出するが1、冷却速、度の
床(・コイル長手方向前後端部では巻取時にAINが析
出しなし・ことがら通常巻取時と同様、降伏強度のトゲ
1、伸び、r値の極端な低下をもたらずものC・ある。
(jY-') Even when high-temperature winding is performed, AIN precipitates at the center of the hot-rolled coil length. However, as with normal winding, there is no precipitation, and there is no significant decrease in yield strength, elongation, or r value.

また、熱延巻取温度の微妙な・ミラツキやコイルの中央
部、端部ではAINの析出の程度に差がでてくるために
、熱延コイルの前、後端部の材質劣化やコイル内材質の
バラツキが生ずるものである3、 (2)につ(・ては、高温焼鈍を行なうと、熱延巻取時
に析出して℃・たNb(C,、N)やAIN等の析出物
が、その温度における溶解度積になる如くrlf (6
M’ L、固溶d、固溶Nが増加する。特にAIN溶解
に起因する固溶Nは固溶CK比較して常温時効性が尺き
いため、遅時効性という目標(]質に反することになる
。また、焼鈍時に存在すZ1同浴C1固溶Nはその後の
冷却過程でNb(C,N)あるいはAINとして析出す
るが、特にAIHの析出速度は約815℃にピークを持
ち低温になる程小さくなるため、高温域での1子冷却が
必要となる。該特許では、400℃までを徐冷モしくは
400℃までを急冷し2て4oo℃がら200℃までを
徐冷しなければならないとして℃・るか、実質上400
℃から200 ℃の温度域での析出速度は極めて小さく
、高温域での徐冷却が必要ということになる。いずれに
してもかかる製造法では焼鈍温度、焼鈍後の冷却速度の
コントロールが不可欠であることに変わりはな(・0(
3)については既に述べた通りである。
In addition, due to slight irregularities in the hot-rolling coiling temperature and differences in the degree of AIN precipitation at the center and ends of the coil, material deterioration at the front and rear ends of the hot-rolled coil and inside the coil may occur. Regarding (2), when high-temperature annealing is performed, precipitates such as Nb (C,,N) and AIN that precipitate during hot-rolling and coiling occur. is the solubility product at that temperature, rlf (6
M' L, solid solution d, and solid solution N increase. In particular, the solid solution N resulting from AIN dissolution has longer room temperature aging properties than solid solution CK, which violates the goal of slow aging properties. N precipitates as Nb (C, N) or AIN during the subsequent cooling process, but the precipitation rate of AIH in particular peaks at about 815°C and decreases as the temperature decreases, so single-child cooling in a high temperature range is necessary. According to the patent, it is necessary to slowly cool down to 400°C or rapidly cool down to 400°C, and slowly cool from 400°C to 200°C, or substantially 400°C.
The precipitation rate in the temperature range from °C to 200 °C is extremely low, which means that slow cooling is required in the high temperature range. In any case, in this manufacturing method, it is still essential to control the annealing temperature and the cooling rate after annealing (・0(
3) has already been mentioned.

以上述べてきた考えに基づいて、熱延巻取温度に依らず
にコイル内材質の均質性が良好であり、焼鈍温度及び焼
鈍後の冷却速度に依らずに焼料硬化性か1・]与でき、
さらに二次加工脆性の問題がなく、溶融亜鉛めっき鋼板
製造時にめっき密着性が良好な超深絞り用鋼板製造方法
の考え方は以下のようなものになった。
Based on the ideas described above, the homogeneity of the material inside the coil is good regardless of the hot-rolling coiling temperature, and the sinter hardenability is determined to be 1.] regardless of the annealing temperature and the cooling rate after annealing. I can do it,
Furthermore, the concept of a method for producing ultra-deep drawing steel sheets that does not have the problem of secondary work brittleness and has good plating adhesion during the production of hot-dip galvanized steel sheets is as follows.

即ち、NはAINではなく TiによってTiNとして
仕上げ熱延前に析出させ、以下の熱延巻取時、冷延、再
結晶焼鈍時には再固溶、析出と(・・−)だ反応を起こ
さな℃・、言し・かえれば熱延以後の工程はNに関して
は材質に無関係と℃・うことである。またCは主として
NbによってNbCとして析出させるが、焼付硬化性を
熱延巻取温度、焼鈍温度、焼鈍後の冷却速度に・関係な
く安定して伺与するために、C量の含有範囲を、Nb添
2111 Mのみとの関係できまるExcess C量
(C(%)2 − 面Nb (%) ノ値で定義する)が、10〜50
ppmの範囲に制御した鋼板が本発明の基本的な考え方
である。
In other words, N is precipitated as TiN by Ti instead of AIN before finishing hot rolling, and during the following hot rolling coiling, cold rolling, and recrystallization annealing, it does not cause any reaction such as re-solid solution or precipitation (...-). In other words, the process after hot rolling is independent of the material with respect to N. In addition, C is mainly precipitated as NbC by Nb, but in order to stably obtain bake hardenability regardless of the hot rolling coiling temperature, annealing temperature, and cooling rate after annealing, the content range of C amount is set as follows. The Excess C amount (defined as the value of C (%) 2 - surface Nb (%)) determined by the relationship only with Nb addition 2111 M is 10 to 50.
The basic idea of the present invention is to control the steel plate within the ppm range.

本発明、中4が従来のNb添加鋼と比較して著しく優れ
た材質特性を有するのは、TiをNbと共に複合添加し
たことに依存するものである。即ち鋼中のNは1゛iに
よって’I’iNとして既に熱延加熱炉中で析出して℃
・る。公知の如<’l’iNは窒1ヒ物として極めて高
温から安定析出物となるために、熱延、冷延、再結晶焼
鈍の各製造工程においてイ■jら変化するものではなく
、従って、がかろ製造二[程の影響によって材質が何ら
影響を受けろものではなし・。Nbを単独に添加した鋼
板では、熱延巻取温度によってAINとしてのNの析出
量が著しく変動するために通常巻取では、巻取段階にお
いて存在する固溶N量が多く、再結晶焼鈍時に微細析出
するAINある℃・はNbNの影響で降伏強度が高(、
伸び、r値が低く目標とする材質特性が得られない。ま
た高温巻取の場合においても、コイル長手方向前後端部
では巻取時の冷却速度が速いため、通常巻取相当の材質
となることは既に述べた通りである。
The reason why the present invention, Medium 4, has significantly superior material properties compared to conventional Nb-added steel is due to the composite addition of Ti and Nb. In other words, N in the steel has already precipitated as 'I'iN in the hot rolling furnace due to 1'i.
・Ru. As is well known, N is a nitrogen atom and becomes a stable precipitate at extremely high temperatures, so it does not change during each production process of hot rolling, cold rolling, and recrystallization annealing, and therefore However, the quality of the material is not affected in any way by the effects of Gakaro manufacturing. In steel sheets to which Nb is added alone, the amount of N precipitated as AIN varies significantly depending on the hot rolling and coiling temperature. The yield strength of finely precipitated AIN at ℃ is high due to the influence of NbN (,
The elongation and r value are low and the target material properties cannot be obtained. Furthermore, even in the case of high-temperature winding, the cooling rate at the front and rear ends in the longitudinal direction of the coil during winding is fast, so as described above, the material is equivalent to that for normal winding.

本発明鋼は鋼中のNなTiNとして熱延加熱炉中ですで
に析出させており、T−iNは極めて高温から安定な析
出物であるから上記の如く、熱延巻取温度によって析出
量が変化するものではなし・。また、TiNは周知の如
くサイズの太き℃・析出物であるから門結晶焼鈍時に結
晶粒の成長を妨げ材質を劣化させるものではない。
The steel of the present invention has already been precipitated in the hot-rolling furnace as N-TiN in the steel, and since TiN is a stable precipitate even at extremely high temperatures, the amount of precipitation can be adjusted depending on the hot-rolling temperature as described above. It's not something that changes. Furthermore, as is well known, TiN is a large-sized precipitate, so it does not hinder the growth of crystal grains during gate crystal annealing and does not deteriorate the material quality.

以上の如く、本発明鋼は1゛iの添加により、熱延巻取
温度に関わらず、通常巻取でも良好な材質を得る製造法
となる。また、高温巻取を行なった場合においても、コ
イル内材質は極めて均質なものとなり、製造歩留の低下
は全く考慮する必要がない。
As described above, the steel of the present invention can be manufactured by adding 1゛i to produce a good material even when it is normally rolled, regardless of the hot-rolling and winding temperature. Further, even when high-temperature winding is performed, the material inside the coil becomes extremely homogeneous, and there is no need to consider a decrease in manufacturing yield at all.

次に、焼鈍温度及び冷却速度の影響力あるが、本発明鋼
はNをTiNとして固定しており、焼鈍温度に比較して
榛めて高温の温度域にお℃・ても安定な析出物であるた
めに、高温焼鈍でも再固溶−することはなく固溶N量に
はほとんど全く影響し、な(・。従って焼付硬化性は固
溶C量のみに依って決定される・ものである。冷却速度
に関してもかかる理由から考慮する必要はなく任意の冷
却速度でよし・。また、室温まで急速冷却したとしても
何ら常温時効性に対して影響を及ぼすものではない。
Next, although the annealing temperature and cooling rate have an influence, the steel of the present invention fixes N as TiN, and as a result, precipitates are stable even in a temperature range that is much higher than the annealing temperature. Therefore, even during high-temperature annealing, there is no re-dissolution, and there is almost no effect on the amount of solute N. Therefore, the bake hardenability is determined only by the amount of solid solute C. For this reason, there is no need to consider the cooling rate, and any cooling rate may be used.Furthermore, even if it is rapidly cooled to room temperature, it will not affect the room temperature aging property in any way.

仮りに高温焼鈍を行なって熱延巻取時に析出していたN
bCσル一部が再固溶したと(2て、固溶0敗がhずか
に変動したとしても急速冷速をすることにより、Cをは
じめとする元素の粒界への偏析が41i、端に低くなる
ため、論文等に記載のUll<、粒界が高純であること
の効果により時効処理後、降伏点伸びが出現することは
ない。
If high-temperature annealing was performed, the N that had precipitated during hot rolling and winding.
If a part of bCσ is re-dissolved (2), even if the solid solution 0 loss changes slightly, by rapid cooling, the segregation of elements such as C to the grain boundaries is 41i, Since it becomes lower at the edge, the yield point elongation does not appear after aging due to the effect of the grain boundaries being highly pure, as described in papers and the like.

T1を複合添加した本発明Sにより、以上のように焼鈍
温度、冷却速度に依存せずに純粋に鋼中のC1N1)量
のみを制御することにより、実質上非時効である超深絞
り用焼付硬化性鋼板が製造できるものである。
By controlling only the amount of C1N1) in the steel without depending on the annealing temperature and cooling rate as described above, the present invention S with the combined addition of T1 can achieve ultra-deep drawing baking that is virtually non-aging. Hardenable steel sheets can be manufactured.

更に本発明鋼では、Tiの複合添加により前述の如く、
焼鈍後の冷却速度に依存せずに製造可能なため、St 
XMn等を添加して40 Kf/mAを超える引張強度
の高℃・高強度溶融亜鉛めっき鋼板製造時に、めっき密
着性の極めて良好な、従来にない優れた鋼板を製造でき
る。
Furthermore, in the steel of the present invention, as mentioned above, due to the composite addition of Ti,
Since it can be manufactured without depending on the cooling rate after annealing, St
When producing hot-dip galvanized steel sheets with tensile strength exceeding 40 Kf/mA at high temperatures by adding XMn, etc., it is possible to produce steel sheets with extremely good plating adhesion, which are unprecedented in quality.

溶融亜鉛めっき鋼板のめつき密着性は、既に述べたよう
に、焼鈍冷却中に鋼板表面に濃化する主としてSi等の
合金元素の影響により劣化するため、Si含有量は約0
3係以下に制限されて(・た。このため特に引張強度4
0 K9/−以上の性能の良好な超深絞り用亜鉛めっき
鋼板は、これまで実質上製造されていなし・と言える。
As mentioned above, the plating adhesion of hot-dip galvanized steel sheets deteriorates mainly due to the influence of alloying elements such as Si that concentrate on the steel sheet surface during annealing and cooling, so the Si content is approximately 0.
For this reason, the tensile strength is particularly limited to 4 or less.
It can be said that virtually no galvanized steel sheet for ultra-deep drawing with good performance of 0 K9/- or higher has been manufactured to date.

この欠点も、本発明鋼ではTiの複合添加により材質は
冷却速度にほとんど全く依存せず、急速冷却も6J能と
なり、表面に濃化するSi等の合金yし素を著しく低減
できろため、がかるSi含有袖の高(・超深絞り可焼料
硬化性高強度鋼板の製造が可能どなるものであるも 以り述べてきた如く、本発明鋼はTiの複合添加により
、従来の鋼板にない種々の材質特性を兼ね備えた全く新
しく・性格の鋼板であり、極めて有利フエものである。
This drawback can also be overcome by the composite addition of Ti in the steel of the present invention, which makes the material almost completely independent of the cooling rate, allowing for rapid cooling of up to 6 J, and significantly reducing alloying elements such as Si that concentrate on the surface. As mentioned above, the steel of the present invention has a high Si-containing strength (ultra-deep drawable, sinter-hardening, high-strength steel sheet). It is a completely new steel plate with various material properties and is extremely advantageous.

次に成分範囲について述べる。前述の如くTi添加量は
Nとの関係で決まる。Tiを添加するのは、NをAIN
あるいはNbNとして析出させろと、その析出箪が巻取
温度によって大きく左右されたり、焼鈍温度、焼鈍後の
冷却速度によって、最終的に鋼板中の固溶NJitが影
響されるため((、コイル長手方向端部の材質が劣化し
たり、コイル内月質のバラツキが大きくなったり、さら
には材質の巻取温度、焼鈍温IW、冷却速度に依4’r
i して大きく変化するのを防ぐためである。
Next, we will discuss the component range. As mentioned above, the amount of Ti added is determined by the relationship with N. The reason for adding Ti is to add N to AIN.
Alternatively, if NbN is to be precipitated, the precipitation rate is greatly affected by the coiling temperature, and the solid solution NJit in the steel sheet is ultimately affected by the annealing temperature and cooling rate after annealing ((, coil longitudinal direction The material at the end may deteriorate, the quality of the coil inside the coil may vary greatly, and furthermore, depending on the winding temperature, annealing temperature IW, and cooling rate of the material,
This is to prevent large changes due to i.

調配し、てみると、このよりなNの効果は、含有M: 
201)pITI以下では大きくなし・ため、Ti添加
欧の下限はTiで固定できな(・N N、か20 pp
m以下となるように決まる。即ち48/M(N(%)−
0,002%(20ppm))<Ti(%)である。こ
の場合に、Nは(Ti、Al)Nとして比較的高温でも
安定な析出物になっているために、実質上全N量をTi
Nとして析出させたのと同様な効果を有することが実験
の結果確められて(・る。またTi添加量の上限は1.
TiをNとの当量(即ち48/14N (%) )以上
に添加すると硫化物を形成したり、炭化物となって延性
及び二次加工性を劣化させたり、焼付硬化性の制御を困
難にする、さらにはP添加時にリン化物を形成して材質
を悪くするのでTiはNとの当量以上は添加しないこと
が望まし℃・。以上よりTi曜加量は48/14(N(
%)−0,002%)<Ti(%)≦48714N(係
)となる。
When adjusted and examined, this effect of more N was found to be due to the presence of M:
201) The lower limit of Ti addition cannot be fixed with Ti because it is not large below pITI (・N N, or 20 pp
m or less. That is, 48/M(N(%)-
0,002% (20 ppm))<Ti (%). In this case, since N is a (Ti, Al)N precipitate that is stable even at relatively high temperatures, substantially all the N amount is replaced by Ti.
Experiments have confirmed that it has the same effect as when precipitated as N. Also, the upper limit of the amount of Ti added is 1.
If Ti is added in an amount greater than the equivalent amount to N (i.e. 48/14N (%)), it will form sulfides or carbides, deteriorating ductility and secondary workability, and making it difficult to control bake hardenability. Moreover, when P is added, phosphides are formed and the quality of the material is deteriorated, so it is preferable not to add Ti in an amount exceeding the equivalent amount of N. From the above, the Ti weight is 48/14(N(
%)-0,002%)<Ti(%)≦48714N (relationship).

一方NbはCとの関係で決まり、Excess C敏(
C(%) −] 2/93 Nb (%))が10〜5
0(ppm)の範囲内で、かつNb量が0.02%以下
であることか望まし℃・。従ってべb添加量はNb(鉤
ζ()02係かつ93/12 (C(%)−0,005
% (soppm) )りNb(%)S93/I 2 
(C(%) −0(1(1% (IO’ppm) ’J
となる。
On the other hand, Nb is determined by the relationship with C, and Excess C (
C (%) −] 2/93 Nb (%)) is 10 to 5
It is desirable that the Nb content be within the range of 0 (ppm) and the amount of Nb be 0.02% or less. Therefore, the amount of Beb added is
% (soppm) )riNb (%) S93/I 2
(C(%) -0(1(1% (IO'ppm) 'J
becomes.

Nb I’f+の1・限は、実質1−1非時効となる限
界から決まる。Nbにン・1する+1歌を紹えるC量が
50ppmす、−1−になると鋼板内の固溶Cか多くな
り過ぎ、焼(−1’ lf化性は大きくなるか、時効後
、降伏点伸びが現第1、外板用素材として適さない。N
bMのに限は固溶Cが適当性残存するように決定される
。Excess C量がl Oppm以下になると、最
終的な固溶C量が少くなり過ぎ、急速作動の場合でも、
焼料硬化性を十分+j与できな(・。
The 1· limit of Nb I'f+ is determined from the limit at which it is practically 1-1 non-aging. If the amount of C that introduces a +1 song to Nb is 50 ppm or -1-, there will be too much solid solution C in the steel sheet, and the sintering (-1' lfability will increase or yield after aging. Point elongation is currently the highest, making it unsuitable as a material for exterior panels.N
The limit of bM is determined so that the solid solution C remains appropriate. If the Excess C amount is less than 1 Oppm, the final solid solution C amount will be too small, even in the case of rapid operation.
Cannot provide sufficient sintering hardenability (・.

F;xcess C量かlO〜50ppmの範囲の場合
に、焼純温度冷却速度に関わらず安定して焼イτ1硬化
性な(−1’−j”jでき、かつ実質[−非時効となる
(第5図に示寸)。
When the amount of F; (Dimensions shown in Figure 5).

史K Nb添加−州が0.o2チを超えると、微細Nb
Cセ■出に力司冑加1−るために、再結晶温度が著1、
、 < l 眉したり、NbCによる析出強化要素が太
きくl、【す、YPの上層、El、r値の低下の原因と
tcるので本発明鋼の目標拐質からはずれるものであ7
.IO 第1図、第2図は本願発明鋼のTi 、Nb含有量範囲
をN、C量との関係で図示したものである。第3図、第
4図は’r’+ % Nb量と拐質の関係から本発明の
範囲を示したものである。
History K Nb addition-state is 0. If it exceeds o2chi, fine Nb
Due to the addition of force to the C output, the recrystallization temperature is extremely high.
, < l The precipitation strengthening element due to NbC is thick and causes a decrease in the upper layer of YP, El, and r values, so it is outside the target particle quality of the steel of the present invention7
.. IO FIGS. 1 and 2 illustrate the Ti and Nb content ranges of the steel according to the present invention in relation to the N and C contents. FIGS. 3 and 4 show the scope of the present invention from the relationship between the amount of 'r'+% Nb and the scale.

第3図は、Nb量を一定量(o、oos係)に固定し、
Ti量を変化させた場合の材質特性値である。他の合金
成分はC:0.0035、Si:O,O]、Mn : 
0.25、P:0.020、S:0.010、sol。
In Figure 3, the amount of Nb is fixed at a constant amount (o, oos),
These are material characteristic values when changing the amount of Ti. Other alloy components are C: 0.0035, Si: O, O], Mn:
0.25, P: 0.020, S: 0.010, sol.

Al:0040、N : 0.0040 (谷−、vt
%)および残部は実質的にFeからなる試料について、
a。
Al: 0040, N: 0.0040 (tani-, vt
%) and the remainder consists essentially of Fe,
a.

コイル長手方向中心部、b:コイル長手方向前後端部な
示した。熱延巻取温度は700 ℃の高温巻取、焼鈍条
件は800℃×30秒、冷却速度は、室温までの冷肩J
速度が100℃/secで゛ある。
The center part in the longitudinal direction of the coil, b: The front and rear ends of the coil in the longitudinal direction are shown. The hot rolling coiling temperature is high temperature coiling of 700 °C, the annealing condition is 800 °C x 30 seconds, and the cooling rate is cold shoulder J to room temperature.
The speed is 100°C/sec.

また、焼鈍後の調質圧延率は0.8 %である1、Ti
量がNをA1.Nとして析出させろかわりにTiNと1
.て固定するために不十分な量の場合、即ち48/14
 (N(%)−0,OO2%)>Tiミノ合には、コイ
ル前後端部の拐質劣化iYPの上昇、El、r値の低下
、Bo斯(第7図参照)が過大)が犬きい1、=1イ/
L前111M部は巻取時のt′11却遇g朋が連(、・
I、=め、通常巻取に相当1−イ)、飼質を表わすこと
になり、かかる′1゛i量の領域では低温巻取時に良6
/な月質を確保てきな(・ことになる。逆にTiをN 
K 2J−4−る当H(48/]4 N (%l )以
上添加した場合に(J、コイル前後端部、J…常巻取時
の拐質劣化は小さし・が、TiNを形成するために必要
な串を超え2+’l”iが含イガされて(・るために、
硫化物、炭化物を形成して延性、r値を劣化させろ結果
となって(・る。
In addition, the skin pass rolling ratio after annealing is 0.8%.
The amount is N to A1. Instead of precipitating as N, TiN and 1
.. If there is insufficient amount to fix it, i.e. 48/14
(N (%) - 0, OO2%) > Ti mino, there is a rise in grain deterioration iYP at the front and rear ends of the coil, a decrease in El and r values, and an excessive BoS (see Figure 7). Kii 1, = 1i/
The 111M section in front of L is t'11 rejected when winding.
I, = me, equivalent to normal winding 1-a), represents the feed quality, and in the region of such 1゛i amount, good 6
/ to ensure the quality of the moon.
K 2J-4 - When adding more than 48 N (%l) (J, front and rear ends of the coil, J... during continuous winding, grain deterioration is small, but TiN is formed. In order to exceed the required skewer and include 2+'l"i,
This results in the formation of sulfides and carbides, deteriorating ductility and r-value.

土!、:、この領域ではT1がTiCとして析出物を(
形成するため((、同浴c址が少くなり、適当j(焼:
イ−1−911j化性が1−劃らねなし・。上記の範囲
に′1゛itf: ’x:コノトロールすれば、固R1
’ C3iはExcess(−’、 i:4で決まり、
焼鈍温度、冷却速度に依らずに焼11硬化性をイ:j〜
できる。
soil! , :, In this region, T1 forms the precipitate as TiC (
In order to form ((, the same bath c will be less and suitable
E-1-911j conversion property is 1-no change. If the above range is '1゛itf:'
'C3i is determined by Excess(-', i:4,
Annealing 11 hardenability regardless of annealing temperature and cooling rate A:j~
can.

第・1図は、I″i覇を、Nを固定するに足る量だけ一
定iff’ (0,+l I 3係)添加し、Nl)計
を変化さリニた場合の4]質!侍性匝である1、他の合
金成分+、1.  (ご    +1  (+  0 
3 0  、  Si   :   0.0  +  
、 IVIn   :   0.2 5  、P:0.
020、S:0.010.5olAl  : 0.04
0 。
Figure 1 shows the case where a constant amount of I″i is added to fix N, and Nl) is changed. 1, which is 1, other alloy components +, 1.
30, Si: 0.0 +
, IVIn: 0.2 5, P: 0.
020, S: 0.010.5olAl: 0.04
0.

N : 0.0040(各wt係)および残部は実質的
にF’eよりなる試料につ(・て、a コイル長手方向
中心部、b:コイル長手方向前後端部の利質を示した。
N: 0.0040 (for each wt) and the remainder is a sample consisting essentially of F'e (a) the center in the longitudinal direction of the coil, b: the front and rear ends of the coil in the longitudinal direction.

他の製造条件は第3図の場合と同様である。Other manufacturing conditions are the same as in the case of FIG.

Nb量を従来のNb添加鋼で使用されて(・る州゛より
も著しく低し・量、93/12 (C(%)−0,00
5%Jて、Nb (%)≦93/I 2 CC(%[−
0,001% )がツNb <。
The amount of Nb is significantly lower than that used in conventional Nb-added steel (93/12 (C (%) - 0,00
5%J, Nb (%)≦93/I 2 CC (%[-
0,001%) is Nb<.

002係を満たずように添加すれば、適当ブ、c焼(=
J硬比性を伺与で・きることを示1〜ている。
If you add it so that it does not satisfy the 002 ratio, it will be suitable for baking and c-grilling (=
It shows that it can be done by asking the J hardness ratio.

ここに適当な焼料硬化性とは13 H= 3〜5 Kg
/mAである。、 Nb量が上記範囲を超えて含有され
ると、コイル前後端部あるいは通常巻取時に微細1’J
bCの影響でNbCによる析出強化要素が大ぎくなり、
YPの上昇、E、 ] 、 r値の劣化等材質か劣化し
7、また再結晶温度も著しく上昇1゛ろ。、さらに焼料
硬化性も十分付与できなくなり、本願発明の主旨をはず
れろことになる3、 第5図はP;xcess C:[t (C(%l) −
12/93 Nb (%) )と焼、1硬化性の関係を
示したものである。焼鈍後0)伶ノで]1床度は室温ま
て100’c/sec  一定としまた。
Appropriate sintering hardenability here is 13H = 3-5 Kg
/mA. , If the Nb content exceeds the above range, fine 1'J
Due to the influence of bC, the precipitation strengthening factor due to NbC becomes large,
The material deteriorates due to the increase in YP, the deterioration of E, ], r value, etc.7, and the recrystallization temperature also increases significantly. , furthermore, it becomes impossible to impart sufficient sinter hardenability, which deviates from the spirit of the present invention.3 In Fig. 5, P;
This figure shows the relationship between 12/93 Nb (%)) and sintering and 1 hardening properties. After annealing, the bed speed was kept constant at 100'c/sec until the room temperature was reached.

Excess C’$の5ちどれだけの割合が最終的(
(固R:Cgとして残るかは別とし、ても、固溶cfa
′はExcess C量と比例し、て残存する。従って
、固溶CMとit lシずろlli伺硬化a CまEx
cess C量と対応1゛ろことになる。
What percentage of Excess C'$ is the final (
(Solid R: Regardless of whether it remains as Cg or not, solid solute CFA
' remains in proportion to the amount of Excess C. Therefore, solid solution CM and it lli hardening a CmaEx
This corresponds to the amount of cess C.

第6図は連続焼鈍(でおける冷却ザイクルを示したもの
であり、(i)は冷延鋼板、溶融亜鉛めっき羽根(合金
化処理なし)用ザイクル、(II)は合ω山浴融!11
1鉛めっき鋼板用ザイクルである3゜″焼鈍後の冷却速
度は、TIを複合添加した本発明鋼では、既に述べてき
たように室温まで任意で、[(゛が、二次IJIil王
脆性、溶融亜鉛めっき性の173、!点かV)、室温ま
゛(の急速冷却(270℃/sec )か望才しく・。
Figure 6 shows the cooling cycle in continuous annealing, where (i) is the cycle for cold-rolled steel sheets and hot-dip galvanized blades (no alloying treatment), and (II) is the cycle for continuous annealing.
1. The cooling rate after 3゜'' annealing, which is the cycle for lead-plated steel sheets, can be any rate up to room temperature in the steel of the present invention with composite addition of TI, as described above. The hot-dip galvanizing properties are 173, ! or V), and the rapid cooling (270°C/sec) is desired.

次にL’i 、 Nbり外の合金1戊分範囲は、C:n
、 (、+ (17%以1’−1Si:0.8%lR下
、八4n : 1.0%121ト、P :  0. +
 5%以上、AI:0(1]〜01%、N : (10
1%以[−及び曲の不可避的不純物、残fldl実質的
にFeがら成るものである。
Next, the range of alloy 1 other than L'i and Nb is C:n
, (, + (17% or more 1'-1Si: 0.8%lR lower, 84n: 1.0%121t, P: 0. +
5% or more, AI: 0(1] to 01%, N: (10
Less than 1% [- and unavoidable impurities of the song, the remainder essentially consists of Fe.

C4が多いと必然的にCを固定するためのNb都がそ、
!1だけ多く必要となり、製造コストが高くなり、また
N1)Cの生成量が増えるため、析出強化要素が大きく
なり、結晶粒の成長が阻害され、r値の低1;゛、降伏
強度のト昇、伸びの低下を導く。このため超深絞り性鋼
板の製造とし・う観点からCは0.007係以下とする
If there are many C4, the Nb capital to fix C will inevitably be,
! Since the production cost increases, and the amount of N1) produced increases, the precipitation strengthening factor increases, inhibiting the growth of crystal grains, resulting in a low r value of 1; This leads to a decrease in elongation and elongation. Therefore, from the viewpoint of manufacturing ultra-deep drawable steel sheets, C is set to be 0.007 or less.

Slは溶融亜鉛めっき鋼板を製造1−る場合、め0き層
皮膜の密着性を低士させる傾向を治ず4)か、本発明で
は室温までの、急速冷却により表面濃化の影響を抑制で
きろため、08%以下とする。
When manufacturing hot-dip galvanized steel sheets, Sl does not cure the tendency to reduce the adhesion of the plating layer film (4), or in the present invention, the effect of surface concentration is suppressed by rapid cooling to room temperature. Because it is possible, it should be 0.8% or less.

本発明鋼はi”i添加量が低く、固溶Cが残存する鋼板
であり、更に急速冷却により粒界偏イノj量を著しく低
減できるために、二(2(加−I−割れを起こし難(・
が、Pがさらに多量に言まれると、粒界偏析1が多くな
り、粒界を脆化させ、二次加工割れを助長するため、1
)の上限をO,+ 5 %とする。
The steel of the present invention is a steel plate with a low i"i addition amount and residual solid solution C, and furthermore, the amount of uneven grain boundary ino can be significantly reduced by rapid cooling. Difficult(・
However, if a large amount of P is used, grain boundary segregation 1 increases, which embrittles the grain boundaries and promotes secondary work cracking.
) is set to O, + 5%.

AIは1?+ 、Nb添加前の溶鋼脱酸剤どして加え、
乙か、少量ずぎる場合(でば、AIによる脱酸が十j)
 T?唇Jなわれず、Ti、Nbが脱酸剤として働くた
め、i’i 、 Nb f7)與留低ドが著しくなり、
焼料fd1化1・゛しり制ii+も困難になる。逆に多
量に加えるとA ] 203介在物が増加して好ましく
な℃・。以上の理由によりAtは0.01〜01係とす
る。
Is AI 1? +, add molten steel deoxidizer before adding Nb,
If the amount is too small (if possible, deoxidation by AI is sufficient)
T? Because Ti and Nb act as deoxidizers, the i'i, Nb f7) decrease becomes significant.
It also becomes difficult to control the firing rate fd1. On the other hand, if a large amount is added, A]203 inclusions will increase, which is not desirable. For the above reasons, At is set in the range of 0.01 to 01.

j刈は′I″iNとしてTiに固定されるが、N含有量
力多し・ど必要な1゛i量が増加l〜好まし7くな℃・
J is fixed to Ti as ``I''iN, but if the N content is too high, the required amount of 1゛I will increase l to preferably 7℃.
.

、二のためNは(1,(l l係以下と=づ−る。, 2, so N is less than or equal to (1, (l l factor).

Ti 、 Nbをネぶ合添加した鋼板とし7てば、特公
昭54−+ 2883号公報、特開昭54−13153
6号公′f1.特開昭56−166331号公報、特開
昭’57−35673号公報等に開示されて℃・ろが1
、lれr−)はいずれもTi 、Nbを複合添加するこ
とケ発明の基本思想どするものではなく、1゛i、Nb
 e)口’、□ ハZr、V s Cr等を単にc、、
Nを析出仕しめイ)添加jL素と12で任意に選択され
るものであ4.1゜ 該!1−1.)′1シこおいては、1゛1はNを析出せ
しめるに止まらすCをi” i Cとして析出せしめ、
C,Nによる時効性な抑制するため、℃・ずれもTiお
よびNbの総添加槍とC,N%との関係で目標材質を得
るものである。また、該特許は非時効深絞り鋼板を妃明
の基本思想とするものであり、鋼中に固溶Cを適当厳残
存せしめ、焼料硬化性を′伺力ずろものではない。
In the case of a steel sheet to which Ti and Nb are added together, Japanese Patent Publication No. 54-+2883 and Japanese Patent Application Laid-open No. 13153-1983
No. 6 public 'f1. Disclosed in JP-A-56-166331, JP-A-57-35673, etc.
, lrer-) are not based on the basic idea of the invention to add Ti and Nb in combination, but 1゛i, Nb
e) 口', □ ha Zr, V s Cr, etc. simply c,,
N is precipitated and a) addition jL element and 12 are arbitrarily selected and correspond to 4.1°! 1-1. )'1 In this case, 1'1 causes only N to precipitate and C to precipitate as i''i C,
In order to suppress the aging properties due to C and N, the target material quality is obtained based on the relationship between the total addition ratio of Ti and Nb and the C and N%. Furthermore, this patent is based on the basic idea of Himei's non-aging deep-drawn steel plate, which ensures that solid solution C remains in the steel to an appropriate degree, and that the heat hardenability is not compromised.

本発明鋼は既に述べた辿り、極低炭素鋼に微量の’ri
 、 Nbを添加′1″ることを必須条件とし、棲めて
高℃・深絞り性と焼(=1硬化性を伺馬することを根本
原理とする。Tiの添加は1質に悪影響を及(・1ずN
を無害化するためてあり、上記発明の如く、TiCをも
生成せしめるものではな(・。
The steel of the present invention follows the path already mentioned, with a trace amount of 'ri' added to the ultra-low carbon steel.
The fundamental principle is that the addition of Nb is an essential condition, and that high temperature, deep drawability and sintering (=1 hardenability) are achieved.The addition of Ti has a negative effect on and (・1zuN
It is intended to make TiC harmless, and unlike the above invention, it does not generate TiC (.

更に、Nbの添加は固溶C量を常温時効性に対して有害
とならない範囲内に低減せ[2め、固溶Cの残存により
焼料硬化性を付与する目的にある。
Furthermore, the addition of Nb has the purpose of reducing the amount of solid solute C within a range that is not harmful to room temperature aging properties [Secondly, the purpose of adding Nb is to impart sinter hardenability due to the residual solid solute C.

従って本発明鋼は、TI XNbを複合添加ず4・こと
を基本思想とするが、T iの添加ばNの無害化、Nb
の添加はCによる常温時効性の無害化と焼付硬化性をイ
」与することにあり、℃・ずれもN fig、 、 C
@ kc利して当量以下の微量添加て゛あイ) 土た、
極低炭素鋼を基本成分とする本発明鋼へ12、Δc3点
IJ、 l−の焼鈍を行なうとランダム方f\ン結晶粒
な・生成せしめ、r値の劣化を招くため、焼鈍温度は山
結晶温度以hAc3点以下となる。
Therefore, the basic idea of the steel of the present invention is not to add TI XNb in combination4.
The purpose of the addition is to render the room-temperature aging property harmless and bake hardenability due to C, and the difference in °C.
@ Adding a trace amount less than the equivalent amount of kc (Ai) Soil,
If the steel of the present invention, which has ultra-low carbon steel as its basic component, is annealed at 3 points IJ and 12, Δc, random crystal grains will be generated, leading to deterioration of the r value, so the annealing temperature should be set at a peak. hAc is 3 points or less below the crystallization temperature.

さらに、焼鈍後の冷却速度は任意でよく、生産4′]、
めつき髄性、鋼板の二θζ加工脆性の観点からは70 
’C/sec以上が望ましく過時効処理も必′隻どしな
い1、 以トの理由から本発明鋼は、根本原理及び得1′)ねる
)′−・4阪θ月1′、A質とも該特許とは本質的に異
なる。
Furthermore, the cooling rate after annealing may be arbitrary, and production 4'],
70 from the viewpoint of plating strength and 2θζ machining brittleness of steel plate.
'C/sec or higher is desirable, and over-aging treatment is not necessary1.For the following reasons, the steel of the present invention has fundamental principles and advantages. It is essentially different from that patent.

本発明飾4(よ、 i”l、 Nb含有量を従来の鋼板
に比較し−(著しく低減せしめているため、再結晶温1
vは熱間出廷条件に関わらず低(・。熱間圧夕膓時(C
高温巻取を1Jな5ことにより、析出物の凝集かjlJ
J 、i(!され、再結晶温lWは更に低下する。従っ
て本発明鋼は低1品焼鈍でも高(・r値が得られ、ブリ
キの!2uき極薄鋼板製造に対しても超加工用鋼4ti
を提供するものである。
The present invention significantly reduces the Nb content compared to conventional steel sheets, so the recrystallization temperature 1
v is low regardless of hot court appearance conditions (・.Hot pressure evening meal (C
By high-temperature winding for 1J, the precipitates may agglomerate.
J, i(!), and the recrystallization temperature lW further decreases. Therefore, the steel of the present invention can obtain a high (r value) even with low one-item annealing. Steel 4ti
It provides:

見、下、実施例について述べろ。Look, below, describe the example.

実施例1 第1表は本発明鋼および比較のために用いた供試鋼の(
5,生成分を示したものである。
Example 1 Table 1 shows the (
5. This shows the generated components.

上記の供試鋼を熱間仕上温度910℃、巻取温度は70
0 ’Cの高温巻取オ6よび、600℃の)i++常巻
取で板B’ 4.0 mmに熱間圧延1−7.0.8 
mmまで冷間LL延17た徐、第6図(i)に示す焼鈍
ザイクルを川(・て連続焼鈍ラインにて焼鈍し冷延鋼板
を製造した。但し焼鈍昌度はSOO℃、保定時間30秒
、冷却速度は室温まで1. OO℃/sec −宇とし
た。その後調質圧延を1係の圧延率で加え!、二、、そ
の柑質試験を第2表(1)、(11)に示す。
The above test steel was heated at a hot finishing temperature of 910°C and a coiling temperature of 70°C.
Hot rolled plate B' 1-7.0.8 to 4.0 mm with high temperature winding O6 at 0'C and normal winding at 600C
After cold rolling to 17 mm, the annealing cycle shown in Fig. 6(i) was annealed on a continuous annealing line to produce a cold rolled steel sheet. The cooling rate was set at 1.00°C/sec to room temperature.Then, temper rolling was applied at a rolling rate of 1!2.The texture test is shown in Table 2 (1) and (11). Shown below.

第2表(1)、(II)より本願発明による届1〜扁5
のwI板は、コイル自利ηが均質でバラツキが極め−(
小さく、巻取温度によらず通常巻取相当でも良(+1’
;7c、材質か内らJすることが明らかである。。
From Table 2 (1) and (II), notifications 1 to 5 according to the claimed invention
The wI board has a homogeneous coil self-interest η with extremely large variations -(
It is small and can be equivalent to normal winding regardless of the winding temperature (+1'
;7c, it is clear that the material is J from within. .

また−二3次j〕11工割れのIシ・配がなく化成処理
性も良ti(である。さらに成分変化にかかわらず、焼
料硬化ゼ1か精度」く制御できる優位性を示して℃・る
7、 比較4.4蔦6 、A 7 、I’58はTiが本発明
範囲からはずねて(・る1、/I66、A8はTi量が
低すぎるためNl)キルト鋼に近(・材質となり、通常
巻取の場合及び品温巻取時のコイル端部の材質劣化か大
きく、またAINの溶解による固溶Nの影*により、時
効処理後降伏点伸びが出現して(・机 扁7は′1゛1−が多過ぎるためTiキルド鋼に近し・
(4質となり一次加丁割れが起こり易く、また化成処理
性、焼付硬化性が劣る。扁9はNb駄か本発明範囲をは
ずA′1、Nbギルド鋼に近い月11Jj、とブ、cす
1,111常巻取の場合及び品温巻取時のコイル端部の
材質劣化が極めて大きく、またNl)量が多℃・ため化
成処理はが劣る。また比較鋼A66−8はTi量、Nl
)稲が本発明範囲をはずれることから焼付硬化性を適当
な値にコン・トロールすることができない。
In addition, there is no I-23-11 cracking, and the chemical conversion treatment property is also good.Furthermore, it shows the advantage of being able to control firing hardening with high accuracy regardless of changes in components. ℃・ru7, Comparison 4.4 Tsuta6, A7, I'58 have Ti outside the range of the present invention (・ru1, /I66, A8 have too low Ti content, so Nl) and are close to quilt steel. (・The material deteriorates significantly at the end of the coil during normal winding and temperature winding. Also, due to the shadow of solid solution N due to the dissolution of AIN, yield point elongation appears after aging treatment (・Since there are too many '1゛1- in the machine plate 7, it is close to Ti killed steel.・
(It is a 4-quality material, which makes it easy to cause primary cutting cracks, and has poor chemical conversion treatment and bake hardenability. Flat 9 is Nb guild steel or outside the scope of the present invention. A'1, Tsuki 11Jj, which is close to Nb guild steel, Tobu, c 1,111 In the case of normal winding and temperature winding, the material deterioration of the coil end is extremely large, and the chemical conversion treatment is inferior because the amount of Nl) is high at a high temperature. In addition, comparative steel A66-8 has a Ti content, Nl
) Since rice is outside the scope of the present invention, it is not possible to control the bake hardenability to an appropriate value.

本発明鍬形1〜165は冷却速度を変化させた場合にも
第2表と同様、常温で実質上非時−効であり、かつ3〜
5Ks+/−の焼付硬化性が得られることを羅認した。
Hoe shapes 1 to 165 of the present invention are substantially non-aging at room temperature even when the cooling rate is changed, as shown in Table 2, and
It was confirmed that a bake hardenability of 5Ks+/- was obtained.

実施例2 第3表は本発明鋼および比較のために用(・ム―供試鋼
の成分組成を示したものであ4)。
Example 2 Table 3 shows the composition of the steel according to the invention and for comparison (4).

ト記g(試鋼は本発明範囲の鋼および比較月に合金元素
を添加して高強度化したものである。
(The test steel was made by adding alloying elements to the steel in the scope of the present invention and the comparison steel to increase its strength.

A、 1〜6までの鋼を実施例1の場合と同一の条件に
より冷間圧延まで行な(・、第6図(1)K示すザイク
ルを川℃・て連続焼鈍し、冷延鋼板を製造し、た。但し
焼鈍温度は800℃、保定時間30秒、冷却速度は10
℃/sec、50℃/sec、70 ℃/sec z+
00℃/要(室温まで一定)とした。
A. The steels 1 to 6 were subjected to cold rolling under the same conditions as in Example 1 (Fig. 6 (1)) The cycles shown in K were continuously annealed at a temperature of 10°C to form cold rolled steel sheets. However, the annealing temperature was 800℃, the holding time was 30 seconds, and the cooling rate was 10℃.
°C/sec, 50 °C/sec, 70 °C/sec z+
00°C/required (constant up to room temperature).

供試1岡漸7は熱延仕上温度880℃、巻取温Hgl 
5 /IO℃で板厚4.0 mmに熱間圧延し、(1,
8mmまで冷間圧延し、た後、焼鈍昌度720℃で箱型
焼鈍に供した。
Sample 1 Oka Susumu 7 has a hot rolling finishing temperature of 880°C and a winding temperature of Hgl.
It was hot rolled to a plate thickness of 4.0 mm at 5/IO℃ and (1,
After cold rolling to 8 mm, it was subjected to box annealing at an annealing degree of 720°C.

iK I 〜□ 6の、目刺について冷却速度100℃
/5ec(室温まで一定)の場合の材質を第4表に7ド
し、同時K J、’t 7の、1」質結果も示した。
iK I ~ □ 6, cooling rate 100℃ for eye stings
/5ec (constant up to room temperature) is shown in Table 4, and the results of the simultaneous KJ, 't7 and 1'' quality are also shown.

第4表より、本発明鋼は高強度化した場合にもr ((
K ;/J−極めて高く、延性も優れている。軟鋼板σ
)場合と同様にコイル円材質も均質で化成処理性も良θ
了てあり、また、焼ゼj1夏化性も目標値通り得られて
いる。さらにP等合金元素の冷加Mか多(・にもかかわ
らず二次加工割れが起こり難いのは同浴Cかr不在1〜
て粒界を強化しているためと、室温までの急速冷却によ
り粒界偏析P;11か著しく低減されているためである
From Table 4, it is clear that the steel of the present invention has r((
K;/J-extremely high and has excellent ductility. Mild steel plate σ
), the coil circle material is homogeneous and has good chemical conversion treatment property θ.
In addition, the summerization properties of Yakizej1 were achieved as per the target values. In addition, the reason why secondary processing cracks are difficult to occur despite the cooling of alloying elements such as P is that the absence of C or r in the same bath is 1~
This is because the grain boundaries are strengthened and the grain boundary segregation P;11 is significantly reduced by rapid cooling to room temperature.

第4表(2)(・ζ冷却速度を変化させた場合の二次加
工脆性の発生限界を示−4″。試験温度は一50℃て゛
あり、試1嫉片はシャーエツジであり、円筒成形1−た
場合の外径を30朋い一定とした。
Table 4 (2) (・ζ Shows the limit of occurrence of secondary processing brittleness when the cooling rate is changed -4". The test temperature was -50°C, and the test piece of test 1 was a shear edge, and the cylindrical molding The outer diameter in the case of 1-mm was set constant at 30 mm.

(試月は全て高温巻取拐のコイル長手方向中心部) 第4表(2) *:二次加工割れの発生する最低絞り比傘牽:箱焼鈍A
l−に 第4表(2)の結果より、P添加を行ブjって高強度鋼
板化した場合には二次加工割れの発生限界は軟鋼板の場
合と比較して劣化するが、本発明鋼はTlの複合添加に
よってもNb添加鋼とほぼ同じレベルであり、二次加工
割れを発生し易いT1キルド鋼(A 5の材料は′J゛
1キルド鋼に近い材質である。)よりも優れる。Nb添
加鋼と同−レベルの二次加−E割れ特性を得るには冷却
速IQ畏よ、任意で良(・が、箱焼鈍で製造したAI−
に鋼、)しみの限界絞り比をMるには70℃/渡以上の
冷却速度で冷却するのが望ましく・0本発明鋼では、T
iの複合添加により急速冷却も可能であり、Pの粒界偏
析量を著しく低減できるためかがる効果か生まれて(る
ものであり、本発明鋼の優位性を示−4′−ものである
(All trial months were at the longitudinal center of the coil where the coil was wound at a high temperature.) Table 4 (2) *: Minimum drawing ratio at which secondary processing cracks occur: Box annealing A
From the results in Table 4 (2), it is clear that when P is added to produce a high-strength steel sheet, the limit for secondary work cracking is lower than that for a mild steel sheet, but this Even with the combined addition of Tl, the invention steel has almost the same level as Nb-added steel, and is superior to T1 killed steel (A5 material is a material close to J゛1 killed steel), which is prone to secondary work cracking. Also excellent. In order to obtain the same level of secondary stress-E cracking properties as Nb-added steel, the cooling speed IQ is optional.
In steel, it is desirable to cool at a cooling rate of 70°C/pass or higher in order to obtain the critical drawing ratio of stains.
Rapid cooling is also possible by the combined addition of i, and the amount of grain boundary segregation of P can be significantly reduced, resulting in a sharp effect (4'), which shows the superiority of the steel of the present invention. be.

比較@扁4はNb添加量が多し・ために通常巻取の場合
及び高温巻取時のコイル端部の材質劣化か極めて大きく
、化成処理性が劣る。また、Nb肘が多過ぎるために急
速冷却の場合でも、焼(=1硬化性を伺与できない。扁
5の材料はTi含有量が多過ぎて二次加工割れを起こし
易く、化成処理性が劣ると(・5欠点を有し、さらに焼
イ・11便化性を伺−りできな(・。
Comparative @ Flat 4 has a large amount of Nb added, so the material deterioration at the end of the coil during normal winding and high-temperature winding is extremely large, and the chemical conversion treatment property is poor. In addition, because there are too many Nb elbows, even in the case of rapid cooling, sintering (= 1 hardenability) cannot be obtained. If it is inferior, it has 5 drawbacks, and it is not easy to bake or 11.

扁6のt(刺はn l’NがNをTiNとして固定すイ
)に必要な量に足らなし・ため、Nb添加鋼に近(・材
質となり、通常巻取時および高温巻取時のコイル前後端
部の柑質劣化が極めて大きく、焼付硬化性のバラツキが
大きし・と(・う欠点を有する。(通常巻取拐の材質は
実施例1の場合と同憚(・ずれも高温巻取材のコイル前
後端部とほとんど回じ拐質を示したので特に記述しない
。)実施例3 第1表、第3表に示す供試鋼の全てについて、実施例1
の場合と同一条件にて冷間出処まで行なった後、第6図
(i)(+Dで示す焼鈍ザイクルを用℃・て、゛溶融亜
鉛めっき鋼板を製造した。焼鈍温度は800℃、焼鈍時
間は30秒であり、冷却速度は室温まで一定の100℃
/seeの冷速で冷却した。
Since the amount of t in flat 6 (the barb is n l'N is not enough to fix N as TiN), the material is close to Nb-added steel, and the material is difficult to maintain during normal winding and high-temperature winding. The deterioration of the quality of the front and rear ends of the coil is extremely large, and there are large variations in bake hardening properties. Since the front and rear ends of the coil and most of the coiled grains were shown, no particular description is given.) Example 3 All of the test steels shown in Tables 1 and 3 were tested in Example 1.
After the process was carried out under the same conditions as in the case of , a hot-dip galvanized steel sheet was manufactured using the annealing cycle shown in Fig. 6 (i) (+D) at 800°C. is 30 seconds, and the cooling rate is constant at 100℃ until room temperature.
It was cooled at a cooling rate of /see.

第6図(1)は合金化処理を行なわない場合に相当し、
(11)は合金化処理を行なって合金化亜鉛めっき鋼板
を製造する場合である。これらの場合、冷却速度のコン
トロールは鋼板が亜鉛めっき浴に入るまでの冷却速度、
めっき浴を出てから室温になるまでの冷却速度を、とも
に制御した。
Figure 6 (1) corresponds to the case where alloying treatment is not performed,
(11) is a case where an alloyed galvanized steel sheet is manufactured by performing alloying treatment. In these cases, the cooling rate is controlled by the cooling rate until the steel plate enters the galvanizing bath,
The cooling rate from leaving the plating bath to reaching room temperature was also controlled.

上記の製造結果は以下の通りである。The above manufacturing results are as follows.

(1)機械試験値は第2表、第4表に示した値とほとん
ど同じであり亜鉛めっきを行なったことは、本発明の主
旨に何ら反するものはなかった。合金比処理を行なうこ
とは530℃程度で約10秒保持されるが、焼料硬化性
に実施例1.2と差がなし・ことは、大部分のCの析出
が500 ℃に比較し、より高温域で起こるためと理解
される。かがる理由により材質特性値は特に示さなし・
0但し、亜鉛めっきを行なった場合のめっき密着性を第
5表に示す。
(1) The mechanical test values were almost the same as those shown in Tables 2 and 4, and the galvanizing did not contradict the gist of the present invention. Although the alloy ratio treatment is held at about 530°C for about 10 seconds, there is no difference in sinter hardenability from Example 1.2.This means that most of the C precipitates at 500°C, This is understood to be because it occurs in a higher temperature range. Material property values are not specified due to bending.
0 However, Table 5 shows the plating adhesion when zinc plating was performed.

第5表 傘:評価方法はデュポン衝ぬ本試験による良好:○、一
部不良:△、不良:× **:評価方法は金属相11111’試験(JIS Z
 2248)Kよる剥1Illf極小;0.剥#1#j
j其Δ、剥離犬 ×手記結果より、本発明鋼は亜鉛めっ
きl時性も極めて良好である。特に第3表の試料は8;
1含hn1が高(・にもかかわらず密着性が良好である
の各1、急速冷却により表面濃化Si量を著しく低減で
きて見・ろためである。
Table 5 Umbrella: The evaluation method is based on the DuPont test. Good: ○, Partially defective: △, Poor: × **: The evaluation method is the Metal Phase 11111' test (JIS Z
2248) Peeling by K 1Illf minimum; 0. Peeling #1 #j
From the results, the steel of the present invention has extremely good resistance to zinc plating. In particular, the sample in Table 3 is 8;
The reason why the adhesion is good despite the high hn1 content is that the amount of Si concentrated on the surface can be significantly reduced by rapid cooling.

第1表−扁7、第3表−茄5の試料はTi含有搦が多い
ために、地鉄と溶融亜鉛の合金化反応か促進されて、過
合金化が進みメッキ層中に硬くて脆し・合金層が形成さ
れたために、密着性か劣化し7だものと考えられる。第
1表−扁9、第:3表−扁4の1A料も本発明鋼に比べ
密着性が劣るのはNb添加暇が多いためと推定される。
The samples in Table 1 - Bian 7 and Table 3 - Feng 5 contain a large amount of Ti, which accelerates the alloying reaction between the base iron and molten zinc, resulting in overalloying and hard and brittle coating in the plated layer. It is thought that the adhesion deteriorated due to the formation of an alloy layer. The reason why the adhesion of the 1A materials in Table 1 - Flat 9 and Table 3 - Flat 4 is inferior to that of the steel of the present invention is presumed to be due to the large amount of Nb addition.

1この観点からも、合金元素としてT+ % Nb添加
着の低(・本発明鋼は優位性を有する。
1 From this point of view as well, the steel of the present invention has the advantage of having a low adhesion of T + % Nb as an alloying element.

実施例4 第1表に示す供試銅属1.2.8を熱延仕上温度9 t
 (1℃、巻取温度700℃で板ツク2.3朋い一熱間
庄何8シ5.0.2 mmまで冷間圧延した後、第6図
(i) K示す焼鈍サイクルにより連続焼鈍し、ブリキ
を製造1.た。焼鈍FA[5T=650℃、均熱時間2
0秒、玲却速度り0℃/5ec一定である。
Example 4 Test copper metal 1.2.8 shown in Table 1 was hot-rolled at a finishing temperature of 9 t.
(After cold rolling the plate to a thickness of 5.0.2 mm at 1°C and a coiling temperature of 700°C, it was continuously annealed by the annealing cycle shown in Figure 6(i). 1. Annealing FA [5T=650℃, Soaking time 2
0 seconds, and the cooling rate is constant at 0°C/5ec.

その後調質圧延を0.8%の圧F率で加えた。その材質
結果を第6表に示す。
Thereafter, temper rolling was applied at a rolling F ratio of 0.8%. The material results are shown in Table 6.

第6表 上記結果より、本発明鋼はTi 、 Nb添加匿を著し
く低減せしめているため、杓結晶温度が著しく低(、低
温焼鈍によって極薄鋼板の製造が可能であり、超加]二
用極薄鋼板を提供するものである。比較銅属8はNl)
添加量が高く低温焼鈍では未結晶である。
From the above results in Table 6, the steel of the present invention has significantly reduced Ti and Nb additions, so the ladle crystal temperature is extremely low (it is possible to manufacture ultra-thin steel sheets by low-temperature annealing, and it is suitable for two uses). It provides ultra-thin steel sheets. Comparative copper metal 8 is Nl)
It is non-crystallized when the addition amount is high and low temperature annealing is performed.

以」−のように、’l’i 、、 Nbを複合添加する
ことを必須榮件とし、TiはNを固定する範囲内で添加
し、Nb1Excess C量1v’ l O〜50 
ppmとなる妬く添加することにより、熱延巻取温度、
焼鈍温度、冷却温度に依らずに、従来にない極めて優れ
た種りの特性を有′1−る超深絞り可焼イ」硬化性鋼板
が肖られることになり、本発明の新規性が示された。
As shown in the following, it is essential to add Nb in combination, Ti is added within the range that fixes N, and Nb1Excess C amount is 1v'l O~50
By adding ppm, the hot rolling winding temperature,
The novelty of the present invention is demonstrated by the creation of an ultra-deep drawable and hardenable steel sheet that has extremely excellent seeding properties that have never been seen before, regardless of annealing and cooling temperatures. It was done.

【図面の簡単な説明】[Brief explanation of the drawing]

第3図はTi添加量とNとの図表、第2図はNl)添加
量とCとの図表、第3図、第4図はTi、頌複合添加鋼
の材質に及ぼすTi量およびNb量の影響を示す図表、
第5図はExcess  C量< C(@1樫xqb 
(劾)ゎ焼伺い化性。関係ヤオーr3 図表、第6図は焼鈍サイクルを示す説明図、第7図はB
 i(σ)説明図である。 扇 l圀 θ    θθθ2   θθθ4  046g   
θθθδN (wt %J 革20 扇3 図 第4図 Nb (wt幻 a31 第を図 1〕 ゛17
Figure 3 is a diagram of Ti addition amount and N, Figure 2 is a diagram of Nl) addition amount and C, Figures 3 and 4 are Ti, Ti amount and Nb amount that affect the material of composite addition steel. diagram showing the impact of
Figure 5 shows Excess C amount < C (@1 oak x qb
(Kai) It's a joke. Related Yao r3 Diagrams, Figure 6 is an explanatory diagram showing the annealing cycle, Figure 7 is B
It is an explanatory diagram of i(σ). Fan l area θ θθθ2 θθθ4 046g
θθθδN (wt %J Leather 20 Fan 3 Figure 4 Figure Nb (wt illusion a31 Figure 1) ゛17

Claims (1)

【特許請求の範囲】[Claims] c : o、007係以下、Si:0.8%以下、胤1
0%以F’、 P : 0.15%以下、AI:0.0
1〜01チ、N:0.01%以下及び他の不可i的不純
物から成り、かつTiとNbを゛複合添加するこたす範
囲内で添加した成分の鋼を、熱間圧延および冷間圧延後
、再結晶温度以−hAcs点以下の温度で連続焼鈍づ゛
ることを特徴とする超深絞り可焼(”I硬化性鋼板の製
造方法。
c: o, 007 or below, Si: 0.8% or below, Seed 1
0% or more F', P: 0.15% or less, AI: 0.0
1 to 01%, N: 0.01% or less, and other essential impurities, and a steel containing Ti and Nb added within the range of ``compound addition'' is hot-rolled and cold-rolled. A method for producing ultra-deep drawable and sinterable ("I-hardenable) steel sheets, which is characterized by continuous annealing after rolling at a temperature below the recrystallization temperature and below the hAcs point.
JP13989782A 1982-08-13 1982-08-13 Production of quench hardenable steel plate for ultra deep drawing Granted JPS5931827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13989782A JPS5931827A (en) 1982-08-13 1982-08-13 Production of quench hardenable steel plate for ultra deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13989782A JPS5931827A (en) 1982-08-13 1982-08-13 Production of quench hardenable steel plate for ultra deep drawing

Publications (2)

Publication Number Publication Date
JPS5931827A true JPS5931827A (en) 1984-02-21
JPS6145689B2 JPS6145689B2 (en) 1986-10-09

Family

ID=15256155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13989782A Granted JPS5931827A (en) 1982-08-13 1982-08-13 Production of quench hardenable steel plate for ultra deep drawing

Country Status (1)

Country Link
JP (1) JPS5931827A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126756A (en) * 1984-07-17 1986-02-06 Kawasaki Steel Corp Dead soft steel sheet having high suitability to chemical conversion treatment
JPS61276931A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having extra-deep drawing having baking hardenability
JPS6267120A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value
JPS62109927A (en) * 1985-11-06 1987-05-21 Nippon Steel Corp Manufacture of cold rolled steel sheet superior in baking hardenability and workability
JPS62112731A (en) * 1985-11-11 1987-05-23 Kawasaki Steel Corp Manufacture of steel sheet hardenable by baking and having superior deep drawability
JPS63143265A (en) * 1986-12-05 1988-06-15 Kawasaki Steel Corp Production of organic coated steel sheet having excellent baking hardenability
US5356494A (en) * 1991-04-26 1994-10-18 Kawasaki Steel Corporation High strength cold rolled steel sheet having excellent non-aging property at room temperature and suitable for drawing and method of producing the same
US5384206A (en) * 1991-03-15 1995-01-24 Nippon Steel Corporation High-strength cold-rolled steel strip and molten zinc-plated high-strength cold-rolled steel strip having good formability and method of producing such strips
US5470403A (en) * 1992-06-22 1995-11-28 Nippon Steel Corporation Cold rolled steel sheet and hot dip zinc-coated cold rolled steel sheet having excellent bake hardenability, non-aging properties and formability, and process for producing same
US5690755A (en) * 1992-08-31 1997-11-25 Nippon Steel Corporation Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability, non-aging properties at room temperature and good formability and process for producing the same
US5897967A (en) * 1996-08-01 1999-04-27 Sumitomo Metal Industries, Ltd. Galvannealed steel sheet and manufacturing method thereof
US6706419B2 (en) 2000-08-04 2004-03-16 Nippon Steel Corporation Cold-rolled steel sheet or hot-rolled steel sheet excellent in painting bake hardenability and anti aging property at room temperature, and method of producing the same
US8828153B2 (en) 2005-07-04 2014-09-09 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and high-strength plated steel sheet
US9290835B2 (en) 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
WO2020196293A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 Manufacturing device and manufacturing method for hot-rolled coil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412883A (en) * 1977-06-30 1979-01-30 Tokyo Keiki Kk Rejection circuit of supersonic crack detector
JPS5825436A (en) * 1981-08-10 1983-02-15 Kawasaki Steel Corp Manufacture of deep drawing cold rolling steel plate having slow aging property and small anisotropy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412883A (en) * 1977-06-30 1979-01-30 Tokyo Keiki Kk Rejection circuit of supersonic crack detector
JPS5825436A (en) * 1981-08-10 1983-02-15 Kawasaki Steel Corp Manufacture of deep drawing cold rolling steel plate having slow aging property and small anisotropy

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126756A (en) * 1984-07-17 1986-02-06 Kawasaki Steel Corp Dead soft steel sheet having high suitability to chemical conversion treatment
JPH0461063B2 (en) * 1984-07-17 1992-09-29 Kawasaki Steel Co
JPS61276931A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having extra-deep drawing having baking hardenability
JPH0210855B2 (en) * 1985-05-31 1990-03-09 Kawasaki Steel Co
JPS6267120A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value
JPH0548284B2 (en) * 1985-09-19 1993-07-21 Kobe Steel Ltd
JPH0585620B2 (en) * 1985-11-06 1993-12-08 Nippon Steel Corp
JPS62109927A (en) * 1985-11-06 1987-05-21 Nippon Steel Corp Manufacture of cold rolled steel sheet superior in baking hardenability and workability
JPS62112731A (en) * 1985-11-11 1987-05-23 Kawasaki Steel Corp Manufacture of steel sheet hardenable by baking and having superior deep drawability
JPH0542486B2 (en) * 1985-11-11 1993-06-28 Kawasaki Steel Co
JPS63143265A (en) * 1986-12-05 1988-06-15 Kawasaki Steel Corp Production of organic coated steel sheet having excellent baking hardenability
US5384206A (en) * 1991-03-15 1995-01-24 Nippon Steel Corporation High-strength cold-rolled steel strip and molten zinc-plated high-strength cold-rolled steel strip having good formability and method of producing such strips
US5356494A (en) * 1991-04-26 1994-10-18 Kawasaki Steel Corporation High strength cold rolled steel sheet having excellent non-aging property at room temperature and suitable for drawing and method of producing the same
US5470403A (en) * 1992-06-22 1995-11-28 Nippon Steel Corporation Cold rolled steel sheet and hot dip zinc-coated cold rolled steel sheet having excellent bake hardenability, non-aging properties and formability, and process for producing same
US5690755A (en) * 1992-08-31 1997-11-25 Nippon Steel Corporation Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability, non-aging properties at room temperature and good formability and process for producing the same
US5897967A (en) * 1996-08-01 1999-04-27 Sumitomo Metal Industries, Ltd. Galvannealed steel sheet and manufacturing method thereof
US6706419B2 (en) 2000-08-04 2004-03-16 Nippon Steel Corporation Cold-rolled steel sheet or hot-rolled steel sheet excellent in painting bake hardenability and anti aging property at room temperature, and method of producing the same
US8828153B2 (en) 2005-07-04 2014-09-09 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and high-strength plated steel sheet
US9290835B2 (en) 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
WO2020196293A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 Manufacturing device and manufacturing method for hot-rolled coil
JPWO2020196293A1 (en) * 2019-03-22 2021-10-21 日本製鉄株式会社 Hot-rolled coil manufacturing equipment and manufacturing method
CN113597348A (en) * 2019-03-22 2021-11-02 日本制铁株式会社 Device and method for manufacturing hot-rolled coil
US11697144B2 (en) 2019-03-22 2023-07-11 Nippon Steel Corporation Manufacturing apparatus and manufacturing method of hot-rolled coil

Also Published As

Publication number Publication date
JPS6145689B2 (en) 1986-10-09

Similar Documents

Publication Publication Date Title
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP6208246B2 (en) High formability ultra-high strength hot-dip galvanized steel sheet and method for producing the same
JP5163356B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
WO2015093596A1 (en) Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
JP5488129B2 (en) Cold rolled steel sheet and method for producing the same
JP2022507379A (en) Hot-rolled strip steel and its manufacturing method
EP2415894A2 (en) Steel sheet excellent in workability and method for producing the same
JP6308333B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
TWI429760B (en) High strength galvanized steel sheet having excellent anti-burring performance and method for manufacturing the same
CN111910123B (en) Cold-rolled continuous annealing ultrahigh-strength steel with excellent phosphating performance and preparation method thereof
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
KR20190076307A (en) High-strength steel sheet having excellent workablity and method for manufacturing thereof
JPS5931827A (en) Production of quench hardenable steel plate for ultra deep drawing
KR20190076258A (en) High-strength steel sheet having excellent crash worthiness and formability, and method for manufacturing thereof
JP2019512608A (en) High strength cold rolled steel sheet excellent in yield strength and ductility, plated steel sheet, and manufacturing method thereof
CN109175786A (en) A kind of high-strength weather-proof gas protecting welding wire wire rod
JP2015071824A (en) Method for producing high strength steel sheet
WO2016152135A1 (en) High-strength steel sheet and method for manufacturing same
CN111945061A (en) 1180MPa cold-rolled hot-galvanized dual-phase steel and preparation method thereof
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
JPH03257124A (en) Production of cold rolled steel sheet for deep drawing having baking hardenability
WO2017029815A1 (en) High-strength steel sheet and production method for same
EP3708691B1 (en) Manufacturing method for ultrahigh-strength and high-ductility steel sheet having excellent cold formability