JPS639579B2 - - Google Patents

Info

Publication number
JPS639579B2
JPS639579B2 JP1708583A JP1708583A JPS639579B2 JP S639579 B2 JPS639579 B2 JP S639579B2 JP 1708583 A JP1708583 A JP 1708583A JP 1708583 A JP1708583 A JP 1708583A JP S639579 B2 JPS639579 B2 JP S639579B2
Authority
JP
Japan
Prior art keywords
equivalent
less
cold
steel
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1708583A
Other languages
Japanese (ja)
Other versions
JPS59143047A (en
Inventor
Atsuki Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1708583A priority Critical patent/JPS59143047A/en
Publication of JPS59143047A publication Critical patent/JPS59143047A/en
Publication of JPS639579B2 publication Critical patent/JPS639579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、良好な表面性状とプレス成形性並
びに高強度を備えた冷延鋼板に関するものであ
る。 近年、乗用車の車体重量を軽減する目的で、各
種の高張力冷延鋼板が開発され、実用に供されて
いる。 しかし、乗用車の車体に使用して従来の軟鋼板
と同等な性能を発揮しつつ車体重量を下げ得る鋼
板としては、 (1) 製造コストが軟鋼板並に安価であること。 (2) プレス加工性が軟鋼板並に良好であること。 (3) 表面性状が軟鋼板並に良好であること。 (4) パネルとしての鋼板の強度が高いこと。 以上4つの特性を備える必要があるが、現在実用
化されている鋼板は必ずしもこれらの特性を十分
に兼ね備えるものではない。 すなわち、例えばプレス加工性の良好な鋼板と
して、Cを極力低減し、このCを炭窒化物とし
て、析出固着するのに十分な量の合金元素を添加
含有させたいわゆるIF鋼(Interstitial Free
Steel)が開発されている。 このIF鋼は、例えば炭窒化物形成元素として
Tiを用いる場合には、 Ti(%)≧4{C(%)+12/14N(%)} を満足する量のTiを添加含有させたものである。
なお、以下%は重量割合とする。 しかしこのIF鋼には、低Cのために強度が低
下し、鋼板が軟質となつて、近年の高張力鋼板へ
の要求と相反するなどの問題点があつた。 ところで、鋼中に適当量のPを含有させること
により、安価に鋼板の強度を上昇させ得ることが
一般に知られているが、冷延鋼板にこのような手
段を適用したのでは冷延前に行われる酸洗時に不
均一な酸洗が行われ冷延鋼板製品の表面品質を著
るしく害すること、および冷延鋼板製品の深絞り
性が劣化するので、好ましい結果を得ることがで
きないということが本発明者等の検討で明らかと
なつたのである。 そして、本発明者等のさらなる研究によつて、
P含有冷延鋼板の表面品質および深絞り性向上に
Cu添加が効果があることが判明したのである。 即ち、特定量のCuを含有させることにより、
酸洗の際、局部的な過酸洗が発生する前に該部位
にCuが析出してそれ以上の過酸洗を防止し、結
果的に均一な酸洗が行われて冷延後の鋼板表面の
性状が著しく改善されるとともに、Cuは焼鈍時
結晶粒の成長を容易にし、その結果r値を高める
のである。 この発明は、上記の知見にもとづいてなされた
ものであつて、冷延鋼板を、 C:0.001〜0.0020%、Si:1.0%以下、 Mn:0.01〜1.00%、P:0.04〜0.20%、 Cu:0.05〜0.18%、sol.Al:0.10%以下、 N:0.008%以下、 を含むとともに、 Ti:0.20%以下、 Nb:0.20%以下、 Zr:0.20%以下、 のうち1種以上を含有し、かつ、 Ti当量=Ti(%)+48/93Nb(%)+48/91Zr(%)…
C当量=C(%)+12/14N(%) … (C当量)−1/4(Ti当量)≦0.0010(%) … 上記式で計算されるTi当量と、上記式で計
算されるC当量との関係が上記式を満足し、さ
らに必要に応じて、 Mo:0.03〜0.25%、 REM:0.03〜0.20%、 B:0.0003〜0.0050%、 のうちの1種以上を含有させてなる組成に構成す
ることにより、プレス成形性を向上し、かつ優れ
た強度をも確保せしめた点に特徴を有するもので
ある。 つぎにこの発明の冷延鋼板において、その成分
組成を上記のように限定した理由を説明する。 C C成分には、微細な炭化物を形成して鋼板の
強度を向上せしめる作用があるが、その含有量
が0.001%未満では前記作用に所望の効果が得
られず軟質化しすぎてしまうと共に溶製が困難
となり、一方0.020%を越えて含有させると、
多くの炭窒化物形成元素を必要とするばかりで
なく、炭窒化物の析出量が多くなりすぎてプレ
ス加工性が劣化するようになることから、その
含有量を0.001〜0.020%とした。 Si Si成分には、鋼の脱酸作用のほか、鋼板の強
度を確保する作用があるが、1.0%を超えると、
鋼板の靫性が劣化するとともに、焼鈍時のスケ
ール付着により鋼板表面に色がつくため、その
含有量を1.0%以下とした。 Mn Mn成分には、鋼板の靫性を改善する作用が
あるが、その含有量が0.01%未満では、熱間脆
性が発生するようになり、一方1.00%を超えて
含有させると溶製が困難となり、かつコストア
ツプの原因となることから、その含有量を0.01
〜1.00%とした。 P P成分は、鋼の強度を安価に上げるための不
可避的な合金元素であるが、0.20%を超えて含
有されると、鋼板の延性を著しく害する。一方
0.04%未満では、硬化能が小さすぎることか
ら、その含有量を0.04〜0.20%とした。 Cu Cuは、本発明の骨子となる合金元素である。
Cuには、Pの多量添加による酸洗時に見られ
る鋼板表面の部分的な過酸現象がまねく表面性
状の劣化を阻止する作用と焼鈍時の結晶粒の成
長を容易となし、r値を高める作用がある。 その含有量が0.05%未満では、前記作用に所
望の効果が得られず、一方0.18%を越えると、
熱間圧延での加熱時、Cuの融点が低いためCu
が、オーステナイトの結晶粒界に晶出し、鋼を
脆くするため、熱間圧延時に亀甲割れを起こす
ため、その含有量を0.05〜0.18%とした。 sol.Al sol.Alは、脱酸を十分に行つて炭化物形成元
素の歩留向上のために含有させるが、sol.Alで
0.10%を越えて含有させてもより一層の脱酸効
果は得られず、コスト高ともなることから、そ
の上限を0.10%とした。 N Nは少なければ少ないほど炭窒化物形成元素
の添加含有量が少なくてすむので好ましい。そ
の含有量0.0080%を越えると、炭窒化物形成元
素を含有させてもr値の低下は避けられないこ
とから、その含有量を0.0080%以下とした。 Ti、Nb、およびZr 上記の通り、これらの成分には、微細な炭窒
化物を形成してプレス成形性および強度を向上
させる均等的作用があるが、それぞれTi:0.20
%、Nb:0.20%、およびZr:0.20%を越えて
含有させても前記作用により一層の向上効果が
見られず、コスト高となることから、それぞれ
の上限値を、Ti:0.20%、Nb:0.20、および
Zr:0.20%とした。 また、上記〜式は、固溶(C+N)を
0.0010(%)以下とし、残りのC+Nを炭窒化
物として析出させるための関係式を示すもので
ある。 なお、(C当量)−1/4(Ti当量)の上限を
0.0010(%)としたのは、この上限値を越える
と、固溶(C+N)が多くなり、鋼板のプレス
成形性が劣化するためである。 Mo、REMおよびB これらの成分には、鋼板の2次加工脆性を改
善する均等的作用があるので、必要に応じて含
有させるが、それぞれMo:0.03%未満、
REM:0.03%未満およびB:0.0003%未満の含
有量では、所望の効果が得られず、一方、それ
ぞれMo:0.25%、REM:0.20%およびB:
0.0050%を越えて含有させると、鋼板の溶接性
が劣化するようになることから、それぞれの含
有量をMo:0.03〜0.25%、REM:0.03〜0.20
%およびB:0.0003〜0.0050%とした。 上記のような化学成分組成の鋼を連続鋳造し
た後、そのまゝ或いは再加熱したスラブを熱延
鋼板とした後、通常の冷延鋼板製造工程および
条件で製品を製造した。 その結果表面性状の良好なプレス成形性に優
れた高強度の冷延鋼板が得られた。 ついで、この発明を実施例により、比較例と対
比しながら説明する。 実施例 1 第1表から成る組成の鋼を溶製し、連続鋳造で
スラブにした後、これを1150℃に加熱しついで仕
上温度880℃、巻取温度600℃にて熱間圧延を行
い、厚さ4.0m/mの熱延鋼板とした。 引続いて、前記熱延板を5〜10%の濃度で50〜
90℃に加熱した塩酸中に浸漬して、酸洗後圧下率
80%にて厚さ0.8m/mに冷間圧延し、ついでこ
の冷延板に温度830℃で1分間保持の連続焼鈍あ
るいは温度700℃で5時間保持の箱焼鈍を行い、
さらに伸び率0.8%の調質圧延後、JIS5号の引張
試験を行つた。 なお、第1表の鋼1および2のTi当量および
C当量はいずれも前記式を満足するものであ
る。結果は第2表に示す。表面状況の評価は焼鈍
後の鋼板の外観から判断した。 第2表より明らかなように本発明鋼板1および
2は、いずれも(C当量)−1/4(Ti当量)、およ
The present invention relates to a cold-rolled steel sheet with good surface properties, press formability, and high strength. In recent years, various high-tensile strength cold-rolled steel sheets have been developed and put into practical use for the purpose of reducing the weight of passenger cars. However, as a steel plate that can be used in the body of a passenger car to reduce the weight of the vehicle while exhibiting the same performance as conventional mild steel plates, it has the following characteristics: (1) The manufacturing cost is as low as that of mild steel plates. (2) Press workability is as good as mild steel plate. (3) Surface quality should be as good as mild steel plate. (4) The strength of the steel plate used as a panel is high. Although it is necessary to have the above four properties, the steel sheets currently in practical use do not necessarily have all of these properties. That is, for example, as a steel sheet with good press workability, so-called IF steel (Interstitial Free
Steel) is being developed. This IF steel uses carbonitride-forming elements such as
When using Ti, it is added in an amount that satisfies the following: Ti (%)≧4 {C (%) + 12/14N (%)}.
Note that the following percentages are by weight. However, this IF steel has problems such as low C, which reduces its strength and makes the steel sheet soft, which conflicts with the recent demand for high-strength steel sheets. By the way, it is generally known that the strength of steel sheets can be increased at low cost by including an appropriate amount of P in steel, but if such a method is applied to cold-rolled steel sheets, Non-uniform pickling occurs during pickling, which seriously impairs the surface quality of cold rolled steel products, and the deep drawability of cold rolled steel products deteriorates, making it impossible to obtain favorable results. This became clear through studies conducted by the present inventors. Through further research by the present inventors,
For improving surface quality and deep drawability of P-containing cold-rolled steel sheets
It turned out that adding Cu was effective. That is, by containing a specific amount of Cu,
During pickling, Cu precipitates in the area before localized overpickling occurs to prevent further overpickling, resulting in uniform pickling and the steel plate after cold rolling. In addition to significantly improving surface properties, Cu facilitates grain growth during annealing, thereby increasing the r value. This invention was made based on the above knowledge, and includes a cold-rolled steel sheet containing C: 0.001 to 0.0020%, Si: 1.0% or less, Mn: 0.01 to 1.00%, P: 0.04 to 0.20%, and Cu. : 0.05 to 0.18%, sol.Al: 0.10% or less, N: 0.008% or less, and also contains one or more of the following: Ti: 0.20% or less, Nb: 0.20% or less, Zr: 0.20% or less , and Ti equivalent = Ti (%) + 48/93Nb (%) + 48/91Zr (%)...
C equivalent = C (%) + 12/14 N (%) ... (C equivalent) - 1/4 (Ti equivalent) ≦ 0.0010 (%) ... Ti equivalent calculated by the above formula and C equivalent calculated by the above formula The composition satisfies the above formula and further contains one or more of the following, if necessary: Mo: 0.03 to 0.25%, REM: 0.03 to 0.20%, B: 0.0003 to 0.0050%. This structure improves press formability and also ensures excellent strength. Next, the reason why the composition of the cold rolled steel sheet of the present invention is limited as described above will be explained. C The C component has the effect of forming fine carbides and improving the strength of the steel sheet, but if its content is less than 0.001%, the desired effect will not be obtained and the steel plate will become too soft and the melting process will be affected. On the other hand, if the content exceeds 0.020%,
Not only is a large amount of carbonitride-forming elements required, but also the amount of precipitated carbonitrides becomes too large, deteriorating press workability, so the content was set at 0.001 to 0.020%. Si In addition to deoxidizing the steel, the Si component also has the effect of ensuring the strength of the steel plate, but if it exceeds 1.0%,
The content was set to 1.0% or less because it deteriorates the shine of the steel plate and also causes coloration on the surface of the steel plate due to scale adhesion during annealing. Mn The Mn component has the effect of improving the toughness of steel sheets, but if the content is less than 0.01%, hot brittleness will occur, while if the content exceeds 1.00%, melting will be difficult. Since the content becomes 0.01 and causes cost increase, the content is reduced to 0.01
~1.00%. PP The P component is an unavoidable alloying element for increasing the strength of steel at low cost, but if it is contained in an amount exceeding 0.20%, it significantly impairs the ductility of the steel sheet. on the other hand
If it is less than 0.04%, the curing ability is too small, so the content is set to 0.04 to 0.20%. Cu Cu is an alloying element that is the gist of the present invention.
Cu has the effect of preventing the deterioration of surface properties caused by the local overacid phenomenon that occurs on the steel plate surface during pickling due to the addition of a large amount of P, and facilitates the growth of crystal grains during annealing, increasing the r value. It has an effect. If its content is less than 0.05%, the desired effect cannot be obtained, while if it exceeds 0.18%,
During heating during hot rolling, Cu has a low melting point.
However, since it crystallizes at the grain boundaries of austenite and makes the steel brittle, causing hexagonal cracking during hot rolling, its content is set to 0.05 to 0.18%. sol.Al sol.Al is contained to improve the yield of carbide-forming elements by sufficiently deoxidizing, but sol.Al
If the content exceeds 0.10%, no further deoxidizing effect can be obtained and the cost will increase, so the upper limit was set at 0.10%. NN is preferable because the smaller the amount of N, the smaller the added content of carbonitride-forming elements. If the content exceeds 0.0080%, a decrease in r value is unavoidable even if carbonitride-forming elements are included, so the content was set to 0.0080% or less. Ti, Nb, and Zr As mentioned above, these components have the uniform effect of forming fine carbonitrides to improve press formability and strength, but each of these components has a Ti: 0.20
%, Nb: 0.20%, and Zr: 0.20%, no further improvement effect can be seen due to the above action and the cost will be high. :0.20, and
Zr: 0.20%. In addition, the above formula ~ represents the solid solution (C+N)
0.0010 (%) or less, and shows a relational expression for precipitating the remaining C+N as carbonitride. In addition, the upper limit of (C equivalent) - 1/4 (Ti equivalent)
The reason why it is set to 0.0010 (%) is that if this upper limit is exceeded, the amount of solid solution (C+N) increases and the press formability of the steel sheet deteriorates. Mo, REM, and B These components have a uniform effect of improving the secondary processing brittleness of steel sheets, so they are included as necessary, but Mo: less than 0.03%,
Contents of REM: less than 0.03% and B: less than 0.0003% do not provide the desired effect, while Mo: 0.25%, REM: 0.20% and B: respectively.
If the content exceeds 0.0050%, the weldability of the steel plate will deteriorate, so the respective contents should be set to Mo: 0.03 to 0.25% and REM: 0.03 to 0.20.
% and B: 0.0003 to 0.0050%. After continuous casting of steel having the chemical composition as described above, hot-rolled steel sheets were made from the slabs as they were or reheated, and then products were manufactured using normal cold-rolled steel sheet manufacturing processes and conditions. As a result, a high-strength cold-rolled steel sheet with good surface properties and excellent press formability was obtained. Next, the present invention will be explained using Examples and in comparison with Comparative Examples. Example 1 Steel having the composition shown in Table 1 was melted and made into a slab by continuous casting, which was then heated to 1150°C and hot rolled at a finishing temperature of 880°C and a coiling temperature of 600°C. A hot-rolled steel plate with a thickness of 4.0 m/m was used. Subsequently, the hot rolled sheet is heated to a concentration of 50 to 10%.
Immerse in hydrochloric acid heated to 90℃ and reduce the reduction rate after pickling.
Cold rolled to a thickness of 0.8m/m at 80%, then continuous annealing at 830°C for 1 minute or box annealing at 700°C for 5 hours.
Furthermore, after temper rolling with an elongation rate of 0.8%, a JIS No. 5 tensile test was conducted. Note that the Ti equivalent and C equivalent of Steels 1 and 2 in Table 1 both satisfy the above formula. The results are shown in Table 2. The surface condition was evaluated based on the appearance of the steel plate after annealing. As is clear from Table 2, steel sheets 1 and 2 of the present invention both have (C equivalent) - 1/4 (Ti equivalent) and

【表】【table】

【表】 びCuなどが本発明範囲内にあるので高強度で良
好r値を示し、かつ表面性状も良好であるが、鋼
板3はCuが本発明範囲に外れているためr値が
低くかつ焼鈍後の鋼板表面には微細な凸凹(1種
のかぶれ疵)があり外観は悪い。 実施例 2 Si:0.01%、Mn:0.18%、P:0.080%、Cu:
0.10%、S:0.006%、sol.Al:0.21%、を基本成
分して含有し、Cを0.001〜0.020%、Nを0.0020
〜0.0050%、Tiを0.04〜0.10%の範囲内で変動さ
せ、残りがFeからなる種々の鋼を連続鋳造にて
スラブとなし、このスラブに対して、スラブ加熱
温度:1200℃、仕上温度:740℃、巻取温度:400
℃の条件で熱間圧延を施して厚さ4.0m/mの熱
延板とし、ついで圧下率:80%にて冷間圧延を施
して厚さ0.8m/mの冷延鋼板となし、引続いて
温度:800℃に90秒保持の条件で連続焼鈍を施す
ことによつて種々のTi当量およびC当量の異な
つた冷延鋼板を製造した。 この冷延鋼板のr値を求め、この結果を前記冷
延板の固溶C量、すなわち上記式として示した
(C当量)−1/4(Ti当量)との関係において第1
図に示した。 第1図に示すように、前記式の値が0.0015%
以下の場合に高いr値を示すことが明らかであ
る。 実施例 3 それぞれ第3表に示される成分組成をもつた鋼
を溶製し、連続鋳造にてスラブとした後、いずれ
のスラブもスラブ温度:1200℃に加熱し、ついで
仕上温度:約800℃および巻取温度:約600℃にて
それぞれ熱間圧延を行つて厚さ4.0m/mの熱延
板とした後、塩酸酸洗を施し、引続いて圧下率:
80%の冷間圧延と、温度:800℃に90秒保持の条
件で連続焼鈍を行うことによつて、いずれも厚
さ:0.8m/mの本発明鋼板1〜17および比較鋼
板18〜22の冷延鋼板をそれぞれ製造した。 なお、比較鋼板18〜22の冷延鋼板はいずれも成
分組成が本発明範囲を外れたものである。
[Table] Steel plate 3 has a high strength and good r-value because its contents such as copper and copper are within the range of the present invention, and the surface quality is also good. The surface of the steel plate after annealing has minute irregularities (a type of rash) and the appearance is poor. Example 2 Si: 0.01%, Mn: 0.18%, P: 0.080%, Cu:
Contains 0.10%, S: 0.006%, sol.Al: 0.21% as basic components, C 0.001 to 0.020%, N 0.0020%.
~0.0050%, Ti varying within the range of 0.04 to 0.10%, and the rest made into slabs by continuous casting. Slab heating temperature: 1200℃, finishing temperature: 740℃, winding temperature: 400
A hot-rolled steel sheet with a thickness of 4.0 m/m was obtained by hot rolling at ℃, and then cold-rolled at a reduction rate of 80% to obtain a cold-rolled steel sheet with a thickness of 0.8 m/m. Subsequently, continuous annealing was performed at a temperature of 800° C. for 90 seconds to produce cold rolled steel sheets with various Ti equivalents and C equivalents. The r value of this cold-rolled steel sheet was determined, and this result was calculated as the first
Shown in the figure. As shown in Figure 1, the value of the above formula is 0.0015%
It is clear that the following cases exhibit high r values. Example 3 Steels having the respective compositions shown in Table 3 were melted and made into slabs by continuous casting. Each slab was heated to a slab temperature of 1200°C, and then a finishing temperature of approximately 800°C. and coiling temperature: After hot rolling at approximately 600℃ to obtain a hot-rolled sheet with a thickness of 4.0m/m, pickling with hydrochloric acid was performed, followed by rolling reduction:
Invention steel plates 1 to 17 and comparison steel plates 18 to 22, each having a thickness of 0.8 m/m, were obtained by cold rolling at 80% and continuous annealing at a temperature of 800°C for 90 seconds. cold-rolled steel sheets were manufactured. In addition, all of the cold-rolled steel sheets of Comparative Steel Sheets 18 to 22 have compositions outside the range of the present invention.

【表】【table】

【表】 (第3表には、該当するものに※印を付してい
る。) つぎに、この結果から得られた本発明鋼板1〜
17および比較鋼板18〜22の冷延鋼板について引張
特性およびr値の測定結果並びに焼鈍板の表面性
状の調査結果を第3表に合わせて示した。 第3表に示されるように、本発明鋼板1〜15の
冷延鋼板は、表面性状が良好で、かつ高強度およ
び高r値、すなわち良好なプレス成形性を有する
のに対して、比較鋼板18〜19の冷延鋼板は、Cu
量が本発明範囲に外れているため、焼鈍板の表面
に一種のかぶれ疵が発生し、表面性状が悪いうえ
にr値も良くない。 また、比較鋼板20の冷延鋼板は炭窒化物形成元
素を含有しないために(C当量)−1/4(Ti当量)
が本発明範囲に外れているためr値が著しく低
く、さらに比較鋼板21の冷延鋼板はPが本発明範
囲の下限に外れているため強度が低い。 また、比較鋼板22の冷延鋼板は、Cu量が本発
明範囲の上限に外れたことから、熱延板の段階か
ら亀甲割れを生じ、冷延焼鈍後の鋼板表面に模様
が残り、表面状況が悪い。 上述のように、本発明による冷延鋼板は表面性
述の良好なプレス成形性および高強度を有するも
ので、この冷延鋼板を自動車などの車体に用いれ
ば、重量軽減が可能となるなど工業上有用な効果
がもたらされるものである。
[Table] (Applicable items are marked with * in Table 3.) Next, the steel sheets 1 to 1 of the present invention obtained from this result are
Table 3 shows the results of measuring the tensile properties and r values of cold-rolled steel sheets No. 17 and Comparative Steel Sheets 18 to 22, as well as the results of investigating the surface properties of the annealed sheets. As shown in Table 3, the cold rolled steel sheets of the present invention steel sheets 1 to 15 have good surface properties, high strength and high r value, that is, good press formability, whereas the comparative steel sheets 18~19 cold rolled steel plate is Cu
Since the amount is outside the range of the present invention, a kind of rash appears on the surface of the annealed plate, resulting in poor surface quality and poor r value. In addition, since the cold-rolled steel sheet of comparative steel sheet 20 does not contain carbonitride-forming elements, (C equivalent) - 1/4 (Ti equivalent)
Since P is outside the range of the present invention, the r value is extremely low, and furthermore, the cold rolled steel sheet of comparative steel plate 21 has low strength because P is outside the lower limit of the range of the present invention. In addition, in the cold-rolled steel sheet of comparative steel sheet 22, since the amount of Cu was outside the upper limit of the range of the present invention, hexagonal cracking occurred from the stage of hot-rolling, and a pattern remained on the surface of the steel sheet after cold-rolling and annealing. It's bad. As mentioned above, the cold-rolled steel sheet according to the present invention has good press formability in terms of surface properties and high strength.If this cold-rolled steel sheet is used in the bodies of automobiles and other vehicles, it will be possible to reduce the weight and will be used in industrial applications. Moreover, it brings about useful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼板のC当量−1/4(Ti当量)とr
値との関係を示した曲線図である。
Figure 1 shows the C equivalent of the steel plate -1/4 (Ti equivalent) and r
It is a curve diagram showing the relationship with the value.

Claims (1)

【特許請求の範囲】 1 C:0.001〜0.020%、 Si:1.0%以下、 Mn:0.01〜1.00%、 P:0.04〜0.20%、 Cu:0.05〜0.18%、 Sol.Al:0.10%以下、 N:0.008%以下、 を含むとともに、 Ti:0.20%以下、 Nb:0.20%以下、 Zr:0.20%以下、 のうちの1種以上を含有し、かつ、 Ti当量=Ti(%)+48/93Nb(%)+48/91Zr(%)…
C当量=C(%)+12/14N(%) … (C当量)−1/4(Ti当量)0.0010(%) … 上記式で計算されるTi当量と、上記式で計
算されるC当量との関係が上記式を満足し、 Fe+不可避不純物:残り、 からなる組成(以上重量%)を有する表面性状の
良好な高強度冷延鋼板。 2 C:0.001〜0.020%、 Si:1.0%以下、 Mn:0.01〜1.00%、 P:0.04〜0.20%、 Cu:0.05〜0.18%、 sol.Al:0.10%以下、 N:0.008%以下、 を含むとともに、 Mo:0.03〜0.25%、 REM:0.03〜0.20%、 B:0.0003〜0.0050%、 のうちの1種以上を含有し、さらに、 Ti:0.20%以下、 Nb:0.20%以下、 Zr:0.20%以下、 のうちの1種以上をも含有し、かつ、 Ti当量=Ti(%)+48/93Nb(%)+48/91Zr(%)…
C当量=C(%)+12/14N(%) … (C当量)−1/4(Ti当量)0.0010(%) … 上記式で計算されるTi当量と、上記式で計
算されるC当量との関係が上記式を満足し、 Fe+不可避不純物:残り、 からなる組成(以上重量%)を有する表面性状の
良好な高強度冷延鋼板。
[Claims] 1 C: 0.001 to 0.020%, Si: 1.0% or less, Mn: 0.01 to 1.00%, P: 0.04 to 0.20%, Cu: 0.05 to 0.18%, Sol.Al: 0.10% or less, N : 0.008% or less, contains one or more of the following: Ti: 0.20% or less, Nb: 0.20% or less, Zr: 0.20% or less, and Ti equivalent = Ti (%) + 48/93Nb ( %) +48/91Zr(%)...
C equivalent = C (%) + 12/14 N (%) ... (C equivalent) - 1/4 (Ti equivalent) 0.0010 (%) ... Ti equivalent calculated by the above formula and C equivalent calculated by the above formula A high-strength cold-rolled steel sheet with good surface quality, the relationship of which satisfies the above formula, and has a composition (the above weight %) consisting of: Fe + unavoidable impurities: the remainder. 2 C: 0.001-0.020%, Si: 1.0% or less, Mn: 0.01-1.00%, P: 0.04-0.20%, Cu: 0.05-0.18%, sol.Al: 0.10% or less, N: 0.008% or less, Contains one or more of the following: Mo: 0.03 to 0.25%, REM: 0.03 to 0.20%, B: 0.0003 to 0.0050%, and furthermore, Ti: 0.20% or less, Nb: 0.20% or less, Zr: 0.20% or less, also contains one or more of the following, and Ti equivalent = Ti (%) + 48/93Nb (%) + 48/91Zr (%)...
C equivalent = C (%) + 12/14 N (%) ... (C equivalent) - 1/4 (Ti equivalent) 0.0010 (%) ... Ti equivalent calculated by the above formula and C equivalent calculated by the above formula A high-strength cold-rolled steel sheet with good surface quality, the relationship of which satisfies the above formula, and has a composition (the above weight %) consisting of: Fe + unavoidable impurities: the remainder.
JP1708583A 1983-02-04 1983-02-04 High-strength cold-rolled steel plate having favorable surface property Granted JPS59143047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1708583A JPS59143047A (en) 1983-02-04 1983-02-04 High-strength cold-rolled steel plate having favorable surface property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1708583A JPS59143047A (en) 1983-02-04 1983-02-04 High-strength cold-rolled steel plate having favorable surface property

Publications (2)

Publication Number Publication Date
JPS59143047A JPS59143047A (en) 1984-08-16
JPS639579B2 true JPS639579B2 (en) 1988-02-29

Family

ID=11934138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1708583A Granted JPS59143047A (en) 1983-02-04 1983-02-04 High-strength cold-rolled steel plate having favorable surface property

Country Status (1)

Country Link
JP (1) JPS59143047A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115948A (en) * 1984-07-02 1986-01-24 Kawasaki Steel Corp High-tension cold-rolled steel sheet for deep drawing
JPH0588306B1 (en) * 1985-01-17 1993-12-21 Nisshin Steel Co Ltd
JPH0711058B2 (en) * 1986-04-17 1995-02-08 新日本製鐵株式会社 High corrosion resistance steel

Also Published As

Publication number Publication date
JPS59143047A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
US3988173A (en) Cold rolled steel sheet having excellent workability and method thereof
JP2001081533A (en) High tensile strength cold rolled steel sheet and its manufacture
JP3347151B2 (en) Manufacturing method of low yield ratio cold rolled high strength steel sheet with excellent corrosion resistance
JP2951480B2 (en) High-tensile cold-rolled steel sheet excellent in chemical conversion property and formability and method for producing the same
JPH11310827A (en) Manufacture of cold rolled steel sheet excellent in aging resistance at normal temperature and panel characteristic and hot dip galvanized steel sheet
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JPS639579B2 (en)
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
KR20220083905A (en) High strength plated steel sheet having excellent formability and surface property, and manufacturing method for the same
JPS5852441A (en) Production of high strength cold rolled steel plate having good press formability
JP3288483B2 (en) Thin steel sheet excellent in impact resistance and method for producing the same
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPS6411088B2 (en)
JP2948416B2 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet with excellent deep drawability
JPS63243226A (en) Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation
JP3049104B2 (en) Manufacturing method of high tensile cold rolled steel sheet for deep drawing
JPH04280943A (en) High strength cold rolled steel sheet excellent in deep drawability, chemical conversion treating property, secondary working brittleness resistance, and spot weldability and its production
JP3049147B2 (en) Method for producing high-tensile cold-rolled steel sheet with excellent chemical conversion property and deep drawability
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JP3288484B2 (en) Thin steel sheet excellent in ductility and impact resistance and method for producing the same
JP3150188B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with excellent deep drawability
JP3508162B2 (en) Manufacturing method of thin steel sheet with excellent bake hardenability and impact resistance
JP3172354B2 (en) Thin steel plate with excellent impact resistance
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JPS6330971B2 (en)