JPH0443871B2 - - Google Patents

Info

Publication number
JPH0443871B2
JPH0443871B2 JP30328889A JP30328889A JPH0443871B2 JP H0443871 B2 JPH0443871 B2 JP H0443871B2 JP 30328889 A JP30328889 A JP 30328889A JP 30328889 A JP30328889 A JP 30328889A JP H0443871 B2 JPH0443871 B2 JP H0443871B2
Authority
JP
Japan
Prior art keywords
insulating
heat
refractory
weight
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30328889A
Other languages
Japanese (ja)
Other versions
JPH03164460A (en
Inventor
Takeshi Nishihara
Kazumi Togawa
Mitsuteru Takemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP30328889A priority Critical patent/JPH03164460A/en
Publication of JPH03164460A publication Critical patent/JPH03164460A/en
Publication of JPH0443871B2 publication Critical patent/JPH0443871B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はセメント製造ロータリーキルンの仮焼
帯に使用するための焼成断熱耐火物に関する。 [従来の技術] セメント製造ロータリーキルン仮焼帯用れんが
としては、従来SK33〜36の粘土、高アルミナ質
れんがが使用されてきたが、省エネルギーとシエ
ルの腐食対策等を目的として各種断熱れんがの使
用が急速に増加してきた。 しかしながら、これらの断熱れんがは不焼成れ
んがを直接内張りしているため、最近のリフター
構造及び固体燃料の採用などの使用条件の苛酷化
に伴い、強度不足による摩耗あるいは使用中の焼
結、収縮による構造体としての弛み等の問題が提
起され、使用条件の制約と寿命の低下を招いてい
る。 従来、耐火断熱れんがの製造方法としては、
可燃性材料の焼成時の焼失により、気孔を構成す
る焼失法、起泡剤添加による泡末泥漿法、多
量の気孔をもつ材料を添加して多気孔化する多泡
性材料法などを一般的に使用されている。 このなかで、セメント製造ロータリーキルンの
内張り用断熱れんがの製造方法としては、上記
またはを単独で使用するか、組み合わせて使用
するのが一般的であり、従来、直接内張り用とし
ては、炭素を含有した生ボタを主原料とし、リン
酸塩を結合材とする消失法で製造した不焼成れん
がが最も多く使用されてきた。 ここで、セメント製造ロータリーキルンの内張
り用断熱れんがには、下記のような特性が特に要
求される: (a) 低熱伝導性で断熱性に富むこと; (b) より高強度で耐摩耗性を有すること; (c) 高温域での収縮少なく、容積安定性に優れる
こと; (d) アルカリ等の外来侵入成分に対する抵抗性に
優れること; (e) 発生熱応力が低く、熱衝撃抵抗性に優れるこ
と、等が挙げられる。 [発明が解決しようとする課題] しかし、最近のリフター構造の採用、固体燃料
再転換による高温化と、アルカリ反応の促進など
の操業条件の苛酷化に伴い、上述のような不焼成
れんがでは使用時にカーボンの脱炭に伴う収縮に
よる抜出し、強度不足による摩耗損傷、アルカリ
侵入による構造的スポーリングなどによる損傷が
大きいという欠点があつた。 従つて、本発明の目的はセメント製造ロータリ
ーキルンの内張りれんがに望まれる上述の特性を
所持する断熱耐火物を提供することにある。 [課題を解決するための手段] 本発明者らは上述の問題点を解決するために鋭
意研究を行つた結果、低熱伝導性と高強度とは相
反する特性であるなど既存の製造技術の範囲では
全ての特性を具備することは困難であり、従つ
て、不焼成断熱れんがでは限界であるとの結論に
達し、セメント製造ロータリーキルンの内張りれ
んがとして焼成断熱れんがを適用することを見出
し、本発明を完成するに至つた。 即ち、本発明は必須成分として特殊断熱シヤモ
ツト粒20〜70重量%、コーデイライト粗角2〜20
重量%及びセリサイト1〜10重量%を含有してな
るセメント製造ロータリーキルン用焼成断熱耐火
物に係る。 [作用] 本発明のセメント製造ロータリーキルン用焼成
断熱耐火物は、特殊断熱シヤモツト粒、コーデイ
ライト粗角、セリサイトを必須成分として含有し
てなる焼成耐火物であることに特徴を有する。 本発明の焼成断熱耐火物に使用できる特殊断熱
シヤモツト粒の配合量は20〜70重量%である。こ
こで、本明細書に記載する「特殊断熱シヤモツト
粒」とは、通常の断熱シヤモツトより高強度で且
つより多孔質のもで、主鉱物組成がムライト及び
クリストバライトからなるものをいう、この特殊
断熱シヤモツト粒は通常有機物と耐火材を混合
し、焼成することにより前記有機物を焼失させる
ことにより多孔質化することにより得られるもの
である。 この特殊断熱シヤモツト粒は従来の気孔径3〜
1mmをもつ中空球に近い形状をもつ断熱シヤモツ
ト粒とは異なり、気孔径が小さく(1000〜10μm
程度、好適には500〜100μm)、更に、気孔が分散
化しているため、強度が多く、気孔率も大きい。
更に、不純物が少なく、任意の粒度に粉砕できる
ため、本発明の焼成断熱耐火物に対して有効な断
熱粒である。 前記特殊断熱シヤモツト粒の配合量が20重量%
未満であると、本発明の目的である断熱性の付与
ができず、熱伝導率が上昇するために望ましくな
く、また、70重量%を超えると、気孔率が上昇し
て断熱性は増加するものの、強度が低くなり、耐
摩耗性に劣り、断熱耐火物の損傷が大きくなるた
めに好ましくない。また、本発明の焼成断熱耐火
物において、熱伝導率と強度の両特性を好適な状
態に維持するためには、特殊断熱シヤモツト粒の
配合量を40〜50重量%とすることが好ましい。 また、特殊断熱シヤモツト粒の使用可能な粒度
範囲は0.1〜5.7mm、好ましくは1〜4mmの範囲内
のものである。 次に、本発明の焼成断熱耐火物に使用できるコ
ーデイライト粗角の配合量は3〜20重量%であ
る。この配合量が20重量%を超えると、耐熱性が
急激に劣り、使用中の収縮を招き、舌出し、抜け
落ち等の問題を招くために望ましくなく、また、
3重量%未満であると、コーデイライト粗角の添
加効果が少ないために好ましくない。 コーデイライトは2MgO・2Al2O3・5SiO2の理
論組成をもち、融点は1460℃と比較的低いもの
の、極めて低膨張率を有するところに特徴があ
る。従来より、この特性を使用したコーデイライ
トれんが使用されているが、これらのれんがはシ
ヤモツトれんがにMgO微粉を混入し、焼成時に
上記組成とすることにより造られたものであり、
焼成時のコーデイライト反応化に伴う異常膨張が
認められ、亀裂等の要因にもなつていた。 本発明で使用する「コーデイライト粗角」とは
耐火材をコーデイライト組成に混合し、ロータリ
ーキルン等で焼成し、完全にコーデイライト化し
た粗角であり、上記のような問題はない。 本発明において、コーデイライト粗角を使用す
る目的は、低膨張率で、しかも低弾性率であるた
め、耐スポーリング性を焼成断熱耐火物に付与す
るためと、上記の通り低融点であるため、稼働表
面に粘稠なガラス層を形成し、液相を造るため、
セメント製造中に多く発生するアルカリ等の外来
成分の侵入を抑制することができる。 このコーデイライト粗角は、配合量を少なくし
てその効果を大きくするために、3.36〜1.0mmの
粒径をもつ粗粒を使用することが好ましい。微粉
を使用すると、焼結性が進み、収縮が大きくなる
ために好ましくない。 また、本発明の焼成断熱耐火物の第3の必須成
分はセリサイトである。セリサイト系原料には長
石系、雲母系等の鉱物があるが、いずれも低融点
であり、焼結性に富み、耐火物の強度上昇に対し
て有効である。更に、セリサイトは耐火物使用中
の耐摩耗性の向上とアルカリ等の外来成分の侵入
抑制等のメリツトが認められている。 セリサイトの配合はコーデイライト粗角と同様
に大量使用は融点の低下すなわち使用温度域の限
定等につながるため、極力少ない方が好ましく、
この配合量は1〜10重量%である。この配合量が
1重量%未満であると、添加効果がないために望
ましくなく、また、10重量%を超えると、焼成断
熱耐火物製造中に変形等を生ずる恐れがあるため
に好ましくない。配合量としては3重量%程度が
最も有効である。 また、本発明の焼成断熱耐火物には、特殊断熱
シヤモツト粒、コーデイライト粗角並びにセリサ
イトの他に他の耐火原料を配合することができ
る。 この耐火原料において、骨材としては0.3〜5
mm程度のものを使用することができる。この骨材
としては収縮が少なく、硬質で、緻密な例えばシ
ヤモツトまたは高アルミナ質原料等を使用するこ
とができ、更に具体的には例えばアンダリユサイ
トまたは硬質シヤモツト等を挙げることができ
る。この骨材の配合量は5〜70重量%の範囲内で
あり、30重量%程度が特に好ましい。 また、微粉部を構成する成分としては、例えば
水ヒ粘土、ロー石等を挙げることができる。この
微粉部は焼成断熱耐火物を成形する際の粘性を高
め、可塑性を付与するために使用することができ
る。この粘土成分の配合量は5〜30重量%の範囲
内であり、10〜15重量%程度が特に好ましい。 更に、微粉部には、仮焼アルミナ(純度99%の
Al2O3)、焼結アルミナ等を5〜10重量%使用す
ることができる。この目的は粘土中のSiO2と上
記の活性Al2O3が反応し、ムライト化する際にマ
イルドな膨張があり、耐火物全体としての収縮を
抑制する効果を付与するためである。また、微粉
は約5μmと極めて微小な粒度をもつものであるた
めに、成形する際の可塑性を付与する点及び耐火
性の上昇等にも有効である。 上述の原料配合をもつ原料配合物に、粘性助剤
を添加し、混練し、所定の形状に成形し、焼成す
ることにより本発明のセメント製造ロータリーキ
ルン用焼成断熱耐火物を得ることができる。 前記粘性助剤としては例えばパルプ廃液、デン
プン系等の有機バインダーをそれぞれ1〜3重量
%程度の量で使用することができる。 焼成工程は温度1000〜1450℃で行うことができ
る。また、焼成雰囲気は酸化雰囲気である。 このようにして得られた焼成断熱耐火物は例え
ばセメント製造ロータリーキルンの仮焼帯等に好
適に使用することができる。 [実施例] 以下に実施例を挙げて本発明のセメント製造ロ
ータリーキルン用焼成断熱耐火物を更に説明す
る。 実施例 以下の第1表に記載する配合割合の原料を使用
することにより本発明の焼成断熱耐火物(本発明
品1及び2)及び比較品を作製した。 本発明品 1 本発明品1は第1表に記載する成分を混練し、
得られた混練物を630トンオイルプレスにて0.7ト
ン/cm2の成形圧により300×200×100mmの形状に
成形し、得られた成形体を120℃で48時間乾燥後、
酸化雰囲気中1350℃の温度で焼成することにより
得た。得られた断熱耐火物の特性を第1表に併記
する。 本発明品 2 本発明品2は第1表に記載する成分を混練し、
得られた混練物を630トンオイルプレスにて0.8ト
ン/cm2の成形圧により300×200×100mmの形状に
成形し、得られた成形体を120℃で48時間乾燥後、
酸化雰囲気中1400℃の温度で焼成することになり
得た。得られた断熱耐火物の特性を第1表に併記
する。 比較品 比較品は第1表に記載する成分を混練し、得ら
れた混練物を630トンオイルプレスにて0.8トン/
cm2の成形圧により300×200×100mmの形状に成形
し、得られた成形体を120℃で48時間乾燥するこ
とにより得た。得られた断熱耐火物の特性を第1
表に併記する。
[Industrial Field of Application] The present invention relates to a fired insulating refractory for use in the calcining zone of a cement production rotary kiln. [Conventional technology] Clay and high alumina bricks of SK33 to 36 have traditionally been used as bricks for the calcining zone in cement manufacturing rotary kilns, but various types of insulating bricks have been used for the purpose of saving energy and preventing corrosion of shells. It has been increasing rapidly. However, since these insulating bricks are directly lined with unfired bricks, with the recent use of lifter structures and the adoption of solid fuel, the usage conditions have become more severe, resulting in wear due to lack of strength or due to sintering and shrinkage during use. Problems such as loosening of the structure have been raised, leading to restrictions on usage conditions and a shortened lifespan. Traditionally, the manufacturing method for fireproof insulation bricks is as follows:
Commonly used methods include the burn-out method in which pores are formed by burning out combustible materials during firing, the foam slurry method by adding a foaming agent, and the porous material method in which a material with a large number of pores is added to make the material porous. used in Among these, the manufacturing method of insulating bricks for lining cement manufacturing rotary kilns is generally to use the above or the above alone or in combination. Unfired bricks manufactured by the vanishing method using raw botton as the main raw material and phosphate as a binder have been most commonly used. Here, insulating bricks for lining cement production rotary kilns are particularly required to have the following properties: (a) low thermal conductivity and good insulation; (b) higher strength and wear resistance (c) Less shrinkage at high temperatures and excellent volume stability; (d) Excellent resistance to foreign invaders such as alkalis; (e) Low generated thermal stress and excellent thermal shock resistance Examples include: [Problem to be solved by the invention] However, with the recent adoption of lifter structures, higher temperatures due to solid fuel reconversion, and harsher operating conditions such as promotion of alkaline reactions, it has become difficult to use unfired bricks as described above. At times, there were drawbacks such as large damage due to shrinkage due to carbon decarburization, wear damage due to lack of strength, and structural spalling due to alkali intrusion. It is therefore an object of the present invention to provide an insulating refractory material possessing the above-mentioned properties desired for lining bricks in cement production rotary kilns. [Means for Solving the Problems] The present inventors have conducted extensive research to solve the above-mentioned problems, and have found that low thermal conductivity and high strength are contradictory characteristics, etc. Therefore, we came to the conclusion that unfired insulating bricks are at their limit, and discovered that fired insulating bricks could be used as lining bricks in rotary kilns for cement production, and developed the present invention. It was completed. That is, the present invention contains 20 to 70% by weight of special heat-insulating Shamotsu grains and 2 to 20% by weight of cordierite rough angle as essential components.
% by weight and 1 to 10% by weight of sericite. [Function] The fired heat-insulating refractory for cement production rotary kilns of the present invention is characterized in that it is a fired refractory containing special heat-insulating chamotz grains, cordierite rough angle, and sericite as essential components. The blending amount of the special heat-insulating Shamotzu grains that can be used in the fired heat-insulating refractory of the present invention is 20 to 70% by weight. Here, the "special heat insulating siamots grain" described in this specification refers to a special heat insulating shamots grain that has higher strength and is more porous than ordinary heat insulating siamots, and whose main mineral composition is mullite and cristobalite. Shamotsu grains are usually obtained by mixing an organic substance and a refractory material and baking the mixture to burn off the organic substance and make it porous. This special heat-insulating Shamottsu grain has a pore size of 3~
Unlike insulating Shamotsu grains, which have a shape similar to a hollow sphere with a diameter of 1 mm, the pore size is small (1000 to 10 μm).
Furthermore, since the pores are dispersed, the strength is high and the porosity is high.
Furthermore, since it contains few impurities and can be pulverized to any particle size, it is an effective heat insulating granule for the fired heat insulating refractory of the present invention. The blending amount of the special insulating shamottu grains is 20% by weight.
If it is less than 70% by weight, it is undesirable because the heat insulating properties that are the object of the present invention cannot be imparted and the thermal conductivity increases, and if it exceeds 70% by weight, the porosity increases and the heat insulating properties increase. However, it is not preferable because the strength becomes low, the wear resistance is poor, and the damage to the heat insulating refractory increases. In addition, in order to maintain both thermal conductivity and strength properties in the fired heat-insulating refractory of the present invention in a suitable state, it is preferable that the blending amount of the special heat-insulating Shamotzu grains is 40 to 50% by weight. Further, the usable particle size range of the special heat-insulating Shamottsu grains is 0.1 to 5.7 mm, preferably 1 to 4 mm. Next, the amount of cordierite coarse angle that can be used in the fired heat-insulating refractory of the present invention is 3 to 20% by weight. If the blending amount exceeds 20% by weight, it is undesirable because the heat resistance will deteriorate sharply, causing shrinkage during use and causing problems such as tongue sticking out and falling off.
If it is less than 3% by weight, the effect of adding cordierite rough angle will be small, which is not preferable. Cordierite has a theoretical composition of 2MgO・2Al 2 O 3・5SiO 2 and has a relatively low melting point of 1460°C, but is characterized by an extremely low expansion coefficient. Traditionally, cordierite bricks with this property have been used, but these bricks are made by mixing MgO fine powder into Shamototsu bricks and creating the above composition during firing.
Abnormal expansion was observed due to cordierite reaction during firing, which was also a cause of cracks. The "cordierite rough angle" used in the present invention is a rough angle that is completely converted into cordierite by mixing a refractory material with a cordierite composition and firing it in a rotary kiln, etc., and does not have the above-mentioned problems. In the present invention, the purpose of using cordierite rough angle is to impart spalling resistance to the fired insulating refractory due to its low expansion coefficient and low elastic modulus, and because it has a low melting point as mentioned above. , to form a viscous glass layer on the working surface and create a liquid phase.
It is possible to suppress the intrusion of foreign components such as alkali, which are often generated during cement production. It is preferable to use coarse particles of cordierite having a particle size of 3.36 to 1.0 mm in order to increase the effect by reducing the amount of cordierite. If fine powder is used, sinterability will progress and shrinkage will increase, which is not preferable. Further, the third essential component of the fired heat-insulating refractory of the present invention is sericite. Sericite-based raw materials include minerals such as feldspar-based and mica-based minerals, all of which have a low melting point, have good sinterability, and are effective in increasing the strength of refractories. Furthermore, sericite has been recognized to have merits such as improving wear resistance during use as a refractory and suppressing the intrusion of foreign components such as alkalis. As with cordierite rough angle, the use of sericite in large amounts will lower the melting point and limit the usable temperature range, so it is preferable to mix as little sericite as possible.
This blending amount is 1 to 10% by weight. If the amount is less than 1% by weight, it is undesirable because there is no effect of the addition, and if it exceeds 10% by weight, it is undesirable because deformation etc. may occur during the production of the fired heat-insulating refractory. The most effective amount is about 3% by weight. In addition, other refractory raw materials can be added to the fired heat-insulating refractory of the present invention in addition to the special heat-insulating chamotz grains, cordierite coarse square, and sericite. In this refractory raw material, the aggregate is 0.3 to 5
A diameter of about mm can be used. As this aggregate, a hard and dense material with little shrinkage, such as syamoto or a high alumina raw material, can be used, and more specifically, for example, andalyusite or hard syamo can be used. The blending amount of this aggregate is within the range of 5 to 70% by weight, and about 30% by weight is particularly preferable. In addition, examples of the components constituting the fine powder portion include sulfur clay, loite, and the like. This fine powder portion can be used to increase the viscosity and impart plasticity when molding the fired heat-insulating refractory. The blending amount of this clay component is within the range of 5 to 30% by weight, and particularly preferably about 10 to 15% by weight. Furthermore, the fine powder part contains calcined alumina (99% purity).
Al2O3 ), sintered alumina, etc. can be used in an amount of 5 to 10% by weight. The purpose of this is to cause mild expansion when the SiO 2 in the clay and the above-mentioned active Al 2 O 3 react and turn into mullite, giving the refractory the effect of suppressing shrinkage as a whole. Furthermore, since the fine powder has an extremely small particle size of about 5 μm, it is effective in imparting plasticity during molding and in increasing fire resistance. By adding a viscosity aid to the raw material mixture having the above-mentioned raw material composition, kneading it, molding it into a predetermined shape, and firing it, the fired insulating refractory for cement production rotary kiln of the present invention can be obtained. As the viscosity aid, for example, a pulp waste liquid or a starch-based organic binder can be used in an amount of about 1 to 3% by weight, respectively. The firing process can be carried out at a temperature of 1000-1450°C. Further, the firing atmosphere is an oxidizing atmosphere. The fired heat-insulating refractory thus obtained can be suitably used, for example, as a calcining zone in a cement production rotary kiln. [Example] The fired heat insulating refractory for use in a cement manufacturing rotary kiln of the present invention will be further explained by giving examples below. Examples Sintered heat insulating refractories of the present invention (present invention products 1 and 2) and comparative products were produced by using raw materials in the mixing ratios shown in Table 1 below. Inventive product 1 Inventive product 1 is obtained by kneading the ingredients listed in Table 1,
The obtained kneaded product was molded into a shape of 300 x 200 x 100 mm using a 630 ton oil press at a molding pressure of 0.7 ton/cm 2 , and the resulting molded product was dried at 120°C for 48 hours.
It was obtained by firing at a temperature of 1350°C in an oxidizing atmosphere. The properties of the obtained heat-insulating refractories are also listed in Table 1. Inventive product 2 Inventive product 2 is obtained by kneading the ingredients listed in Table 1,
The obtained kneaded product was molded into a shape of 300 x 200 x 100 mm using a 630 ton oil press at a molding pressure of 0.8 ton/ cm2 , and the resulting molded product was dried at 120°C for 48 hours.
It could be fired at a temperature of 1400°C in an oxidizing atmosphere. The properties of the obtained heat insulating refractory are also listed in Table 1. Comparative product The comparative product was prepared by kneading the ingredients listed in Table 1, and then using a 630-ton oil press to knead the resulting kneaded product at 0.8 ton/min.
It was molded into a shape of 300 x 200 x 100 mm using a molding pressure of cm 2 , and the resulting molded body was dried at 120° C. for 48 hours. The properties of the obtained heat-insulating refractory are
Also listed in the table.

【表】 なお、本発明品に使用する特殊断熱シヤモツト
粒は超微粉(数ミクロン)に粒度調整した耐火粘
土に水を加えてスラリー状とし、有機物としてウ
ツドパルプを混合し、混練し、脱水後、ロータリ
ーキルンで1200〜1400℃で焼成することにより得
られたものである。 また、上記の本発明品1及び2並びに比較品に
ついて熱間線膨張率を測定したところ、第1図に
記載する結果が得られた。 次に、本発明品2をA社セメント製造ロータリ
ーキルンの仮焼帯の断熱れんがとして使用したと
ころ、約9カ月の使用期間後も稼働面は平滑な摩
耗を呈し、損傷厚も約20mmで損傷スピードは約
0.08mm/日であり、従来使用されていた不焼成断
熱れんがの損傷スピード約0.21mm/日に対して1/
2〜1/3と少ない。更に、表面亀裂、内部組織に亀
裂等がなく、極めて良好な結果が得られた。 [発明の効果] 本発明のセメント製造ロータリーキルン用焼成
断熱耐火物は下記の利点をもつ: 焼成断熱耐火物であるため、昇温に伴う異常
膨張等がなく、リニアーで且つ再加熱収縮がな
いため高温度域での使用が可能であり、使用中
の抜落等の問題がない; 低弾性率化、低膨張化により、発生熱応力を
大幅に低下させているため熱衝撃抵抗性に優れ
る; 低熱発生応力と同時に機械的応力に耐え得る
保有強度を維持しているため、繰り返し、疲労
破壊などの機械的スポーリングに優れる; アルカリ塩などの外来侵入防止対策として、
稼働表面に特殊緻密層を生成させるための変質
層が少なく、極めてアルカリ抵抗性に優れる; 焼成耐火物としては極めて低い熱伝導率を示
す; セメント製造ロータリーキルン仮焼帯用に使
用した場合、従来使用の不焼成断熱れんがより
2〜3倍の寿命が見込まれる。また、放散熱量
についても、損傷スピードが少ないことから、
不焼成断熱れんがより有利であり、1炉代とし
ての放散熱量を約1/2程度とすることができる。
[Table] The special heat-insulating Shamotsu grains used in the product of the present invention are made by adding water to the fireclay whose particle size has been adjusted to ultra-fine powder (several microns) to form a slurry, mixing wood pulp as an organic substance, kneading, dehydrating, It was obtained by firing in a rotary kiln at 1200-1400°C. Further, when the hot linear expansion coefficients of the above-mentioned products 1 and 2 of the present invention and the comparative product were measured, the results shown in FIG. 1 were obtained. Next, when Inventive Product 2 was used as an insulating brick for the calcining zone of a cement production rotary kiln of Company A, the operating surface showed smooth wear even after about 9 months of use, and the damage thickness was about 20 mm, and the damage speed was is about
The damage rate is 0.08 mm/day, which is 1/1 compared to the damage rate of conventionally used unfired insulation bricks, which is approximately 0.21 mm/day.
It's as small as 2 to 1/3. Furthermore, very good results were obtained with no surface cracks or cracks in the internal structure. [Effects of the Invention] The fired insulating refractory for use in cement production rotary kilns of the present invention has the following advantages: Since it is a fired insulating refractory, there is no abnormal expansion due to temperature rise, and it is linear and does not shrink by reheating. It can be used in high temperature ranges, and there are no problems such as falling off during use; low elastic modulus and low expansion greatly reduce generated thermal stress, resulting in excellent thermal shock resistance; Because it maintains a strength that can withstand mechanical stress as well as low heat-generated stress, it is excellent against mechanical spalling such as repeated and fatigue fractures; as a measure to prevent foreign substances such as alkali salts from entering
It has very little altered layer to form a special dense layer on the operating surface, and has extremely good alkali resistance; shows extremely low thermal conductivity for a fired refractory; when used in the calcining zone of a cement manufacturing rotary kiln, it It is expected to last 2 to 3 times longer than unfired insulating bricks. In addition, regarding the amount of heat dissipated, since the damage speed is low,
It is more advantageous than unfired insulating bricks, and the amount of heat dissipated per furnace can be reduced to about 1/2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で得られた本発明品1及び2並
びに比較品の熱間線膨張率の測定結果を示すグラ
フである。
FIG. 1 is a graph showing the measurement results of the hot linear expansion coefficients of products 1 and 2 of the present invention obtained in Examples and comparative products.

Claims (1)

【特許請求の範囲】[Claims] 1 必須成分として特殊断熱シヤモツト粒20〜70
重量%、コーデイライト粗角2〜20重量%及びセ
リサイト1〜10重量%を含有してなるセメント製
造ロータリーキルン用焼成断熱耐火物。
1.Special insulating shamototsu grains 20-70 as an essential ingredient
A fired heat-insulating refractory for use in a cement production rotary kiln, which contains 2 to 20 weight percent of cordierite rough corner and 1 to 10 weight percent of sericite.
JP30328889A 1989-11-24 1989-11-24 Calcined insulating refractories for rotary kiln for cement production Granted JPH03164460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30328889A JPH03164460A (en) 1989-11-24 1989-11-24 Calcined insulating refractories for rotary kiln for cement production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30328889A JPH03164460A (en) 1989-11-24 1989-11-24 Calcined insulating refractories for rotary kiln for cement production

Publications (2)

Publication Number Publication Date
JPH03164460A JPH03164460A (en) 1991-07-16
JPH0443871B2 true JPH0443871B2 (en) 1992-07-17

Family

ID=17919150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30328889A Granted JPH03164460A (en) 1989-11-24 1989-11-24 Calcined insulating refractories for rotary kiln for cement production

Country Status (1)

Country Link
JP (1) JPH03164460A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731381B2 (en) 2006-03-31 2011-07-20 ニチアス株式会社 Disc roll and base material for disc roll
US20170050885A1 (en) * 2014-05-15 2017-02-23 Porvair Plc Boron-Free Aluminum Castshop Ceramic Foam Filter

Also Published As

Publication number Publication date
JPH03164460A (en) 1991-07-16

Similar Documents

Publication Publication Date Title
CN101367666B (en) Large-scale, specially shaped mullite-corundum system sintered refractory material product and preparing technique thereof
CN106145976B (en) Andalusite-mullite-silicon carbide brick for cement kiln and preparation method thereof
CN100393656C (en) High-intensity corrosion-proof chimney lining brick made by mullite and method for manufacturing the same
US20090227441A1 (en) Refractory shaped body with increased alkali resistance
CN109320224A (en) A kind of material and preparation method thereof of high-purity cordierite combination mullite
KR101321944B1 (en) Cement-free High Strength Unshaped Refractories
JPH0572341B2 (en)
EP0944559A1 (en) An insulating refractory type material and a method of making such a material
US20060014622A1 (en) Refractory shaped body with increased alkali resistance
JPH0443871B2 (en)
KR20110104713A (en) Unshaped refractory composition added with alumina sol binder
KR101095027B1 (en) Alumina bonded unshaped refractory and manufacturing method thereof
US3269850A (en) Alumina refractories
US3342615A (en) Manufacture of kiln furniture
CN1252397A (en) Preparation of sintered silicon carbide material
US3282579A (en) Refractory lining
JP4960541B2 (en) Magnesia-alumina-titania brick
JP2572543B2 (en) Tool material for cordierite firing
JP4785824B2 (en) Shaped refractory brick with spalling resistance and erosion resistance, its manufacturing method and fire wall
JPS6120511B2 (en)
KR960004393B1 (en) Castable composition
US3384500A (en) Refractory
US1544433A (en) Semirefractory heat-insulating composition, products and processes of making the same
JPS624356B2 (en)
RU2539519C1 (en) Mix for production of refractory with forsterite bond