JPH0585499B2 - - Google Patents

Info

Publication number
JPH0585499B2
JPH0585499B2 JP2418874A JP41887490A JPH0585499B2 JP H0585499 B2 JPH0585499 B2 JP H0585499B2 JP 2418874 A JP2418874 A JP 2418874A JP 41887490 A JP41887490 A JP 41887490A JP H0585499 B2 JPH0585499 B2 JP H0585499B2
Authority
JP
Japan
Prior art keywords
weight
mullite
sio
less
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2418874A
Other languages
Japanese (ja)
Other versions
JPH04209753A (en
Inventor
Toshio Kawanami
Tsuneshi Komori
Takeshi Mikage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2418874A priority Critical patent/JPH04209753A/en
Publication of JPH04209753A publication Critical patent/JPH04209753A/en
Publication of JPH0585499B2 publication Critical patent/JPH0585499B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

【0001】[0001]

【産業䞊の利甚分野】 本発明は、高枩床で䜿甚
でき、耐久性に優れたムラむト焌結䜓に関する。
TECHNICAL FIELD The present invention relates to a mullite sintered body that can be used at high temperatures and has excellent durability.

【0002】[0002]

【埓来の技術及びその問題点】 ムラむト磁噚
は、叀くから理化孊甚陶磁噚や熱凊理を行うロヌ
ラヌハヌスキルン甚のロヌラヌなどずしお䜿甚さ
れおきた。
[Prior art and its problems] Mullite porcelain has been used for a long time as ceramics for physics and chemistry, rollers for roller hearth kilns that perform heat treatment, and the like.

【0003】 䟋えば、ロヌラヌハヌスキルンは、被
焌成䜓を移動させるために必芁な郚材の熱容量が
極端に小さいため、熱効率が倧巟に向䞊するず共
に、熱凊理時間も短瞮されるずいう利点があり、
近幎普及し぀぀ある。
[0003] For example, roller hearth kilns have the advantage of greatly improving thermal efficiency and shortening heat treatment time because the heat capacity of the members required to move the object to be fired is extremely small.
It has become popular in recent years.

【0004】 ロヌラヌハヌスキルン甚のロヌラヌず
しおは、珟圚、ステンレス、耐熱合金、陶噚、ム
ラむト磁噚、アルミナ等のロヌラヌが䜿甚されお
いる。しかしながら、金属補ロヌラヌでは、1000
℃以䞋、陶噚や磁噚補のロヌラヌでは1250℃以䞋
の炉に䜿甚が限定され、アルミナ補ロヌラヌは極
小型のテスト炉に甚いられおいる皋床であり、熱
凊理枩床に倧きな限界がある。曎に、これらのロ
ヌラヌは、䞀本圓りにかかる荷重に制玄があり、
容積圓りの焌成重量に限界があるため、タむル、
食噚などの䜎枩焌成の軜量材料の熱凊理に利甚さ
れおいるにずどた぀おいる。
[0004] Currently, rollers made of stainless steel, heat-resistant alloys, ceramics, mullite porcelain, alumina, etc. are used as rollers for roller hearth kilns. However, with metal rollers, 1000
℃ or less, ceramic or porcelain rollers can only be used in furnaces with temperatures below 1250℃, and alumina rollers are only used in extremely small test furnaces, and there is a big limit to the heat treatment temperature. Furthermore, these rollers have restrictions on the load that can be applied to each roller.
Because there is a limit to the firing weight per volume, tiles,
It is currently only used for heat treatment of lightweight materials that are fired at low temperatures, such as tableware.

【0005】 しかるに、今埌の窯業補品、特にいわ
ゆるアドバンスト・セラミツクスの普及には、熱
凊理工皋の省゚ネルギヌ化ず高速化の重芁性が増
倧しおくるず考えられる。このため、ロヌラヌハ
ヌスキルン甚のロヌラヌずしおは、機械的匷床が
高いこず、熱源及び被熱凊理材料からに飛散蒞発
物に察しお耐食性に優れおいるこず、高枩䞋にお
いお靱性が高く、クリヌプによ぀お砎断されれに
くいこず、耐熱衝撃抵抗が高く、耐久性にすぐれ
おいるこず、熱攟散が小さいこずなどの芁求を満
足するものが望たおいる。
[0005] However, with the future spread of ceramic products, especially so-called advanced ceramics, it is thought that the importance of energy saving and speeding up of heat treatment processes will increase. For this reason, rollers for roller hearth kilns must have high mechanical strength, excellent corrosion resistance against evaporated matter from heat sources and heat-treated materials, high toughness at high temperatures, and resistance to creep. What is desired is a material that satisfies the requirements of resistance to breakage, high thermal shock resistance, excellent durability, and low heat dissipation.

【0006】 しかしながら、この様な芁求に察し
お、埓来のムラむト磁噚では、十分に応えるこず
ができなか぀た。
[0006] However, conventional mullite porcelain has not been able to fully meet these demands.

【0007】【0007】

【問題点を解決するための手段】 本発明者は、
埓来技術の欠点に鑑みお、鋭意研究を重ねた結
果、機械的匷床が高く、耐食性に優れ、高枩床に
おいお柔構造で䞔぀クリヌプ砎断されにくく、耐
熱衝撃抵抗が高く、耐久性に優れた特定のムラむ
ト焌結䜓が、この芁求をみたすこずを芋い出し、
この知芋に基いお本発明を完成した。
[Means for solving the problem] The present inventor
In view of the shortcomings of the conventional technology, as a result of extensive research, we have developed a specific technology that has high mechanical strength, excellent corrosion resistance, has a flexible structure and is resistant to creep rupture at high temperatures, has high thermal shock resistance, and has excellent durability. We discovered that sintered mullite satisfies this requirement.
The present invention was completed based on this knowledge.

【0008】 即ち、本発明は、Al2O3及びSiO2
の合蚈量97.0重量以䞊、CaO 0.2重量以
䞋、Na2及びK2の合蚈量0.2重量以䞋、
䞊びにZrO2 0.05〜2.8重量であり、Al2
O3SiO2モル比1.30〜1.85、かさ密床2.96
cm3以䞊であるムラむト結晶を䞻䜓ずするムラ
むト焌結䜓に係わる。
[0008] That is, the present invention provides i) Al 2 O 3 and SiO 2
Total amount of 97.0% by weight or more,) CaO 0.2% by weight or less,) Total amount of Na 2 O and K 2 O 0.2% by weight or less,
and) ZrO2 0.05-2.8% by weight, Al2
O 3 /SiO 2 (molar ratio) = 1.30 to 1.85, bulk density 2.96
It pertains to a mullite sintered body mainly composed of mullite crystals with a particle size of g/cm 3 or more.

【0009】 本発明でいうムラむト結晶を䞻䜓ずす
る焌結䜓は、ムラむト固溶䜓のみからなる焌結䜓
に限定されず、結晶粒界に存圚する非晶質マトリ
ツクスが少なく、䞔぀アルミナ結晶α−Al2
O3がムラむト結晶の10容量以䞋しか含たれ
ない焌結䜓であればよく、具䜓的には以䞋の条件
を満足するものである。
[0009] The sintered body mainly composed of mullite crystals in the present invention is not limited to a sintered body consisting only of mullite solid solution, but has a small amount of amorphous matrix present in the grain boundaries and alumina crystals (α- Al 2
It is sufficient that the sintered body contains 10% by volume or less of O 3 ) of the mullite crystals, and specifically satisfies the following conditions.

【0010】 Al2O3SiO2モル比が1.30〜
1.85の範囲内である。Al2O3SiO2が1.30を䞋回
る堎合には、ムラむト結晶盞量が枛少し、SiO2
たたは非晶質盞が増加するため、高枩クリヌプの
䜎䞋、耐食性の䜎䞋をきたし、耐久性が劣るよう
になる。䞀方、Al2O3SiO2が1.85を䞊回る堎合
には、ムラむト結晶盞の他にAl2O3結晶盞量が増
加し、高枩匷床、靱性の䜎䞋及び耐久性の䜎䞋を
生じるので䞍適圓である。
[0010] a) Al 2 O 3 /SiO 2 (molar ratio) is 1.30 ~
It is within the range of 1.85. When Al 2 O 3 /SiO 2 is less than 1.30, the amount of mullite crystal phase decreases and SiO 2
Or, since the amorphous phase increases, high-temperature creep and corrosion resistance decrease, resulting in poor durability. On the other hand, when Al 2 O 3 /SiO 2 exceeds 1.85, the amount of Al 2 O 3 crystal phase increases in addition to the mullite crystal phase, resulting in a decrease in high-temperature strength, toughness, and durability, making it unsuitable. It is.

【0011】 Al2O3及びSiO2の合蚈量が97.0重
量以䞊である。Al2O3及びSiO2の合蚈量は、倚
いこずが望たしいが必ずしも経枈的でない。た
た、TiO2、Cr2O3、Y2O3等の成分は、焌結䜓の
高枩特性に぀いおは、若干の品質䜎䞋芁因ずなる
が、焌結促進、靱性向䞊などの効果がある。埓぀
おこれらの成分を含むAl2O3及びSiO2以倖の成分
は、未満であれば蚱容できる。しかしAl2O3
及びSiO2の合蚈量が97重量を䞋回るず、熱源
や被凊理物からの飛散蒞発物に察する耐食性の䜎
䞋、高枩クリヌプの䜎䞋などが生じるので奜たし
くない。
b) The total amount of Al 2 O 3 and SiO 2 is 97.0% by weight or more. Although it is desirable that the total amount of Al 2 O 3 and SiO 2 be large, it is not necessarily economical. In addition, components such as TiO 2 , Cr 2 O 3 and Y 2 O 3 cause a slight deterioration in the high-temperature properties of the sintered body, but they have effects such as promoting sintering and improving toughness. Therefore, components other than Al 2 O 3 and SiO 2 containing these components are permissible as long as they are less than 3%. But Al 2 O 3
If the total amount of SiO 2 and SiO 2 is less than 97% by weight, it is not preferable because corrosion resistance to flying evaporates from the heat source or the object to be treated decreases, and high-temperature creep decreases.

【0012】 CaOの含有量は、0.2重量以䞋
ずする。 CaOの含有量が増加するずCaO−Al2O3−SiO2ç³»
の化合物が圢成されるず考えられ、高枩でクリヌ
プ砎断が増加するので奜たしくない。このため
CaOの含有量は0.2重量以䞋ずするこずが必芁
であり、奜たしくは0.1重量以䞋、さらに奜た
しくは0.05重量以䞋ずする。
[0012] c) The content of CaO is 0.2% by weight or less. If the content of CaO increases, it is thought that a CaO- Al2O3 - SiO2 - based compound will be formed, which is not preferable because creep rupture increases at high temperatures. For this reason
The content of CaO needs to be 0.2% by weight or less, preferably 0.1% by weight or less, and more preferably 0.05% by weight or less.

【0013】 Na2ずK2の合蚈含有量は、
0.2重量以䞋ずする。 Na2及びK2の含有量が増加するずNa2たた
はおよびK2−Al2O3−SiO2系化合物が圢成さ
れ、品質、寿呜などが䜎䞋するのでこれらの含有
量は、0.2重量以䞋ずし、奜たしくは0.1重量
以䞋ずする。
[0013] d) The total content of Na 2 O and K 2 O is
The content shall be 0.2% by weight or less. If the content of Na 2 O and K 2 O increases, Na 2 O or/and K 2 O-Al 2 O 3 -SiO 2- based compounds will be formed, resulting in a decrease in quality and life. 0.2% by weight or less, preferably 0.1% by weight
The following shall apply.

【0014】 ZrO2の含有量は、0.05〜2.8重量
ずする。 ZrO2は、ムラむト焌結䜓の焌結促進の効果があ
り、ムラむトを所定量含有させるこずによ぀お、
焌結性が向䞊しお、かさ密床が䜎い堎合に生じる
耐食性や機械的匷床の䜎䞋を防止するこずができ
る。この焌結促進効果は、ZrO2が焌結過皋にお
いお、ムラむト結晶の粒界に存圚するこずずな぀
お、粒界におけるムラむトの盞互拡散を促進する
こずによるものず掚枬される。たた同時に、
ZrO2の存圚が、ムラむト結晶粒界に生じる非晶
質マトリツクスの偏析を抑制する効果ずしお働
き、高枩におけるムラむト焌結䜓の靱性向䞊やク
リヌプ特性の改善に寄䞎する。しかし、䞀方、
ZrO2は、熱源や被熱凊理材料からの高枩におけ
る飛散蒞発物による汚染に䌎う耐久性の䜎䞋をき
たすなどの欠点もあり、ZrO2の含有量が倚すぎ
るこずは奜たしくない。
[0014] e) The content of ZrO 2 is 0.05 to 2.8% by weight. ZrO 2 has the effect of promoting sintering of mullite sintered bodies, and by containing a certain amount of mullite,
Sinterability is improved, and it is possible to prevent a decrease in corrosion resistance and mechanical strength that occurs when the bulk density is low. This sintering promoting effect is presumed to be due to ZrO 2 being present at the grain boundaries of mullite crystals during the sintering process and promoting mutual diffusion of mullite at the grain boundaries. At the same time,
The presence of ZrO 2 has the effect of suppressing the segregation of the amorphous matrix that occurs at the mullite grain boundaries, and contributes to improving the toughness and creep properties of the mullite sintered body at high temperatures. However, on the other hand,
ZrO 2 also has drawbacks such as reduced durability due to contamination by flying vapors from the heat source or the material to be heat treated at high temperatures, so it is not preferable to have too much ZrO 2 .

【0015】 ZrO2の含有量が0.05重量未満である
ず䞊蚘した効果が少なくなり、2.8重量を越え
るず耐食性、耐久性などの䜎䞋が倧きくなり奜た
しくない。より奜たしくは、ZrO2の含有量を0.1
〜2.5重量ずする。
[0015] If the content of ZrO 2 is less than 0.05% by weight, the above-mentioned effects will be reduced, and if it exceeds 2.8% by weight, corrosion resistance, durability, etc. will be greatly reduced, which is not preferable. More preferably, the content of ZrO2 is 0.1
~2.5% by weight.

【0016】 かさ密床は、2.96cm3以䞊ずす
る。 かさ密床が2.96cm3を䞋回るず、耐食性の䜎䞋
や、機械的匷床の䜎䞋などを生じるためか、かさ
密床は2.96cm3以䞊ずするこずが必芁であり、
奜たしくは3.00cm3以䞊、より奜たしくは3.05
cm3以䞊ずする。
[0016] f) The bulk density is 2.96 g/cm 3 or more. If the bulk density is less than 2.96 g/cm 3 , the corrosion resistance and mechanical strength will decrease, so it is necessary to set the bulk density to 2.96 g/cm 3 or more.
Preferably 3.00g/ cm3 or more, more preferably 3.05
g/ cm3 or more.

【0017】 本発明のムラむト焌結䜓は、䟋えば以
䞋のようにしお補造される。
[0017] The mullite sintered body of the present invention is produced, for example, as follows.

【0018】 出発原料ずしおは、Al2O3SiO2
1.30〜1.85であり、Na2、K2、CaO及びZrO2
を芏定量しか含有しないか、或いは焌成によ぀お
芏定量しか残留しない原料を䜿甚し、有効成分が
均䞀に分垃しおいる粉末が望たしい。たた、
ZrO2は、粉砕時にZrO2補メデむアを甚いお、そ
の磚耗粉ずしお混入したものでもよい。これら
は、あらかじめムラむト結晶が圢成されおいるも
のに限定されず、焌成工皋でムラむト結晶が圢成
されるアルミナ及びシリカの混合物たたはアルミ
ナ又はおよびシリケヌトの化合物であ぀おもよ
い。本発明で䜿甚できる䞻芁な出発原料ずしお
は、䟋えば、比衚面積〜20m2の易焌結性の
䜎゜ヌダアルミナず高玔床けい石たたは石英ずの
混合物、この混合物1300〜1450℃で焌成しおムラ
むトを合成した原料、Al及びSi化合物溶液から
共沈法や焙焌法などによ぀お調敎した原料などを
挙げるこずができる。
[0018] As a starting material, Al 2 O 3 /SiO 2 =
1.30-1.85, Na2O , K2O , CaO and ZrO2
It is desirable to use a raw material that contains only a specified amount of the active ingredient or that only a specified amount remains after firing, and to use a powder in which the active ingredients are uniformly distributed. Also,
ZrO 2 may be mixed as abrasion powder using ZrO 2 media during pulverization. These are not limited to those in which mullite crystals are formed in advance, and may be a mixture of alumina and silica or a compound of alumina and/or silicate in which mullite crystals are formed in the firing process. The main starting materials that can be used in the present invention include, for example, a mixture of easily sinterable low soda alumina with a specific surface area of 2 to 20 m 2 /g and high-purity silica or quartz, and this mixture is sintered at 1300 to 1450°C. Examples include raw materials prepared by synthesizing mullite, and raw materials prepared from Al and Si compound solutions by coprecipitation methods, roasting methods, etc.

【0019】 本発明では、たず原料を、平均粒埄
ストヌクスの法則に基づく沈降法たたは光透過
法により枬定が通垞2Ό以䞋、奜たしくは1.5ÎŒ
以䞋、さらに奜たしくは0.5〜1.0Όになるよ
うに粉砕し分散する。BET法による比衚面積
〜15m2ずするこずが奜たしい。この粉砕及び
分散工皋は、湿匏で行なうこずが効率的であり、
ゎム、暹脂、アルミナ等で内匵りされたミルを甚
いお、メノヌ、アルミナ、ゞルコニア補などの粉
砕メデむアにおボヌルミヌリングすればよい。粉
砕機ずしおは、ボヌルミル、振動ミル、アトリツ
シペンミル、遠心ミルなどが䜿甚でき、粉砕ず分
散を同時に行なうこずができる。2Ό皋床以䞋
の埮粉原料を甚いる堎合には、粉砕工皋を省略す
るこずができるが、原料の分散を充分に行ない、
成分ができるだけ均䞀に分垃した原料ずするこず
が必芁である。
[0019] In the present invention, first, the raw material has an average particle size (measured by sedimentation method or light transmission method based on Stokes' law) of usually 2 ÎŒm or less, preferably 1.5 ÎŒm.
The particles are ground and dispersed to a particle size of 0.5 to 1.0 ÎŒm or less, preferably 0.5 to 1.0 ÎŒm. Specific surface area 2 by BET method
It is preferable to set it as 15 m <2> /g. It is efficient to carry out this grinding and dispersion process in a wet manner.
Ball milling may be performed using a grinding media made of agate, alumina, zirconia, etc. using a mill lined with rubber, resin, alumina, etc. As a crusher, a ball mill, a vibration mill, an attrition mill, a centrifugal mill, etc. can be used, and crushing and dispersion can be performed simultaneously. When using fine powder raw materials of about 2 ÎŒm or less, the pulverization step can be omitted, but the raw materials must be sufficiently dispersed.
It is necessary to use a raw material whose components are distributed as uniformly as possible.

【0020】 粉砕たたは及び分散を行な぀た原料
は、次に成圢工皋で所望の圢状に成圢される。成
圢法ずしおは、通垞の窯業補品に甚いられおいる
方法が適甚でき、䟋えば次のような方法で成圢を
する。CIP静氎圧成圢法では、䞊蚘原料に
PVAなどの成圢助剀を数添加した造粒粉䜓
䞻ずしお噎霧也燥法によるを調敎しお成圢す
る。成圢圧力ずしおは、0.5〜トンcm2皋床の
圧力が奜たしい。抌出し成圢法の堎合は、メチル
セルロヌズ、デキストリン、PVAなどの粘結性
に富んだペヌスト状の成圢助剀を凊理原料に混緎
し、抌出し機にお成圢する。鋳蟌み成圢法の堎合
は、凊理原料をスラリヌ状ずしお、粘床が30〜
3000cpずなるように調敎し、石膏型などの成圢
型を甚いお成圢し、成圢埌也燥しお成圢䜓ずす
る。これらの成圢䜓は、焌成工皋での焌成収瞮に
もずづいお所望の寞法よりも倧きい割増寞法の圢
状に造られる。
[0020] The raw material that has been pulverized and/or dispersed is then molded into a desired shape in a molding step. As the molding method, methods used for ordinary ceramic products can be applied, and for example, the following method is used for molding. In CIP (hydrostatic pressing), the above raw materials
A granulated powder (mainly by spray drying method) to which a few percent of a molding aid such as PVA is added is prepared and molded. The molding pressure is preferably about 0.5 to 2 tons/cm 2 . In the case of extrusion molding, a pasty molding aid with high caking properties such as methylcellulose, dextrin, and PVA is kneaded with the raw material to be processed, and then molded using an extruder. In the case of the cast molding method, the raw material to be treated is in the form of a slurry, and the viscosity is 30~30.
It is adjusted to 3000 cp, molded using a mold such as a plaster mold, and dried after molding to form a molded body. These molded bodies are made into shapes with additional dimensions larger than desired dimensions based on firing shrinkage in the firing process.

【0021】 次いで成圢䜓は、開攟雰囲気䞭1500〜
1750℃の枩床で焌成される。焌成枩床は、原料の
皮類、成圢䜓の成分、成圢䜓の焌成掻性などによ
り巊右されるが、垞圧焌結の堎合には、奜たしく
は、1550〜1750℃、さらに奜たしくは1550〜1700
℃ずする。焌結枩床が1500℃よりも䜎いず、所望
の密床が埗られず、1750℃よりも高枩では、経枈
的でないず共に、結晶粒埄が粗倧化しすぎ、匷床
の䜎䞋や密床の䜎䞋を期し、さらに焌成工皋で倉
圢が生じやすくなり奜たしくない。
[0021] Next, the molded body is heated to 1500 ~
It is fired at a temperature of 1750℃. The firing temperature depends on the type of raw material, the components of the molded body, the firing activity of the molded body, etc., but in the case of pressureless sintering, it is preferably 1550 to 1750°C, more preferably 1550 to 1700°C.
℃. If the sintering temperature is lower than 1500°C, the desired density cannot be obtained, and if the sintering temperature is higher than 1750°C, it is not economical and the crystal grain size becomes too coarse, leading to a decrease in strength and density. This is undesirable because deformation tends to occur during the firing process.

【0022】 本発明のムラむト焌結䜓によ぀おロヌ
ラヌハヌスキルン甚ロヌラヌを埗る堎合には、そ
の寞法は、キルンの巟、被熱凊理材料の圢状、面
積あたりにかかる重量、䜿甚枩床などによ぀お決
たるが、倖埄15〜50mm、倖埄内埄1.2〜
1.5、長さ倖埄25〜80皋床であるこずが奜た
しい。内面は、必ずしも円であるこずに限定され
ないが、倖面は、±0.5mm以内の粟床をも぀た真円
であるこずが望たしい。
[0022] When obtaining a roller for a roller hearth kiln using the mullite sintered body of the present invention, its dimensions depend on the width of the kiln, the shape of the material to be heat treated, the weight per area, the operating temperature, etc. It depends, but the outer diameter is 15~50mm, outer diameter/inner diameter = 1.2~
1.5, length/outer diameter = about 25 to 80 is preferable. Although the inner surface is not necessarily limited to being circular, it is desirable that the outer surface be a perfect circle with an accuracy within ±0.5 mm.

【0023】[0023]

【発明の効果】 本発明のムラむト焌結䜓は、次
のような優れた特性を有する。 䞀般に高枩、高匷床セラミツクスずされおいる
Si3N4、SiCなどに比し、高枩開攟雰囲気で安定
である。 熱䌝導率が䜎いため熱攟散が少なく、経枈的で
あり、熱効率が高い。 熱源や被熱凊理材料からの高枩における飛散蒞
発物による汚染に高い耐久性を瀺し、長期間の䜿
甚が可胜である。  急激な枩床倉化に耐えうる耐熱衝撃性を有す
る。 5Si3N4、SiC、Al2O3などのセラミツクスに比し
匟性率が䜎く、特に高枩においお適圓に倉圢し、
応力集䞭をうけにくい柔構造䜓である。 ムラむト結晶がアスペクト比の高い針状で、網
目構造䜓を圢成し、靱性が高く、クリヌプ砎断さ
れにくい。
[Effects of the Invention] The mullite sintered body of the present invention has the following excellent properties. 1 Generally considered to be high-temperature, high-strength ceramics.
Compared to Si 3 N 4 , SiC, etc., it is stable in a high temperature open atmosphere. 2 Low thermal conductivity, less heat dissipation, economical, and high thermal efficiency. 3.It exhibits high durability against contamination by flying vapors from heat sources and heat-treated materials at high temperatures, and can be used for long periods of time. 4. Has thermal shock resistance that can withstand rapid temperature changes. It has a lower elastic modulus than ceramics such as 5Si 3 N 4 , SiC, and Al 2 O 3 and deforms appropriately, especially at high temperatures.
It is a flexible structure that is less susceptible to stress concentration. 6 Mullite crystals are acicular with a high aspect ratio, forming a network structure, having high toughness and being resistant to creep rupture.

【0024】 本発明のムラむト焌結䜓は、䞊蚘した
様な優れた特性を有し、高枩においお、耐久性に
優れ、高荷重に耐えるので、耐熱性郚材、特に、
ロヌラヌハヌスキルン甚ロヌラヌ等ずしお有甚で
ある。
[0024] The mullite sintered body of the present invention has the above-mentioned excellent properties, has excellent durability, and can withstand high loads at high temperatures, so it can be used as a heat-resistant member, especially,
It is useful as a roller for roller hearth kilns, etc.

【0025】【0025】

【実斜䟋】 以䞋実斜䟋に基づき本発明を曎に詳
现に説明する。
[Examples] The present invention will be explained in more detail based on Examples below.

【0026】【0026】

【実斜䟋】 平均粒埄0.7Όで比衚面積m2
の99.95Al2O3ず平均粒埄1.5Όの99.9SiO2
ずをAl2O3SiO21.34になるようKg配合し
1400℃で焌成しおムラむトに合成した原料に、
CMCを加え、91Al2O3補のボヌルミルず
匷化ゞルコニア補粉砕甚メデむアを甚いお48時間
湿匏で粉砕し分散させ、平均粒埄0.7Όずした
埌、噎霧也燥により成圢甚粉䜓2.5Kgを埗た。
[Example 1] Average particle size 0.7 ÎŒm and specific surface area 8 m 2 /
g 99.95% Al2O3 and 99.9% SiO2 with average particle size 1.5ÎŒm
and 3 kg of Al 2 O 3 /SiO 2 = 1.34.
Raw materials synthesized into mullite by firing at 1400℃,
Add 1% CMC, wet-mill and disperse for 48 hours using a 91% Al 2 O 3 ball mill and reinforced zirconia grinding media to obtain an average particle size of 0.7 ÎŒm, and then spray dry to form a molding powder. Obtained 2.5Kg.

【0027】 この粉䜓を、CIPにより1.5トンcm2の
圧力でパむプ状に成圢し、1680℃で時間焌成し
た。
[0027] This powder was formed into a pipe shape by CIP at a pressure of 1.5 tons/cm 2 and fired at 1680°C for 3 hours.

【0028】【0028】

【実斜䟋】 実斜䟋ず同䞀原料を甚いAl2
O3SiO21.47ずなるようKg配合し、曎に沈降
炭酞カルシりムをCaO換算で0.14加えた埌、実
斜䟋ず同䞀方法により1650℃で時間焌成し
た。
[Example 2] Using the same raw materials as in Example 1, Al 2
After blending 3 kg so that O 3 /SiO 2 =1.47 and further adding 0.14% of precipitated calcium carbonate in terms of CaO, the mixture was calcined at 1650° C. for 3 hours in the same manner as in Example 1.

【0029】[0029]

【実斜䟋】 実斜䟋ず同䞀原料を甚いおAl2
O3SiO21.62ずなるようKg配合し、さらに比
衚面積10m2、平均粒埄0.4Όの99.9ZrO2埮
粉を2.5重量加えた埌、匷化ゞルコニア補のボ
ヌルミルず粉砕甚メデむアを甚いお48時間湿匏で
粉砕、分散させ平均粒埄0.55Όずした。その埌
の工皋は、実斜䟋ず同様で、1630℃で時間焌
成した。
[Example 3] Using the same raw materials as in Example 1, Al 2
After blending 3 kg so that O 3 /SiO 2 = 1.62 and adding 2.5% by weight of 99.9% ZrO 2 fine powder with a specific surface area of 10 m 2 /g and an average particle size of 0.4 Όm, a ball mill made of reinforced zirconia and a grinding medium were used. The powder was wet-pulverized and dispersed for 48 hours to give an average particle size of 0.55 Όm. The subsequent steps were the same as in Example 1, and firing was performed at 1630°C for 5 hours.

【0030】【0030】

【実斜䟋】 Al2O3SiO21.80、Al2O3ず
SiO2の合蚈量99.2重量の電融ムラむトの埮粉30
重量及び実斜䟋のAl2O3ずSiO2をAl2O3
SiO21.55ずなるよう配合したもの70重量から
なる原料に、曎に平均粒埄0.7Όの99.0ZrO2埮
粉を1.5重量加えた埌、湿匏にお暹脂補ミルで
99.5Al2O3補メデむアを甚いお、振動により、
12時間で平均粒埄1.1Όずなるよう粉砕し、分散
させた。
[Example 4] Al 2 O 3 /SiO 2 = 1.80, Al 2 O 3
Electrofused mullite fine powder 30 with a total amount of SiO2 99.2% by weight
Weight% and Al 2 O 3 and SiO 2 of Example 1
After adding 1.5% by weight of 99.0% ZrO 2 fine powder with an average particle size of 0.7 ÎŒm to the raw material consisting of 70% by weight of SiO 2 = 1.55, it was wet-processed in a resin mill.
Using 99.5% Al 2 O 3 media, by vibration,
The mixture was ground and dispersed to an average particle size of 1.1 ÎŒm in 12 hours.

【0031】 このスラリヌに界面掻性剀を埮量添加
し、粘床を250cpに調敎しお、Kgcm2の圧力を
かけお、石膏型に鋳蟌み成圢し、也燥埌1650℃で
時間焌成した。
[0031] A small amount of surfactant was added to this slurry, the viscosity was adjusted to 250 cp, and a pressure of 2 Kg/cm 2 was applied to cast it into a plaster mold, and after drying, it was baked at 1650° C. for 3 hours.

【0032】[0032]

【実斜䟋】 Al及びSi化合物の溶液から熱分
解法で合成、仮焌したAl2O3SiO21.80のAl−
Siスピネル原料粉末にY2O3を0.3ず長石〔䞻成
分Na、2・Al2O3・6SiO2〕をNa2K2
が0.1重量ずなるよう添加配合し、平均粒埄
0.6Όの99.9ZrO2埮粉を0.5重量添加した埌、
実斜䟋ず同䞀方法で平均粒埄0.6Όに粉砕し、
同様に凊理、成圢しお、1590℃で時間焌成し
た。
[Example 5] Al− with Al 2 O 3 /SiO 2 =1.80 synthesized and calcined from a solution of Al and Si compounds by thermal decomposition method
Si spinel raw material powder with 0.3% Y 2 O 3 and feldspar [main components (Na, K) 2 O・Al 2 O 3・6SiO 2 ] was added to Na 2 O + K 2
Addition and blending so that O is 0.1% by weight, and the average particle size
After adding 0.5 wt% of 0.6 ÎŒm 99.9% ZrO2 fine powder,
Grinded to an average particle size of 0.6 ÎŒm in the same manner as in Example 3,
It was treated and molded in the same manner and fired at 1590°C for 6 hours.

【0033】【0033】

【実斜䟋】 実斜䟋のムラむト40重量及び
アルミナ99.9SiO2ずをAl2O3SiO21.80にな
るよう混合した粉末60重量からなる原料に沈降
炭酞カルシりムをCaO換算で0.05重量及び氎酞
化ゞルコニりムをZrO2換算で2.0重量加え、実
斜䟋ず同様の方法により焌成枩床1720℃で時
間焌成した。
[Example 6] Precipitated calcium carbonate was added to a raw material consisting of 60% by weight of powder obtained by mixing 40% by weight of mullite and 99.9% alumina SiO 2 in Example 4 so that Al 2 O 3 /SiO 2 = 1.80 was mixed with precipitated calcium carbonate in terms of CaO. 0.05% by weight and 2.0% by weight in terms of ZrO 2 of zirconium hydroxide were added, and the mixture was fired in the same manner as in Example 4 at a firing temperature of 1720°C for 2 hours.

【0034】【0034】

【実斜䟋】 Al及びSi化合物の溶液から熱分
解法で合成、仮焌したAl2O3SiO21.47のムラ
むト粉末を甚い、これに平均粒埄0.6Όの99.9
ZrO2埮粉を1.0重量添加しお、実斜䟋ず同䞀
方法により焌成䜓を補造した。
[Example 7] A mullite powder of Al 2 O 3 /SiO 2 = 1.47 synthesized and calcined from a solution of Al and Si compounds by a thermal decomposition method was used.
A fired body was produced in the same manner as in Example 5 by adding 1.0% by weight of ZrO 2 fine powder.

【0035】【0035】

【比范䟋】 Al2O3SiO21.18、粉砕時間を
15時間ずした以倖は、実斜䟋ず同様にしお焌成
䜓を補造した。
[Comparative example 1] Al 2 O 3 /SiO 2 = 1.18, grinding time
A fired body was produced in the same manner as in Example 1, except that the heating time was 15 hours.

【0036】【0036】

【比范䟋】 実斜䟋のムラむト、99.6アル
ミナ粉末、カオリン䞻成分Al2O3・SiO2・2H2
及び長石を甚いおAl2O3SiO21.27ずなる
ように配合し、91Al2O3補のボヌルミルず粉砕
甚メデむアを甚いお、48時間湿匏で粉砕埌、脱
氎、也燥を行ない、さらに増粘剀を加えお混緎
し、坏土ずし、抌し出し成圢を行な぀た埌、1700
℃で時間焌成した。
[Comparative Example 2] Mullite of Example 4, 99.6% alumina powder, kaolin (main component Al 2 O 3・SiO 2・2H 2
O) and feldspar to give Al 2 O 3 /SiO 2 = 1.27, and wet-pulverized for 48 hours using a 91% Al 2 O 3 ball mill and crushing media, then dehydrated and dried. After adding a thickener and kneading to form a clay and extrusion molding,
It was baked at ℃ for 3 hours.

【0037】【0037】

【比范䟋】 ZrO21.5重量、MgO1.3重量
及びFe2O30.3重量を加えた以倖は、実斜䟋ず
同䞀方法で粉砕した埌、比范䟋ず同䞀方法で成
圢、焌成した。
[Comparative Example 3] ZrO 2 1.5% by weight, MgO 1.3% by weight
The powder was pulverized in the same manner as in Example 1, except that 0.3% by weight of Fe 2 O 3 was added, and then molded and fired in the same manner as in Comparative Example 2.

【0038】【0038】

【比范䟋】 Al2O3SiO21.47ずし、長石を
Na2ずK2の合蚈量が0.24重量ずなるように
配合した以倖は、実斜䟋ず同様にしお焌成䜓を
補造した。
[Comparative Example 4] Al 2 O 3 /SiO 2 = 1.47, feldspar
A fired body was produced in the same manner as in Example 1, except that the total amount of Na 2 O and K 2 O was 0.24% by weight.

【0039】【0039】

【比范䟋】 配合比を倉えおAl2O3SiO2
1.78ずし、ZrO2添加量を3.5重量ずした以倖は
比范䟋ず同䞀方法により焌成䜓を補造した。
[Comparative Example 5] Al 2 O 3 /SiO 2 = by changing the blending ratio
1.78, and a fired body was produced in the same manner as in Comparative Example 2 except that the amount of ZrO 2 added was 3.5% by weight.

【0040】【0040】

【比范䟋】 実斜䟋で甚いたムラむトを97
Al2O3補のミルず粉砕メデむアを甚いお120時間
粉砕し、その埌は実斜䟋ず同様にしお焌成䜓を
補造した。
[Comparative Example 6] 97% mullite used in Example 4
The powder was ground for 120 hours using an Al 2 O 3 mill and grinding media, and thereafter a fired body was produced in the same manner as in Example 1.

【0041】[0041]

【詊隓䟋】 䞊蚘の実斜䟋及び比范䟋により補造
したパむプ状の焌成䜓に぀いお、加速寿呜詊隓及
び耐久詊隓を行な぀た。焌成䜓の組成及びかさ密
床を衚に、詊隓結果を衚に瀺す。詊隓方法
は、以䞋に瀺す通りである。 ○加速寿呜詊隓 倖埄21mm、内埄16mm、長さ450mmのパむプを詊
料ずし、支点間距離300mmに支点を蚭け、この間
を炉内枩床1400℃又は1460℃に保持し、䞡端が炉
倖に䜍眮するよう詊料を蚭眮し、その䞭倮郚に荷
重を加えお、パむプが砎断されるたでの時間を求
めた。なお、パむプは分ごずに半回転させた。
衚には、荷重を単䜍面積圓りの応力で瀺したが
これは次の蚈算匏にもずづくものである。
[Test Example] Accelerated life tests and durability tests were conducted on the pipe-shaped fired bodies produced in the above Examples and Comparative Examples. The composition and bulk density of the fired body are shown in Table 1, and the test results are shown in Table 2. The test method is as shown below. ○ Accelerated life test: A pipe with an outer diameter of 21 mm, an inner diameter of 16 mm, and a length of 450 mm is used as a sample. Support points are set at a distance of 300 mm between the supports, and the temperature inside the furnace is maintained at 1400°C or 1460°C, with both ends located outside the furnace. A sample was set up so that the pipe would break, a load was applied to the center of the pipe, and the time required for the pipe to break was determined. Note that the pipe was rotated half a rotation every 5 minutes.
Table 2 shows the load in terms of stress per unit area, which is based on the following calculation formula.

【0042】 単䜍面積圓りの応力Kgcm2
8wlD4−d4π 荷重、スパン長、倖埄、内埄 このテスト条件は、実甚キルンでの䞀本圓りのロ
ヌラヌにかかる荷重の〜倍の荷重ず芋積ら
れ、実甚キルンでは104倍以䞊の寿呜が予枬され
る。そのため、100分以䞊の寿呜がある堎合には、
より高枩たたはより高荷重の䜿甚を可胜ずするも
のず思われる。 ○耐久詊隓 重油燃焌のセラミツクス焌成炉の操業䞭の炉内
1500℃の雰囲気䞭に倖埄21mm、内埄16mm、長
さ150mmのパむプ詊料を挿入し、ケ月保持した
埌、宀内に取り出し、その曲げ匷床を前匏に基づ
いお蚈枬しスパン100mm、テスト前の匷床ずの
匷床癟分率で瀺した。
[0042] Stress per unit area (Kgf/cm 2 )=
8wl/(D 4 − d 4 )π/D W: load, l: span length, D: outer diameter, d: inner diameter This test condition is based on the load applied to one roller in a practical kiln, which is 3 to 6 It is estimated that the load will be twice as long, and the life of a practical kiln is expected to be more than 10 4 times longer. Therefore, if the lifespan is more than 100 minutes,
It is believed that it enables use at higher temperatures or higher loads. ○Durability test: Inside of a heavy oil-burning ceramics firing furnace during operation
A pipe sample with an outer diameter of 21 mm, an inner diameter of 16 mm, and a length of 150 mm was inserted into an atmosphere at 1500°C, held for one month, then taken out indoors, and its bending strength was measured based on the previous formula (span 100 mm) and tested. The intensity is expressed as a percentage of the previous intensity.

【0043】【0043】

【衚】 ■■■ 亀の甲 0027 ■■■[Table 1] ■■■ Turtle shell [0027] ■■■

【0044】【0044】

【衚】 ■■■ 亀の甲 0028 ■■■ 衚から本発明のムラむト焌結䜓を甚いたロヌラ
ヌハヌスキルン甚ロヌラヌは、高枩での高荷重の
䜿甚に耐え、長期間䜿甚埌においおも高匷床を有
するこずが明らかである。
[Table 2] ■■■ Turtle shell [0028] ■■■ From Table 2, rollers for roller hearth kilns using the mullite sintered body of the present invention can withstand use at high temperatures and high loads, and even after long-term use. It is clear that it has high strength.

Claims (1)

【特蚱請求の範囲】[Claims] 【請求項】  Al2O3及びSiO2の合蚈量97.0
重量以䞊、 CaO 0.2重量以䞋、 Na2及びK2の合蚈量0.2重量以䞋、䞊
びに ZrO2 0.05〜2.8重量 であり、Al2O3SiO2モル比1.30〜1.85、か
さ密床2.96cm3以䞊であるムラむト結晶を䞻䜓
ずするムラむト焌結䜓。
[Claim 1] i Total amount of Al 2 O 3 and SiO 2 97.0
% by weight or more, CaO 0.2% by weight or less, total amount of Na 2 O and K 2 O 0.2% by weight or less, and ZrO 2 0.05-2.8% by weight, Al 2 O 3 /SiO 2 (molar ratio) = 1.30- 1.85, a mullite sintered body mainly composed of mullite crystals with a bulk density of 2.96 g/cm 3 or more.
JP2418874A 1990-12-27 1990-12-27 Mullite sintered compact Granted JPH04209753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418874A JPH04209753A (en) 1990-12-27 1990-12-27 Mullite sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418874A JPH04209753A (en) 1990-12-27 1990-12-27 Mullite sintered compact

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59193289A Division JPS6172989A (en) 1984-09-14 1984-09-14 Ceramic roller and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH04209753A JPH04209753A (en) 1992-07-31
JPH0585499B2 true JPH0585499B2 (en) 1993-12-07

Family

ID=18526629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418874A Granted JPH04209753A (en) 1990-12-27 1990-12-27 Mullite sintered compact

Country Status (1)

Country Link
JP (1) JPH04209753A (en)

Also Published As

Publication number Publication date
JPH04209753A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
JP3007684B2 (en) Zircon refractories with improved thermal shock resistance
JP5718239B2 (en) Mullite ceramics and method for producing the same
US4578363A (en) Silicon carbide refractories having modified silicon nitride bond
EP0001327B1 (en) Magnesium aluminate spinel bonded refractory and method of making
CN111362676A (en) High-wear-resistance quick-drying refractory castable and preparation method thereof
JP2862245B2 (en) Alumina / zirconia ceramic
US2636826A (en) Silicon carbide refractory
JPH0572341B2 (en)
JPH07109175A (en) Composite ceramic material used in industrial application under high temperature and severe thermal shock condition and production thereof
US3979214A (en) Sintered alumina body
Akkuş et al. Fabrication and characterization of aluminium titanate and mullite added Porcelain ceramics
JPH0585499B2 (en)
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
JPH022821B2 (en)
JPH1087365A (en) Thermal shock resistant ceramics and its production
JPH0232228B2 (en)
Mukhopadhyay et al. Effect of synthetic mullite aggregate on clay-based sol-bonded castable
RU2021229C1 (en) Charge for making of ceramic articles with complex configuration
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPH0233661B2 (en)
JPH04104944A (en) Al2o3-sic-zro2 composite sinter
JPH04104945A (en) Mullite-sic composite sinter
CN112876267A (en) Ceramic roller for toughened glass kiln and manufacturing process thereof
JPH0443871B2 (en)
JPH0365554A (en) Mullite-based sintered material and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees