JPH0548284B2 - - Google Patents

Info

Publication number
JPH0548284B2
JPH0548284B2 JP60208461A JP20846185A JPH0548284B2 JP H0548284 B2 JPH0548284 B2 JP H0548284B2 JP 60208461 A JP60208461 A JP 60208461A JP 20846185 A JP20846185 A JP 20846185A JP H0548284 B2 JPH0548284 B2 JP H0548284B2
Authority
JP
Japan
Prior art keywords
steel
rolling
amount
value
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60208461A
Other languages
Japanese (ja)
Other versions
JPS6267120A (en
Inventor
Hidenori Shirasawa
Takafusa Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20846185A priority Critical patent/JPS6267120A/en
Publication of JPS6267120A publication Critical patent/JPS6267120A/en
Publication of JPH0548284B2 publication Critical patent/JPH0548284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は焼付硬化性および耐たて割れ性にすぐ
れ、高R値を持つ冷延鋼板の製造方法に関する。
特に自動車の外板などのように高張力と超深絞り
加工性が要求される部分に使用される冷延鋼板に
おいて、深絞り加工後の焼付硬化性(BH)およ
び耐たて割れ性にすぐれた超深絞り用冷延鋼板の
製造方法に関する。 [発明の背景] 鋼の高張力化は深絞り加工成形等の加工性を劣
化させる。そのため、低強度で加工性の良好な状
態で深絞り加工等の成形を行ない、焼付塗装時等
の熱処理過程で、鋼の時効硬化によつて所定の高
張力をもたせる方法が検討されている。 そしてかかる方法に適用しうる鋼板及びその製
造方法も開発されている。そのような鋼板の製造
方法としては、(1)組織をフエライト+マルテンサ
イト組織とするもの、(2)リン添加Alキルド鋼を
用いるもの、(3)極低C鋼にTi,Nb等の炭化物形
成元素、窒化物形成元素あるいは炭窒化物形成元
素を、鋼中の固溶C及びNが完全に固定するより
は少なめに添加して、鋼のBH性を高めたもの
(特開昭53−114717号、特公昭49−130819号、特
開昭49−130819号、特開昭57−192225号)などが
ある。 これらのうち、フエライト+マルテンサイト織
鋼剥板は、材料の深絞り性を示すR値が1前後と
低いため、きびしい深絞り成形部材には適用でき
ない。ここでR値は、引張試験における幅方向と
板厚方向のひずみであり、引張試験片のもとの板
厚と板幅をそれぞれt0、w0、20%引張後の板厚
と板幅をそれぞれt20、w20とすればR値は次の
式で与えられる。 R=1n(w0/w20)/1n(t0/t20) また、リン添加Alキルド鋼は、R値が高く、
BH性がすぐれた鋼板であるが、焼鈍工程でバツ
チ処理をしなければならず、製造コストの点で難
点がある。 また、焼鈍工程を、製造コストの点で有利な連
続焼鈍プロセスで行なう場合には、R値の低下を
もたらすため鋼板の適用範囲が大きく制約される
などの問題点がある。 一方、Ni,Nb等の炭化物形成元素、窒化物形
成元素、炭窒化物形成元素を、鋼中の固溶C,N
が完全に固定する量よりは少なめに超低C鋼に添
加して、鋼のBH性を高めた鋼は、連続焼鈍法が
適用できるため、製造コストの点で長所となつて
いる。しかし、Ti,Nb等によつては固定されな
い鋼中のC及びNが、鋼のR値を劣化させるとい
う問題点がある。 [発明の概要] 重量%で、C:0.0015〜0.005、Si≦0.5、N≦
0.0040、Mn:0.05〜1.2、P≦0.1、Al:0.01〜0.1
よりなり、Ti≦0.05、Nb≧0.025の範囲でTiおよ
び/又はNbをTi+Nb≦0.05かつ2×Ti+Nb≦
10×Cの範囲で含み、残部Fe及び不可避的不純
物からなる鋼を、熱間圧延し、ついで冷間圧延を
した後、焼鈍を行なうことにより鋼板を製造する
方法において、該鋼の粗圧延終了温度を1000℃以
下、粗圧延終了から仕上圧延開始までの時間間隔
を20秒以上、巻取り温度を550℃以上として熱間
圧延を行ない、冷間圧延後の焼鈍を、焼鈍温度
750℃以上に10秒以上保持した後、平均冷却速度
10℃/秒以上で750℃から200℃まで冷却して行な
うことを特徴とする。 ここで、化学成分の限定理由をのべる。 Cを、0.0015〜0.005%の範囲としたのは、C
<0.0015%では3Kg/mm2以上のBH量が得られず、
C>0.005ではR値とBH量のいずれかが大きく低
下するからである。 Si≦0.5%としたのは、次の理由による。Siは
鋼の高強度化に有効な元素であり、フエライト清
浄化作用による鋼の延性向上効果を有するが、多
量の添加は化成処理性を劣化させることがあるの
でSi≦0.5%とした。 Mnを0.05〜1.2%の範囲としたのは、次の理由
による。鋼の赤熱脆化防止の点からMnを0.05%
以上必要であるが、1.2%をこえて添加するとR
値の低下が観察されるためである。 P≦0.1%としたのは、PはSiと同様、鋼の強
化元素として有効であるが、0.1%をこえると鋼
の脆化が大きくなるからである。 Alを0.01〜0.1%の範囲としたのは、次の理由
による。脱酸を十分行なわせるために下限を0.01
%とした。上限値を0.1%としたのはAlを0.1%以
上入れても脱酸効果の向上が認められないことか
らである。 N≦0.0040%としたのは、NはTiと反応して
TiNとなるが、N量が大きいとNと反応するTi
の量が多くなり、TiによるCの固定が不十分に
なり、鋼のR値の劣化をまねくためである。 TiとNbは単独あるいは複合的に添加される。
Ti,Nbは鋼中のCを固定するために添加する。
Ti≦0.05%、としたのは、図面に示すTiの重量
%とBH量及びR値との関係から決定した。すな
わち、0.05%をこえると、図面に示すように、R
値は悪くならないが、BH量が低下するからであ
る。 Nb≦0.025%、Ti+Nb≦0.05%で、かつ、2
×Ti+Nb≧10×Cとしたのは、この範囲が鋼中
のC量を化学量論的に十分固定しうる量だからで
ある。 なお、鋼中のNを固定するのに必要なTi添加
量を低減させる観点から微量のREM,Ce,Caな
どNとの親和力が強い元素を少量添加しても高R
値および高BH性は保持される。 つぎに製造条件についての限定理由をのべる。 粗圧延終了温度を1000℃以下とし、かつ、粗圧
延から仕上圧延開始までの時間間隔を20秒以上と
したのは、炭化物のひずみ誘起析出を促進させる
ためである。 また、巻取り温度を550℃以上としたのはコイ
ル状態での冷却中の析出反応をより高めるためで
ある。 冷間圧延後の焼鈍を焼鈍温度750℃以上とし、
10秒以上保持することとしたのは、鋼板に高R値
と高BH量を得るためである。 焼鈍後の冷却を750℃から200℃まで10℃/秒以
上の速度で冷却することとしたのは、鋼板に高
BH量を与えるためである。 なお、冷却方法は、上記冷却条件を満たす限
り、ガスジエツト冷却、水焼入れ冷却、ロール冷
却等のいずれの方法でも良い。また、冷却後の鋼
板を250℃以下の温度に再加熱して常温時効の量
およびBH量をコントロールすることも可能であ
る。 [発明の実施例] 以下に本発明の実施例を比較例とともに示す。 実施例と比較例に係る鋼の化学成分、各工程の
条件を第1表に示す。 試験片は、各種極抵C−ti系鋼及び極低C−Ti
−Nb系鋼を実験室溶解し、皮削りした鋼塊を、
鍛造後、第1表に示す数々の条件で熱間圧延、冷
間圧延を行ない、0.8mm厚の鋼板とした。これら
の鋼板を第1表に示す各種条件で焼鈍し、機械的
性質を調査した。機械的性質も第1表に示す。 第1表において、No.1〜No.4は化学成分は同一
であるが、圧延冷却等のプロセスが異なる条件の
鋼で、このうち、実施例はNo.1、比較例はNo.2〜
No.4である。No.5、No.6は化学成分は同一である
が、No.1〜No.4の鋼に対してTiの量を約2倍添
加したものである。No.5とNo.6の違いは各プロセ
スの条件が異なつているもので、このうち実施例
はNo.5、比較例はNo.6である。No.7の鋼はNo.5、
No.6の鋼に対し約2倍のTiを添加し、Ti+Nb>
0.05とした比較例である。No.8の鋼はC量をふや
し、2×Ti+Nb<10とした比較例である。No.
9、No.10は実施例を示す。No.11はTiとNbの両方
を添加した実施例を示す。No.12はNbだけを添加
した実施例を示す。No.13はNo.12と化学成分は同一
であるが、各プロセスにおいて巻取温度を550℃
以下とした比較例を示す。 鋼の焼付硬化性(BH量)、耐たて割れ性、R
値の評価は、各種試験片についてBH性とR値を
直接測定して求めた。また、焼付硬化性と耐たて
割れ性とは鋼中の固溶C量と密接な関係があり、
固溶C量が多く、焼付硬化性のすぐれた材料は必
然的に耐たて割れ性にすぐれていることになるの
で、耐たて割れ性の評価は焼付硬化量(BH量)
で代表させることにした。 第1表からR値が1.9以上、BH値が2.0以上の
鋼は、実施例であるNo.1、No.5、No.9〜No.12だけ
である。 このことから、実施例である鋼は比較例に対
し、いずれもR値とBH値が高いことから、焼付
硬化性および耐たて割れ性にすぐれ、高R値を持
つ冷延鋼板であることがわかる。 [発明の効果] 以上説明したとおり、熱間圧延の段階では炭窒
化物析出による固溶Cの十分な固定を図り、再結
晶焼鈍後、ある程度のC量を鋼中に再固溶させる
ことにより、R値が高くて、しかも、すぐれた
BH性及び耐たて割れ性を有する鋼板を製造コス
トを低く製造することが可能となる。
[Industrial Field of Application] The present invention relates to a method for manufacturing a cold rolled steel sheet having excellent bake hardenability and warp cracking resistance and a high R value.
It has excellent bake hardenability (BH) and warp cracking resistance after deep drawing, especially for cold rolled steel sheets used in parts that require high tensile strength and ultra-deep drawing workability, such as automobile exterior panels. The present invention relates to a method of manufacturing a cold-rolled steel sheet for ultra-deep drawing. [Background of the Invention] Increasing the tensile strength of steel deteriorates workability such as deep drawing and forming. Therefore, methods are being considered to perform forming such as deep drawing in a state with low strength and good workability, and to age harden the steel in a heat treatment process such as baking painting to give it a predetermined high tensile strength. Steel plates and methods for manufacturing the same that can be applied to such methods have also been developed. Manufacturing methods for such steel sheets include (1) using a ferrite + martensitic structure, (2) using phosphorus-added Al-killed steel, and (3) using ultra-low C steel with carbides such as Ti and Nb. The BH properties of steel are improved by adding a small amount of forming elements, nitride-forming elements, or carbonitride-forming elements rather than completely fixing the solid solution C and N in the steel (Japanese Patent Application Laid-Open No. 1989-1999). 114717, Japanese Patent Publication No. 49-130819, Japanese Patent Publication No. 49-130819, Japanese Patent Publication No. 192225-1977), etc. Among these, ferrite + martensitic woven steel strips have a low R value of around 1, which indicates the deep drawability of the material, so they cannot be applied to severe deep drawing parts. Here, R value is the strain in the width direction and plate thickness direction in the tensile test, and the original plate thickness and plate width of the tensile test piece are t0 and w0, respectively, and the plate thickness and plate width after 20% tension are respectively If t20 and w20 are used, the R value is given by the following formula. R=1n(w0/w20)/1n(t0/t20) In addition, phosphorus-added Al-killed steel has a high R value,
Although this steel plate has excellent BH properties, it requires batch treatment during the annealing process, which poses a drawback in terms of manufacturing cost. Further, when the annealing step is performed by a continuous annealing process which is advantageous in terms of manufacturing cost, there is a problem that the range of application of the steel plate is greatly restricted due to a decrease in the R value. On the other hand, carbide-forming elements such as Ni and Nb, nitride-forming elements, and carbonitride-forming elements are dissolved in solid solution C and N in steel.
Steels that improve the BH properties of ultra-low C steels by adding a smaller amount than the amount required to completely fix C have an advantage in terms of manufacturing costs because continuous annealing can be applied. However, there is a problem in that C and N in the steel, which are not fixed by Ti, Nb, etc., degrade the R value of the steel. [Summary of the invention] In weight%, C: 0.0015 to 0.005, Si≦0.5, N≦
0.0040, Mn: 0.05-1.2, P≦0.1, Al: 0.01-0.1
Ti and/or Nb in the range of Ti≦0.05, Nb≧0.025, Ti+Nb≦0.05 and 2×Ti+Nb≦
In a method of manufacturing a steel plate by hot rolling a steel containing Fe and unavoidable impurities within a range of 10×C, followed by cold rolling and annealing, the process involves the completion of rough rolling of the steel. Hot rolling is carried out at a temperature of 1000°C or lower, a time interval of 20 seconds or more from the end of rough rolling to the start of finish rolling, and a coiling temperature of 550°C or higher.
Average cooling rate after being held above 750℃ for 10 seconds or more
It is characterized by cooling from 750°C to 200°C at a rate of 10°C/second or more. Here, we will explain the reasons for limiting the chemical components. The reason for setting C in the range of 0.0015 to 0.005% is that C
If it is <0.0015%, a BH amount of 3Kg/mm2 or more cannot be obtained,
This is because when C>0.005, either the R value or the BH amount decreases significantly. The reason for setting Si≦0.5% is as follows. Si is an effective element for increasing the strength of steel and has the effect of improving the ductility of steel through the ferrite cleaning action, but since adding a large amount may deteriorate chemical conversion properties, Si was set at 0.5%. The reason why Mn is set in the range of 0.05 to 1.2% is as follows. 0.05% Mn to prevent red heat embrittlement of steel
However, if more than 1.2% is added, R
This is because a decrease in value is observed. The reason for setting P≦0.1% is that, like Si, P is effective as a steel strengthening element, but if it exceeds 0.1%, the steel will become brittle. The reason why Al is set in the range of 0.01 to 0.1% is as follows. The lower limit is set to 0.01 to ensure sufficient deoxidation.
%. The upper limit was set at 0.1% because no improvement in the deoxidizing effect was observed even if Al was added in an amount of 0.1% or more. The reason for setting N≦0.0040% is that N reacts with Ti.
However, if the amount of N is large, Ti reacts with N.
This is because the amount of Ti increases, and the fixation of C by Ti becomes insufficient, leading to a deterioration of the R value of the steel. Ti and Nb may be added singly or in combination.
Ti and Nb are added to fix C in the steel.
The setting of Ti≦0.05% was determined from the relationship between the weight percent of Ti, the amount of BH, and the R value shown in the drawings. In other words, if it exceeds 0.05%, as shown in the drawing, R
This is because although the value does not worsen, the amount of BH decreases. Nb≦0.025%, Ti+Nb≦0.05%, and 2
The reason why ×Ti+Nb≧10×C is set is that this range is an amount that can sufficiently fix the amount of C in the steel stoichiometrically. In addition, from the perspective of reducing the amount of Ti added necessary to fix N in steel, even if small amounts of elements with strong affinity for N, such as REM, Ce, and Ca, are added, high R
Value and high BH properties are retained. Next, we will discuss the reasons for limiting the manufacturing conditions. The reason why the rough rolling end temperature was set to 1000° C. or lower and the time interval from rough rolling to the start of finish rolling was set to 20 seconds or more is to promote strain-induced precipitation of carbides. Further, the reason why the coiling temperature was set at 550° C. or higher was to further enhance the precipitation reaction during cooling in the coil state. Annealing after cold rolling at an annealing temperature of 750°C or higher,
The reason why it was held for 10 seconds or more was to obtain a high R value and high BH amount in the steel plate. The reason why we decided to cool the steel plate after annealing from 750℃ to 200℃ at a rate of 10℃/second or more is because
This is to give the amount of BH. Note that the cooling method may be any method such as gas jet cooling, water quenching cooling, roll cooling, etc. as long as the above cooling conditions are satisfied. It is also possible to control the amount of room temperature aging and the amount of BH by reheating the steel plate after cooling to a temperature of 250° C. or lower. [Examples of the Invention] Examples of the invention are shown below along with comparative examples. Table 1 shows the chemical composition of the steels and the conditions of each process in Examples and Comparative Examples. The test pieces were made of various ultra-resistance C-ti steels and ultra-low C-Ti steels.
−Nb-based steel is melted in the laboratory and the steel ingot is shaved,
After forging, hot rolling and cold rolling were performed under various conditions shown in Table 1 to obtain a 0.8 mm thick steel plate. These steel plates were annealed under various conditions shown in Table 1, and their mechanical properties were investigated. Mechanical properties are also shown in Table 1. In Table 1, No. 1 to No. 4 are steels with the same chemical composition but different processes such as rolling cooling, among which No. 1 is the example and No. 2 to No. 4 are the comparative examples.
This is No.4. No. 5 and No. 6 have the same chemical composition, but about twice the amount of Ti was added to steel No. 1 to No. 4. The difference between No. 5 and No. 6 is that the conditions of each process are different, of which No. 5 is the example and No. 6 is the comparative example. No.7 steel is No.5,
Approximately twice as much Ti is added to No. 6 steel, and Ti+Nb>
This is a comparative example where the value was set to 0.05. Steel No. 8 is a comparative example in which the amount of C is increased and 2×Ti+Nb<10. No.
9, No. 10 shows an example. No. 11 shows an example in which both Ti and Nb were added. No. 12 shows an example in which only Nb was added. No.13 has the same chemical composition as No.12, but the winding temperature is 550℃ in each process.
A comparative example is shown below. Bake hardenability of steel (BH amount), vertical cracking resistance, R
The values were evaluated by directly measuring the BH properties and R values of various test pieces. In addition, bake hardenability and vertical cracking resistance are closely related to the amount of solid solute C in the steel.
A material with a large amount of solid solute C and excellent bake hardenability will naturally have excellent warp cracking resistance, so the evaluation of warp cracking resistance is based on the bake hardening amount (BH amount).
I decided to represent it. From Table 1, the only steels with an R value of 1.9 or more and a BH value of 2.0 or more are Examples No. 1, No. 5, and No. 9 to No. 12. From this, the steel in the example has a higher R value and BH value than the comparative example, so it is a cold rolled steel plate with excellent bake hardenability and warp cracking resistance and a high R value. I understand. [Effects of the Invention] As explained above, by aiming at sufficient fixation of solid solution C through carbonitride precipitation at the hot rolling stage, and by re-dissolving a certain amount of C into the steel after recrystallization annealing, , has a high R value and is excellent
It becomes possible to produce a steel plate having BH properties and warp cracking resistance at a low manufacturing cost.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は、R値及びBH量に及ぼすTi量の影響を
示すグラフである。
The drawing is a graph showing the influence of the amount of Ti on the R value and the amount of BH.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、C:0.0015〜0.005、Si≦0.5、vN
≦0.0040、Mn:0.05〜1.2、P≦0.1、Al:0.01〜
0.1よりなり、Ti≦0.05、Nb≦0.025、Ti+Nb≦
0.05かつ2×Ti+Nb≧10×Cの範囲で、Ti及
び/又はNbを含み、残部Fe及び不可避的不純物
からなる鋼を、熱間圧延し、ついで冷間圧延をし
た後、焼鈍を行なうことにより鋼板を製造する方
法において、該鋼の粗圧延終了温度を1000℃以
下、粗圧延終了から仕上圧延開始までの時間間隔
を20秒以上、巻取り温度を550℃以上として熱間
圧延を行ない、冷間圧延後の焼鈍を、焼鈍温度
750℃以上に10秒以上保持した後、平均冷却速度
10℃/秒以上で750℃から200℃まで冷却して行な
うことを特徴とする焼付硬化性および耐たて割れ
性にすぐれかつ高R値を持つ冷延鋼板の製造方
法。
1% by weight, C: 0.0015-0.005, Si≦0.5, vN
≦0.0040, Mn: 0.05~1.2, P≦0.1, Al: 0.01~
0.1, Ti≦0.05, Nb≦0.025, Ti+Nb≦
0.05 and 2×Ti+Nb≧10×C, by hot rolling a steel containing Ti and/or Nb, the balance being Fe and unavoidable impurities, followed by cold rolling and annealing. In a method for producing a steel plate, the steel is hot rolled at a rough rolling finish temperature of 1000°C or less, a time interval from the end of rough rolling to the start of finish rolling of 20 seconds or more, and a coiling temperature of 550°C or higher, and then cold rolled. Annealing after inter-rolling, annealing temperature
Average cooling rate after being held above 750℃ for 10 seconds or more
A method for producing a cold-rolled steel sheet having excellent bake hardenability and warp cracking resistance and a high R value, characterized by cooling from 750°C to 200°C at a rate of 10°C/second or more.
JP20846185A 1985-09-19 1985-09-19 Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value Granted JPS6267120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20846185A JPS6267120A (en) 1985-09-19 1985-09-19 Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20846185A JPS6267120A (en) 1985-09-19 1985-09-19 Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value

Publications (2)

Publication Number Publication Date
JPS6267120A JPS6267120A (en) 1987-03-26
JPH0548284B2 true JPH0548284B2 (en) 1993-07-21

Family

ID=16556568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20846185A Granted JPS6267120A (en) 1985-09-19 1985-09-19 Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value

Country Status (1)

Country Link
JP (1) JPS6267120A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521553B2 (en) * 1990-03-06 1996-08-07 新日本製鐵株式会社 Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP3569949B2 (en) * 1994-05-02 2004-09-29 Jfeスチール株式会社 Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770258A (en) * 1980-10-18 1982-04-30 Kawasaki Steel Corp Cold rolled steel sheet to be drawn excellent in seizing harden ability and manufacture thereor
JPS5931827A (en) * 1982-08-13 1984-02-21 Nippon Steel Corp Production of quench hardenable steel plate for ultra deep drawing
JPS5938337A (en) * 1982-08-28 1984-03-02 Nippon Steel Corp Manufacture of steel plate with burning hardenability for extremely deep drawing
JPS5974233A (en) * 1982-10-21 1984-04-26 Nippon Steel Corp Production of cold-rolled steel sheet for press forming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770258A (en) * 1980-10-18 1982-04-30 Kawasaki Steel Corp Cold rolled steel sheet to be drawn excellent in seizing harden ability and manufacture thereor
JPS5931827A (en) * 1982-08-13 1984-02-21 Nippon Steel Corp Production of quench hardenable steel plate for ultra deep drawing
JPS5938337A (en) * 1982-08-28 1984-03-02 Nippon Steel Corp Manufacture of steel plate with burning hardenability for extremely deep drawing
JPS5974233A (en) * 1982-10-21 1984-04-26 Nippon Steel Corp Production of cold-rolled steel sheet for press forming

Also Published As

Publication number Publication date
JPS6267120A (en) 1987-03-26

Similar Documents

Publication Publication Date Title
JP2528387B2 (en) Manufacturing method of ultra high strength cold rolled steel sheet with good formability and strip shape
EP1264911A2 (en) High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JPS5857492B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for automobiles
JPH0123530B2 (en)
JPH11279693A (en) Good workability/high strength hot rolled steel sheet excellent in baking hardenability and its production
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH06299248A (en) Production of ultra-high strength cold rolled steel sheet excellent in workability and impact property
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JPS5884928A (en) Production of high-strength cold-rolled steel plate for deep drawing having excellent nonaging property, secondary workability and curing performance for baked paint
JPH0548284B2 (en)
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JPH06145893A (en) High strength galvanized steel sheet excellent in ductility and delayed fracture resistance and its production
JPH06122939A (en) Cold rolled steel sheet or galvanized cold rolled steel sheet excellent in baking hardenability and formability and production thereof
JPH11314103A (en) Production of cold-rolled steel sheet excellent in aging resistance at normal temperature and workability
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP2778429B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP2981629B2 (en) Method for manufacturing bake hardenable steel sheet with composite structure excellent in deep drawability
JP3309859B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing excellent in bake hardenability and corrosion resistance
JP3068677B2 (en) Enamelled steel sheet having good deep drawability and aging resistance and method for producing the same
JP3035040B2 (en) Composite structure bake hardening steel sheet with excellent deep drawability
JP3175063B2 (en) Ferrite single-phase cold-rolled steel sheet for non-aging deep drawing at room temperature and method for producing the same
JPH06279864A (en) Production of aluminum killed cold rolled steel sheet for porcelain enameling
JPH05179357A (en) Production of cold rolled ferritic stainless steel sheet