JPH05853A - Production of ordinary pressure sintered body of boron nitride - Google Patents

Production of ordinary pressure sintered body of boron nitride

Info

Publication number
JPH05853A
JPH05853A JP3173133A JP17313391A JPH05853A JP H05853 A JPH05853 A JP H05853A JP 3173133 A JP3173133 A JP 3173133A JP 17313391 A JP17313391 A JP 17313391A JP H05853 A JPH05853 A JP H05853A
Authority
JP
Japan
Prior art keywords
sintered body
boron
powder
boron nitride
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3173133A
Other languages
Japanese (ja)
Other versions
JP2511337B2 (en
Inventor
Fumio Hatakeyama
文夫 畠山
Kagetaka Ichikawa
景隆 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3173133A priority Critical patent/JP2511337B2/en
Publication of JPH05853A publication Critical patent/JPH05853A/en
Application granted granted Critical
Publication of JP2511337B2 publication Critical patent/JP2511337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To enhance purity by heating a powdery mixture of B4C with B2O3 or a B-contg. compd. in a specified weight ratio in an N-contg. nonoxidizing atmosphere, molding the resulting BN-contg. unreacted B4C and sintering the molded body in an N-contg. nonoxidizing atmosphere. CONSTITUTION:B,0, powder or powder of a B-contg. compd. forming B2O3 by a reaction is added to B4C powder by 30-46wt.% (expressed in terms of B2O3) and they are mixed in a solvent such as acetone, dried, pelletized and fired by heating at 1,300-1,800 deg.C in an Ncontg. nonoxidizing atmosphere of N2, NH3, etc. The resulting BN contg. <=10wt.% unreacted B4C is pulverized to form fine particles having 10-50m<2>/g specific surface area, the particles are molded and this molded body is sintered at 1,500-2,100 deg.C in an N-contg. nonoxidizing atmosphere of N2, NH3, etc., to obtain a high density and high purity ordinary pressure sintered body of BN.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】六方晶窒化ほう素は、耐熱衝撃
性、耐蝕性、潤滑性、電気絶縁性、高熱伝導性に優れて
おり、その成形体は各種の耐熱性、潤滑性、熱伝導性を
必要とする分野に広く利用されている。本発明は黒芯の
ない高密度であって美麗な常圧焼結成形窒化ほう素(B
N)体の製造方法に関するものである。
[Industrial application] Hexagonal boron nitride has excellent thermal shock resistance, corrosion resistance, lubricity, electrical insulation, and high thermal conductivity, and its molded product has various heat resistance, lubricity, and thermal conductivity. Widely used in fields that require sex. The present invention is a high-density and beautiful atmospheric pressure sintered boron nitride (B
N) relates to a method for producing a body.

【0002】[0002]

【従来の技術】六方晶窒化ほう素は、熱的、化学的、電
気的特性に優れ、かつ潤滑性を有し、機械加工が容易に
できるなど多くの優れた性能を有した材料である。しか
し、難焼結性であるため、高密度焼結体を得るにはこれ
まで加圧焼結法によらなければならず、コスト高なもの
となっていた。こうしたコストの問題が応用面における
制約の一つとなっていたが、六方晶窒化ほう素焼結体の
優れた特性を利用の要望も広く、安価な常圧焼結法の研
究が行われるようになってきている。
2. Description of the Related Art Hexagonal boron nitride is a material having many excellent properties such as excellent thermal, chemical and electrical properties, lubricity, and ease of machining. However, since it is difficult to sinter, the pressure sintering method has hitherto been required to obtain a high-density sintered body, resulting in a high cost. Although such a problem of cost was one of the constraints in application, there is a wide demand for utilizing the excellent characteristics of hexagonal boron nitride sintered body, and inexpensive atmospheric pressure sintering method has been studied. Is coming.

【0003】現在までに特許・文献等によって提案され
ている六方晶窒化ほう素の常圧焼結法は数多くある。主
なものを挙げると、 微粉砕した高純度のBN粉末も
しくは低純度の非晶質BNを2トン/cm2で金型成形
またはラバープレス成形した後、成形体をBN詰め粉と
共に坩堝に収め、アルゴン中1400〜2000℃で常
圧焼結する方法(特開平2−9763、J.Am.Ce
ram.Soc.,72(1989)1482) 純
度の低い乱層構造BNに非晶質ほう素を加え、窒素(N
2 )中1500〜1800℃で反応焼結させる方法(資
源素材学会誌、105(1989)201) 純度の
低い乱層構造BNに非晶質BおよびXO・B23 (X
は、アルカリ土類金属)で示される化合物を加え、N2
中で反応焼結させる方法(特開昭62−123070)
BNに対してSiO2 ・B23 を30wt%加え
て常圧焼結する方法(特公昭47−38047) S
i、Al、TiおよびCr等の金属をBNに対し10〜
50wt%加えて反応焼結する方法(特開昭59−16
9982) BNにB23 を加えて常圧焼結する方
法(特公昭38−12547)また、本発明者らによっ
て開発された方法として、 純度の高い高結晶性BN
を5m2 /g以上、望ましく20m2 /g以上に微粉砕
し、0.1〜20wt%の炭化ほう素(B4 C)と0.
1〜20wt%のアルカリ土類金属化合物の一種以上を
加え、N2 中1600〜1800℃で常圧焼結する方法
(特開昭64−3074) 30m2 /g以上に粉砕
したBN粉末に対して0.1〜40wt%のB4 Cを加
えてN2 中で焼成する方法(特開平1−103960)
1〜30m2 /gの粉末と100m2 /g以上の粉
末を配合してなるBN粉末に対して0.1〜40wt%
のB4 Cを加えてN2 中で焼成する方法(特開平1−1
03959)。などがある。
Up to now, there are many atmospheric pressure sintering methods for hexagonal boron nitride, which have been proposed by patents and literatures. The main ones are pulverized high-purity BN powder or low-purity amorphous BN at 2 ton / cm 2 by metal molding or rubber press molding, and then the compact is placed in a crucible together with BN packing powder. , Atmospheric pressure sintering in argon at 1400 to 2000 ° C. (Japanese Patent Laid-Open No. 2-9763, J. Am. Ce.
ram. Soc. , 72 (1989) 1482) amorphous boron was added to the turbostratic structure BN of low purity, and nitrogen (N
2 ) Method of reacting and sintering at 1500 to 1800 ° C. in medium (Journal of Japan Society for Natural Resources, 105 (1989) 201) Amorphous B and XO.B 2 O 3 (X
Is an alkaline earth metal), N 2
Method of reacting and sintering in a chamber (JP-A-62-123070)
Method of adding 30 wt% of SiO 2 · B 2 O 3 to BN and sintering at atmospheric pressure (Japanese Patent Publication No. 47-38047) S
Metal such as i, Al, Ti and Cr is 10 to BN.
A method of adding 50 wt% and performing reaction sintering (Japanese Patent Laid-Open No. 59-16
9982) A method in which B 2 O 3 is added to BN and pressure-sintered (Japanese Patent Publication No. 38-12547). Further, as a method developed by the present inventors, highly pure and highly crystalline BN
To 5 m 2 / g or more, preferably 20 m 2 / g or more, and 0.1 to 20 wt% of boron carbide (B 4 C) and 0.
A method of adding 1 to 20 wt% of one or more alkaline earth metal compounds and sintering under normal pressure in N 2 at 1600 to 1800 ° C. (Japanese Patent Laid-Open No. 64-3074) for BN powder crushed to 30 m 2 / g or more 0.1-40 wt% B 4 C and baking in N 2 (JP-A-1-103960)
1-30 m 0.1 to 40% relative to the 2 / g of powder and 100 m 2 / g or more powder BN powder obtained by blending
Of B 4 C and firing in N 2 (Japanese Patent Application Laid-Open No. 1-1.
03959). and so on.

【0004】しかし、これら提案されたBN常圧焼結体
製造方法には、以下のような問題点を含んでいた。
However, these proposed methods for producing a BN atmospheric pressure sintered body have the following problems.

【0005】例えば〜の方法は、比較的BN純度の
高い焼結体が得られる方法である。しかし、いずれも焼
結時に体積膨張と重量減少を伴うため、高密度の焼結体
を得るのが難しい。焼結体の密度が低い場合、耐蝕性が
低下し、過酷な条件下での使用が制限される可能性があ
る。
For example, the methods (1) to (3) are methods by which a sintered body having a relatively high BN purity can be obtained. However, in both cases, it is difficult to obtain a high-density sintered body because the volume expansion and the weight reduction occur during sintering. When the density of the sintered body is low, the corrosion resistance is reduced, which may limit the use under severe conditions.

【0006】体積膨張は、BN常圧焼結体の特徴の一つ
であり、焼結時に収縮を起こさせるような焼結助剤が発
見されていない現在では避けることができない。重量減
少は主に原料中に初めから不純物として含まれている酸
素、あるいはBNを微粉砕した際に酸化・加水分解によ
って導入された酸素が、焼結時にB23 となって揮発
することにより生ずる。しかし、重量減少を減らすため
に結晶性の高い高純度BNを粉砕せずに用いても、活性
が乏しいために焼結は全く起こらない。
[0006] Volume expansion is one of the characteristics of the BN normal pressure sintered body, and it is unavoidable at the present when no sintering aid that causes shrinkage during sintering has been found. The weight reduction is mainly due to the fact that the oxygen originally contained as an impurity in the raw material, or the oxygen introduced by oxidation / hydrolysis when BN is pulverized, volatilizes as B 2 O 3 during sintering. Caused by. However, even if highly pure BN having high crystallinity is used without crushing in order to reduce weight loss, sintering does not occur at all because of poor activity.

【0007】〜の方法のように添加物を多量に加え
て焼結させる方法では得られる焼結体のBN純度が低下
し、BN本来の特性である耐蝕性、絶縁性、易加工性等
が損なわれる。また、高温で使用した場合、添加物の揮
発による付近の汚染やBN焼結体自身の亀裂発生などが
起こり、使用温度が限定されることも考えられる。
In the method of adding a large amount of additives and sintering as in the methods (1) to (4), the BN purity of the obtained sintered body is lowered, and the original characteristics of BN such as corrosion resistance, insulation, and easy workability are reduced. Be damaged. Further, when used at a high temperature, contamination of the vicinity due to volatilization of the additive, cracking of the BN sintered body itself, and the like may occur, limiting the operating temperature.

【0008】の方法では焼結体の強度はわずかに5K
g/cm2 であり、実用に耐えるとは考え難い。
According to the above method, the strength of the sintered body is only 5K.
Since it is g / cm 2 , it is unlikely to be practical.

【0009】これに対して、本発明者らによって開示さ
れた〜の方法は、これらの問題点を考慮してなされ
たものであり、これまで高密度−低純度もしくは低密度
−高純度焼結体しか得られなかった従来の方法とは異な
る高密度かつ高純度焼結体の製造方法を提供するもので
あった。
On the other hand, the methods (1) to (3) disclosed by the present inventors have been made in consideration of these problems, and have hitherto been high density-low purity or low density-high purity sintering. It was intended to provide a method for producing a high-density and high-purity sintered body, which is different from the conventional method in which only a body was obtained.

【0010】前記方法の特徴は、炭化ほう素を焼結助剤
として用いるところにある。炭化ほう素を焼結助剤に用
いても他の多くの常圧焼結法と同様焼結時に収縮は起こ
らず、また膨張率が低下することもない。しかし、炭化
ほう素がBN粉末中に含まれる酸素(B23 )と反応
してBNを生成する際、重量増が生じるため、他の方法
と比べて焼結後の密度低下が小さく、しかも純度が高い
というものである。前記方法によればBN純度99%以
上、焼結体密度1.80g/cm3 以上のBM常圧焼結
体を得ることができる。
The feature of the above method is that boron carbide is used as a sintering aid. Even if boron carbide is used as a sintering aid, no contraction occurs during sintering, and the expansion coefficient does not decrease, as in many other atmospheric pressure sintering methods. However, when boron carbide reacts with oxygen (B 2 O 3 ) contained in the BN powder to generate BN, a weight increase occurs, so that a decrease in density after sintering is small as compared with other methods, Moreover, the purity is high. According to the above method, a BM normal pressure sintered body having a BN purity of 99% or more and a sintered body density of 1.80 g / cm 3 or more can be obtained.

【0011】しかし、前記方法において改良されるべき
余地も残っていた。すなわち、助剤として加えた炭化ほ
う素を完全に窒化(BN化)させることが難しく、焼結
体の厚さが数mm以上になると、焼結体中心部に未反応
の炭化ほう素が黒芯となって残りやすくなることであっ
た。
However, there is still room for improvement in the above method. That is, it is difficult to completely nitrid (boronize) boron carbide added as an auxiliary agent, and when the thickness of the sintered body becomes several mm or more, unreacted boron carbide becomes black in the center of the sintered body. It was a core and it was easy to remain.

【0012】[0012]

【発明が解決しようとする課題】窒化ほう素焼結体は、
通常薄板あるいは坩堝等の薄肉形状物として用いられる
ことが多いので、窒化可能な厚さが数mm程度の技術で
もこれらの分野への利用は可能であるが、形状に対する
大きい制約が存在した。したがって応用範囲を拡大する
ためには、高密度および高純度を有するより厚いBN常
圧焼結体が作れることが望ましく、その製造方法を提供
することが本発明の目的である。
The boron nitride sintered body is
Since it is usually used as a thin plate or a thin-walled article such as a crucible, a technique with a nitridable thickness of about several mm can be used in these fields, but there is a large restriction on the shape. Therefore, in order to expand the range of application, it is desirable to be able to make thicker BN pressureless sintered bodies having high density and high purity, and it is an object of the present invention to provide a method for manufacturing the same.

【0013】[0013]

【課題を解決するための手段】本発明者らは上記の従来
技術の欠点を補うべく鋭意検討を重ねた結果、無水ほう
酸粉末または反応条件において無水ほう酸を生ずるほう
素含有化合物を、無水ほう酸に換算して無水ほう酸とし
ての含有量30〜46wt%となる炭化ほう素粉末との
混合物を、窒素、アンモニア等の窒素を含有する非酸化
性雰囲気中で加熱反応して少量の未反応の炭化ほう素が
残る窒化ほう素反応物とし、ついで粉砕し成形した後、
窒素、アンモニア等の窒素を含有する非酸化性雰囲気中
で1500〜2100℃において加熱焼結させることを
特徴とする窒化ほう素常圧焼結体の製造すれば従来の倍
以上の厚さでも完全窒化可能な高密度かつ高純度のBN
常圧焼結体が得られることを見いだし、本発明を完成す
るに至った。以下に本発明を詳細に説明する。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to make up for the above-mentioned drawbacks of the prior art, a boric anhydride compound or a boron-containing compound which produces boric anhydride under reaction conditions was converted to boric anhydride. A small amount of unreacted boron carbide is obtained by heating and reacting a mixture with a boron carbide powder having a content of 30 to 46 wt% as converted boric anhydride in a non-oxidizing atmosphere containing nitrogen such as nitrogen and ammonia. After leaving boron as a boron nitride reaction product, then crushing and molding,
If a boron nitride atmospheric pressure sintered body characterized by being heated and sintered at 1500 to 2100 ° C. in a non-oxidizing atmosphere containing nitrogen such as nitrogen or ammonia, it is completely nitrided even if the thickness is more than double that of the conventional one. Possible high-density and high-purity BN
The inventors have found that an atmospheric pressure sintered body can be obtained, and completed the present invention. The present invention will be described in detail below.

【0014】本発明では、まずB4 C粉末とB23
たは反応条件においてB23 を生ずるほう素化合物の
混合物を、窒素、アンモニア等の窒素を含んだ非酸化性
雰囲気中で焼成し、B4 CのBN化反応を起こさせる。
この反応に用いるほう素化合物は、B23 、あるいは
ほう酸等の熱分解によって無水ほう酸を生成するもので
あればよく特に限定はないが、B4 Cについては窒化
(BN化)反応を容易に進行させるという点で、より粒
度の細かいものを用いたほうが好ましい。
In the present invention, first, a mixture of B 4 C powder and B 2 O 3 or a boron compound which produces B 2 O 3 under reaction conditions is fired in a non-oxidizing atmosphere containing nitrogen such as nitrogen or ammonia. Then, BN conversion reaction of B 4 C is caused.
The boron compound used in this reaction is not particularly limited as long as it can generate boric anhydride by thermal decomposition of B 2 O 3 or boric acid, etc., but with respect to B 4 C, a nitriding (BN conversion) reaction is easy. It is preferable to use a finer particle from the viewpoint of proceeding to the above step.

【0015】B4 CとB23 等のほう素化合物との反
応は、次式(1)のように進行するものと考える。 3B4 C+B23 +7N2 →14BN+3CO (1) 式(1)によれば、B4 CとB23 からBNを生成さ
せるための理論配合は、70.42wt%B4 C−2
9.58%B23 である。しかし、式(1)から計算
される理論値で両者を混合し、N2 中で反応させても低
沸成分のB23が反応前にかなりの割合で揮発するた
め、理論配合比の混合物を単に焼成しただけではB4
を完全に窒化させることが難しい。したがって、B2
3 等のほう素化合物は式(1)で示される値よりも過剰
に加えたほうがよい。
It is considered that the reaction between B 4 C and a boron compound such as B 2 O 3 proceeds as shown in the following formula (1). 3B 4 C + B 2 O 3 + 7N 2 → 14BN + 3CO (1) According to the formula (1), the theoretical formulation for producing BN from B 4 C and B 2 O 3 is 70.42 wt% B 4 C-2.
It is 9.58% B 2 O 3 . However, even if both are mixed at the theoretical value calculated from the formula (1) and reacted in N 2 , the low boiling point component B 2 O 3 volatilizes in a considerable ratio before the reaction, so If the mixture is simply calcined, B 4 C
Is difficult to completely nitride. Therefore, B 2 O
Boron compounds such as 3 should be added in excess of the value represented by the formula (1).

【0016】B23 等のほう素化合物の配合比につい
ては、B23 が式(1)で示される理論値の2倍(混
合物中のB23 約46wt%)を越えるように配合し
ても不要なB23 が揮発し、配管等へのB23 の析
出が増えるだけであり、式(1)の反応がそれ以上促進
されることはない。一方、B4 Cに対するほう素化合物
の配合比が低下すると、それにともない、未反応B4
の残留量が増加する。しかし、本発明による方法では後
述する2回目の加熱焼結において完全窒化させればよい
ので、この段階で少量のB4 Cが残留しても構わない。
但し、B23が理論値の1.0倍を下回るとB4 Cの
残留量が過剰となり、2回目の加熱焼結においても完全
窒化させることが困難になってくる。
[0016] B for the mixing ratio of 2 O more containing compounds such as 3, B 2 O 3 is to exceed the formula twice (B 2 O 3 about 46 wt% in the mixture) of the theoretical value indicated by (1) Even if compounded with, the unnecessary B 2 O 3 is volatilized, and only the precipitation of B 2 O 3 on the pipe or the like is increased, and the reaction of the formula (1) is not promoted any more. On the other hand, when the compounding ratio of the boron compound to B 4 C decreases, the unreacted B 4 C
Increase the residual amount of. However, in the method according to the present invention, since a complete nitriding may be performed in the second heating and sintering described later, a small amount of B 4 C may remain at this stage.
However, when B 2 O 3 is less than 1.0 times the theoretical value, the residual amount of B 4 C becomes excessive, and it becomes difficult to perform complete nitriding even in the second heating and sintering.

【0017】したがって、ほう酸等のほう素化合物は、
23 換算で式(1)で示される理論値の1.0倍以
上2.0倍以下となるように配合するのが好ましい。
Therefore, the boron compound such as boric acid is
It is preferable that the amount is 1.0 to 2.0 times the theoretical value represented by the formula (1) in terms of B 2 O 3 .

【0018】上記組成に調整したB4 Cおよびほう素含
有化合物は、水あるいはアセトンやエタノール等の一般
的な有機溶媒で充分混合した後、乾燥させる。乾燥させ
た混合物はそのまま坩堝等に収めて焼成してもよいが、
取り扱いに難があるため、適当な圧力で適当な大きさに
成形してペレット状にしたほうがよい。
The B 4 C and boron-containing compound adjusted to the above composition is thoroughly mixed with water or a general organic solvent such as acetone or ethanol, and then dried. The dried mixture may be stored in a crucible or the like as it is and baked,
Since it is difficult to handle, it is better to mold it into a suitable size with a suitable pressure to form a pellet.

【0019】これらを坩堝に入れ、N2 あるいはアンモ
ニア等の窒素を含んだ非酸化性雰囲気中で加熱反応す
る。反応温度については、1300℃以下では反応速度
が遅く、長時間の加熱反応をしてもかなりの量のB4
が残留する。一方、1800℃以上に加熱すればB2
3 の揮発損失が大きくなるだけであり、かえってB4
の残留量が多くなる。したがって、加熱反応温度として
は1300〜1800℃が望ましい。
These are put into a crucible and heated and reacted in a non-oxidizing atmosphere containing nitrogen such as N 2 or ammonia. Regarding the reaction temperature, the reaction rate is slow at 1300 ° C or lower, and a considerable amount of B 4 C is generated even after heating for a long time.
Remains. On the other hand, if heated to 1800 ° C or higher, B 2 O
The volatilization loss of 3 is only large, but rather B 4 C
The residual amount of will increase. Therefore, the heating reaction temperature is preferably 1300 to 1800 ° C.

【0020】次に、得られたペレットを微粉砕し、焼結
体製造用原料とする。1回目の加熱反応によって未反応
のB4 C含有量が10wt%を越えないBN反応物であ
る時はそのまま成形し、N2 気流中で加熱焼結させるこ
とができる。
Next, the obtained pellets are finely pulverized and used as a raw material for producing a sintered body. When the unreacted B 4 C content does not exceed 10 wt% by the first heating reaction, the BN reaction product can be molded as it is and heat-sintered in an N 2 stream.

【0021】また、未反応のB4 C含有量が10wt%
以上である時は、B4 Cを含まないBN粉末、例えば市
販のBN粉末を適当な割合混合してB4 C含有量を10
wt%以下とし、この混合粉末を常法により成形し、加
熱焼結させることが好ましい。加熱焼結前の成形体中に
4 Cが10wt%以上存在すると、B4 Cの完全窒化
は焼結時間が長時間必要となるだけでなく黒芯が残る原
因となる。
The unreacted B 4 C content is 10 wt%
In the case of the above, BN powder not containing B 4 C, for example, commercially available BN powder is mixed in an appropriate ratio so that the B 4 C content is 10%.
It is preferable that the content of the mixed powder is not more than wt%, and the mixed powder is molded by a conventional method and heated and sintered. When B 4 C is present in an amount of 10 wt% or more in the green body before heat-sintering, complete nitriding of B 4 C not only requires a long sintering time but also causes a black core to remain.

【0022】粉砕粉の比表面積については、10m2
g以下では粉砕粉の活性が乏しく、焼結しにくい。一
方、比表面積が50m2 /gを越えると、充填性が低下
して密度の低下を招く。また、粒子間の気孔径が小さく
なるために残留しているB4 Cの窒化反応が進み難くな
り、焼結体に黒芯が残りやすくなる。したがって粉砕粉
の比表面積は10m2/g以上50m2 /g以下が好ま
しい。
The specific surface area of the crushed powder is 10 m 2 /
If it is less than g, the activity of the pulverized powder is poor and it is difficult to sinter. On the other hand, when the specific surface area exceeds 50 m 2 / g, the filling property is lowered and the density is lowered. Further, since the pore diameter between the particles becomes small, the nitriding reaction of the remaining B 4 C becomes difficult to proceed, and the black core is likely to remain in the sintered body. Therefore, the specific surface area of the pulverized powder is preferably 10 m 2 / g or more and 50 m 2 / g or less.

【0023】焼結体の成形に際しては常法のごとく、微
粉砕したこれらの原料に対して、必要に応じて成形用バ
インダー等を加え、水もしくはエタノール・アセトン等
の一般的な有機溶媒を加えて充分混合する。得られたス
ラリーを、スプレードライヤー等、適当な乾燥手段を用
いて乾燥・造粒し、金型成形もしくはラバープレス成形
あるいはこれらの組み合わせにより所定形状に成形す
る。成形密度をあげるには1トン/cm2 以上、好まし
くは2トン/cm2 程度で、加圧成形する。もっとも成
形体の密度が充分にあげられるならば加圧成形方法に限
定されることはなく、スリップキャスト法、押出成形法
等、いずれの方法でも構わない。
In the case of molding the sintered body, a binder for molding or the like is added to these finely pulverized raw materials, if necessary, and water or a general organic solvent such as ethanol / acetone is added, in a conventional manner. And mix well. The obtained slurry is dried and granulated using an appropriate drying means such as a spray dryer, and molded into a predetermined shape by die molding, rubber press molding or a combination thereof. In order to increase the molding density, pressure molding is performed at 1 ton / cm 2 or more, preferably about 2 ton / cm 2 . However, the method is not limited to the pressure molding method as long as the density of the molded body can be sufficiently increased, and any method such as a slip casting method or an extrusion molding method may be used.

【0024】得られた成形体は、使用原料に残留してい
るB4 C量に応じて白色から黒灰色をしており、これを
窒素あるいはアンモニア等の窒素を含んだ非酸化性雰囲
気で常圧焼結すると白色焼結体となる。焼結温度につい
ては、1500℃以下では式(1)の反応速度が遅くな
るために、特に黒い焼結体を白色化するのが難しく、長
時間焼成しても中心部に黒芯が残る。また、B4C残留
量が少ないと、低い温度で焼結しても白色化させること
は可能であるが、粒子間の結合が弱く、強度の高い焼結
体が得られない。一方、2100℃以上で焼結させる
と、反応は容易に進行するが、結晶粒が粗大化し、強度
低下を招く。したがって、焼結温度としては1500℃
以上2100℃以下が望ましい。
The obtained molded body is white to black gray in color depending on the amount of B 4 C remaining in the raw material used, and this is usually kept in a non-oxidizing atmosphere containing nitrogen or nitrogen such as ammonia. A white sintered body is obtained by pressure sintering. Regarding the sintering temperature, when the temperature is 1500 ° C. or lower, the reaction rate of the formula (1) becomes slow, so that it is difficult to whiten a black sintered body in particular, and a black core remains in the center even after firing for a long time. Further, when the residual amount of B 4 C is small, whitening is possible even if sintering is performed at a low temperature, but the bond between particles is weak and a sintered body having high strength cannot be obtained. On the other hand, when the sintering is performed at 2100 ° C. or higher, the reaction easily proceeds, but the crystal grains become coarse and the strength is lowered. Therefore, the sintering temperature is 1500 ℃
Above 2100 ° C. is desirable.

【0025】本発明の方法を用いてBN常圧焼結体を作
成すると、直接B4 Cを助剤として用いる特開昭64−
3074、特開平1−103959および特開平1−1
03960によって開示された方法よりも、容易に高密
度で黒芯のない厚い焼結体が得られる。今のところ詳細
については不明であるがその一つは粉末中に含まれる炭
化ほう素の存在状態に関係があるのではないかと推定し
ている。
When a BN atmospheric pressure sintered body is produced by the method of the present invention, B 4 C is directly used as an auxiliary agent.
3074, JP-A-1-103959, and JP-A 1-1
A thicker sintered body with a high density and no black core can be obtained more easily than the method disclosed by 03960. Although the details are unknown so far, it is presumed that one of them is related to the existence state of boron carbide contained in the powder.

【0026】前述したようにB4 Cとほう素含有化合物
を窒素中で焼成して得た粉末に含まれる炭化ほう素量
は、配合比および焼成条件を変えることによって任意に
調整できる。得られたこれらの粉末をX線解析により調
べてみると、炭素量の増加にともないB4 Cのピーク強
度は増大した。しかし、炭素分析値から逆算したB4
含有量は、X線による定量分析によって測定されたB4
C含有量よりも明らかに小さい値を示していた。
As described above, the amount of boron carbide contained in the powder obtained by firing B 4 C and the boron-containing compound in nitrogen can be arbitrarily adjusted by changing the compounding ratio and firing conditions. When these obtained powders were examined by X-ray analysis, the peak intensity of B 4 C increased as the carbon content increased. However, B 4 C calculated back from carbon analysis values
Content is B 4 measured by X-ray quantitative analysis
The value was clearly smaller than the C content.

【0027】ほう素−炭素系の化合物には、B4 C(B
123 )の他、B132 、B12C等があると考えられて
いるが、これらは結晶構造が同一で、格子点の元素が置
換されるだけであるため、X線解析だけでは判別でき
ず、状態図も確定していない。しかし、ほう素炭化物に
広い組成範囲があることは確かである。(1)式におい
て、仮にB4 CをB12Cに置き換えてみるとB12Cを用
いたほうが重量増が大きくなり、B4 Cを用いた場合と
同等の重量増を得るためには、B4 Cよりも少ない添加
量で済むことが分かる。また、B4 Cを用いた場合より
も系外に除去すべき炭素量が少なくなり、窒化が容易に
なることも容易に推定される。
For boron-carbon compounds, B 4 C (B
It is thought that there are B 13 C 2 , B 12 C, etc. in addition to 12 C 3 ), but these have the same crystal structure and only the elements at lattice points are replaced, so only X-ray analysis is possible. It is not possible to determine with, and the state diagram has not been finalized. However, it is certain that boron carbide has a wide composition range. In (1), if B 4 C the more increases the weight increase with try the B 12 C by replacing B 12 C, in order to obtain the same weight gain in the case of using B 4 C is It can be seen that the addition amount is smaller than that of B 4 C. Further, it is easily estimated that the amount of carbon to be removed to the outside of the system is smaller than that in the case of using B 4 C, and nitriding becomes easier.

【0028】以上の点から、炭化ほう素とほう素含有化
合物から得られる粉末に含まれる炭素が、B4 Cとして
ではなく、例えばB12Cのような炭素含有量の少ないほ
う素炭化物として存在しているため、B4 Cを用いる場
合よりも窒化が容易に進行し、かつ高密度の焼結体が得
やすいと考えられる。
From the above points, the carbon contained in the powder obtained from boron carbide and the boron-containing compound does not exist as B 4 C but as a boron carbide having a low carbon content such as B 12 C. Therefore, it is considered that nitriding proceeds more easily and a high-density sintered body can be obtained more easily than when B 4 C is used.

【0029】もう一つの原因としては、BN反応物中に
存在する未反応のB4 Cの粒度にあるものと考える。す
なわち、加熱反応の場合に使用したB4 C粉末が反応中
に表面からBN化反応は進行し、中心部に混合された粒
度より更に細かくなったB4Cのコアが残る。従って、
4C含有量が同じであっても、粗粒を含んだ市販のB4
Cを直接助剤として使用するよりも、微粒のB4 Cが
均一分散したB4 CとB23 の反応物を使用する本発
明の方法の方がより窒化し易く、黒芯が残りにくいもの
と考えられる。
Another cause is considered to be the particle size of unreacted B 4 C present in the BN reaction product. That is, during the reaction of the B 4 C powder used in the heating reaction, the BN formation reaction proceeds from the surface, leaving a B 4 C core finer than the particle size mixed in the central portion. Therefore,
Commercially available B 4 containing coarse particles even if the B 4 C content is the same.
The method of the present invention using a reaction product of B 4 C and B 2 O 3 in which fine particles of B 4 C are uniformly dispersed is easier to nitride and leaves a black core, as compared with the case where C is directly used as an auxiliary agent. It is considered difficult.

【0030】このことはBN粉末に粗粒を含んだ市販の
4 Cを10wt%加えて成形し、窒素気流中で焼結し
た場合、微粒子のB4 Cは比較的容易にBNとなるが、
粗粒のB4 Cは未反応のコアが残る。
This means that when 10 wt% of commercially available B 4 C containing coarse particles is added to BN powder and molded and sintered in a nitrogen stream, the fine particles of B 4 C become BN relatively easily. ,
Coarse-grained B 4 C leaves an unreacted core.

【0031】一方B4 CとB23 の混合物を窒素気流
中で反応させた反応物にBN粉末を加えてB4 C含有量
を10wt%に調整し、これを成形し焼結した場合、成
形体に含まれたB4 Cの含有量は同じであってもB4
の粒度が市販のものより微細になっているため窒化反応
は容易に進行し、B4 Cは消失することからも上記の推
定は正しいと思われる。
On the other hand, when BN powder was added to the reaction product obtained by reacting a mixture of B 4 C and B 2 O 3 in a nitrogen stream to adjust the B 4 C content to 10 wt%, and this was molded and sintered. , Even if the content of B 4 C contained in the molded product is the same, B 4 C
Since the particle size of B is smaller than that of the commercially available product, the nitriding reaction easily proceeds and B 4 C disappears, which also suggests that the above estimation is correct.

【0032】[0032]

【作用】本発明においてはB23 粉末とB4 C粉末を
加熱反応して、若干量のB4 C粉末が残るようにしたB
N反応物を原料として高密度かつ高純度のBN焼結体を
製造しようとするものである。
In the present invention, B 2 O 3 powder and B 4 C powder are heated and reacted so that a small amount of B 4 C powder remains.
An attempt is made to produce a high-density and high-purity BN sintered body by using an N reaction product as a raw material.

【0033】炭化ほう素(前述のごとく必ずしもB4
の形でなくともよいが、本発明においてはB4 Cと表記
してある。)は焼結に際して重量を増しながら焼結する
という特異な性質があり、常圧でも高密度の焼結体とな
るものである。
Boron carbide (not necessarily B 4 C as described above)
However, in the present invention, it is represented by B 4 C. ) Has a peculiar property of increasing the weight during sintering, and it becomes a high density sintered body even at normal pressure.

【0034】この場合、B4 C粉末の粒径は反応前に充
分粉砕され、更にBN化反応によりその表面から順次B
Nに転化して行くため、BN反応物中のB4 Cの粒径は
上記の反応により更に大幅に縮小し、コアのみが残って
いる形と考えられることである。
In this case, the particle size of the B 4 C powder is sufficiently pulverized before the reaction, and the B 4 C powder is further subjected to the BN conversion reaction so that the B particles are sequentially B
It is considered that the particle size of B 4 C in the BN reaction product is further reduced by the above reaction because it is converted to N, and only the core remains.

【0035】このようなコア状B4 C反応物を粉砕し、
成形し、窒素含有非酸化性雰囲気中で焼結するのである
からB4 Cが未反応のまま残る機会はほとんどなくな
り、容易にBNになるので高密度、高純度の白色BN焼
成成形体が製造できるものと考えている。
The core-like B 4 C reaction product was pulverized,
Since it is molded and sintered in a nitrogen-containing non-oxidizing atmosphere, there is almost no chance that B 4 C remains unreacted, and it easily becomes BN, so a high-density, high-purity white BN fired molded product is produced. I think it can be done.

【0036】[0036]

【実施例】【Example】

(実施例1〜9)B4 C60wt%に対してB23
40wt%加え、アセトン中で充分混合した後、乾燥さ
せた。これを1トン/cm2 でφ20×15mmのペレ
ット状に成形し、窒素気流中で1300℃、1500℃
および1700℃に各4時間保持して焼成した後、比表
面積が約30m2 /gとなるようにボールミルにて粉砕
した。得られた焼成粉に対し、バインダーを2wt%加
え、アセトン中で充分混合した後、乾燥させた。これを
2トン/cm2 でφ50×10mmの大きさに金型成形
し、窒素気流中で1500℃×8hr、1700℃×6
hr、および2000℃×4hrの各条件で焼結させ
た。得られた焼結体の密度はいずれも1.80g/cm
3 を越えていた。また、試料を切断して断面を観察した
ところ、いずれも黒芯は認められなかった。焼結体の強
度は、焼結温度が高いほど強度が高くなる傾向があり、
1700℃以上で焼結すると、いずれも400Kg/c
2 以上の値を示した。
(Examples 1 to 9) 40 wt% of B 2 O 3 was added to 60 wt% of B 4 C, sufficiently mixed in acetone, and then dried. This was molded into pellets with a diameter of 20 × 15 mm at 1 ton / cm 2 , and the temperature was 1300 ° C and 1500 ° C in a nitrogen stream.
After holding at 1700 ° C. for 4 hours and firing, the powder was pulverized with a ball mill so that the specific surface area was about 30 m 2 / g. A binder of 2 wt% was added to the obtained fired powder, thoroughly mixed in acetone, and then dried. This was molded into a size of φ50 × 10 mm at 2 ton / cm 2 , and 1500 ° C. × 8 hr, 1700 ° C. × 6 in a nitrogen stream.
It was sintered under each condition of hr and 2000 ° C. × 4 hr. The density of each of the obtained sintered bodies was 1.80 g / cm.
It was over 3 . Further, when the sample was cut and the cross section was observed, no black core was observed in any of them. The strength of the sintered body tends to increase as the sintering temperature increases,
400Kg / c when sintered above 1700 ℃
The value was m 2 or more.

【0037】(比較例1)焼結条件を2200℃×4h
rとした以外は、実施例7〜9と同様の手順で焼結体を
作成した。得られた焼結体には、黒芯は認められなかっ
たが2000℃で焼結した試料と比べて、密度および強
度とも低下しており、それぞれ1.75g/cm3 およ
び200Kg/cm2 であった。
(Comparative Example 1) Sintering conditions were 2200 ° C. × 4 h
Sintered bodies were prepared in the same procedure as in Examples 7 to 9 except that the r was used. No black core was found in the obtained sintered body, but both the density and strength were lower than those of the sample sintered at 2000 ° C., and the density was 1.75 g / cm 3 and 200 Kg / cm 2 , respectively. there were.

【0038】(比較例2〜3)B4 C60wt%に対し
てB23 を40wt%加え、アセトン中で充分混合し
た後、乾燥させた。これを1トン/cm2 でφ20×1
5mmのペレット状に成形し、窒素気流中で1200℃
および1900℃に各4時間保持して焼成した後、比表
面積が約30m2 /gとなるようにボールミルにて粉砕
した。得られた焼成粉に対し、バインダーを2wt%加
え、アセトン中で充分混合した後、乾燥させた。これを
2トン/cm2 でφ50×10mmの大きさに金型成形
し、窒素気流中で2000℃×4hrの条件で焼結させ
た。得られた焼結体の密度および強度はいずれも1.9
0g/cm3 および500Kg/cm2 を越えていた
が、焼結体中心部には黒芯が厚く残っていた。
Comparative Examples 2 to 3 40 wt% of B 2 O 3 was added to 60 wt% of B 4 C, thoroughly mixed in acetone, and then dried. Φ20 × 1 at 1 ton / cm 2
Molded into 5 mm pellets, 1200 ° C in a nitrogen stream
After being held at 1,900 ° C. for 4 hours for firing, they were pulverized with a ball mill so that the specific surface area was about 30 m 2 / g. A binder of 2 wt% was added to the obtained fired powder, thoroughly mixed in acetone, and then dried. This was die-molded at 2 ton / cm 2 into a size of φ50 × 10 mm and sintered in a nitrogen stream at 2000 ° C. × 4 hr. The density and strength of the obtained sintered body were both 1.9.
Although it exceeded 0 g / cm 3 and 500 Kg / cm 2 , a thick black core remained in the center of the sintered body.

【0039】(比較例4)B4 C30wt%に対してB
23 を70wt%加え、アセトン中で充分混合した
後、乾燥させた。これを1トン/cm2 でφ20×15
mmのペレット状に成形し、窒素気流中、1700℃に
4時間保持して焼成した後、比表面積が約30m2 /g
となるようにボールミルにて粉砕した。得られた焼成粉
に対し、バインダーを2wt%加え、アセトン中で充分
混合した後、乾燥させた。これを2トン/cm2 でφ5
0×30mmの大きさに金型成形し、窒素気流中で20
00℃×4hrの条件で焼結させた。得られた焼結体に
は黒芯がなく、密度および強度はそれぞれ1.59g/
cm3 および440Kg/cm2 であった。しかし、B
4 Cを完全に窒化させた粉末を用いても密度の低い焼結
体しか得られず、またB4 CとB23 から得られる合
成物の1バッチあたりの収量が低下し、B23 の揮発
による炉内汚染も増大した。
(Comparative Example 4) B 4 C 30 wt% B
70% by weight of 2 O 3 was added, thoroughly mixed in acetone, and then dried. Φ20 × 15 at 1 ton / cm 2
mm pellets, and kept at 1700 ° C. for 4 hours in a nitrogen stream and baked, and then has a specific surface area of about 30 m 2 / g.
It was crushed with a ball mill so that A binder of 2 wt% was added to the obtained fired powder, thoroughly mixed in acetone, and then dried. Φ5 at 2 tons / cm 2
Molded into a size of 0 x 30 mm and put in a nitrogen stream for 20
Sintering was carried out under the conditions of 00 ° C. × 4 hr. The obtained sintered body had no black core, and had a density and strength of 1.59 g / each.
cm 3 and 440 Kg / cm 2 . But B
4 C and not be obtained only a low sintered body density by using the powder completely nitrided, also reduces the yield per one batch of composite obtained from B 4 C and B 2 O 3, B 2 In-furnace contamination due to volatilization of O 3 also increased.

【0040】(比較例5)B4 C75wt%に対してB
23 を25wt%加え、アセトン中で充分混合した
後、乾燥させた。これを1トン/cm2 でφ20×15
mmのペレット状に成形し、窒素気流中、1700℃に
4時間保持して焼成した後、比表面積が約30m2 /g
となるようにボールミルにて粉砕した。得られた焼成粉
に対し、バインダーを2wt%加え、アセトン中で充分
混合した後、乾燥させた。これを2トン/cm2 でφ5
0×10mmの大きさに金型成形し、窒素気流中で20
00℃×4hrの条件で焼結させた。得られた焼結体の
密度および強度は1.89g/cm3 および570Kg
/cm2 を示したが、焼結体中心部には黒芯が厚く残っ
ていた。
(Comparative Example 5) B 4 C 75 wt% B
25% by weight of 2 O 3 was added, thoroughly mixed in acetone, and then dried. Φ20 × 15 at 1 ton / cm 2
mm pellets, and kept at 1700 ° C. for 4 hours in a nitrogen stream and baked, and then has a specific surface area of about 30 m 2 / g.
It was crushed with a ball mill so that A binder of 2 wt% was added to the obtained fired powder, thoroughly mixed in acetone, and then dried. Φ5 at 2 tons / cm 2
Molded into a size of 0 x 10 mm and put in a nitrogen stream for 20
Sintering was carried out under the conditions of 00 ° C. × 4 hr. The density and strength of the obtained sintered body were 1.89 g / cm 3 and 570 Kg.
/ Cm 2 , but a thick black core remained in the center of the sintered body.

【0041】 [0041]

【0042】(実施例10〜12)B4 C65wt%に
対してB23 を35wt%加え、アセトン中で充分混
合した後、乾燥させた。これを1トン/cm2 でφ20
×15mmのペレット状に成形し、窒素気流中、170
0℃に4hr保持して焼成した後、比表面積が約30m
2 /gとなるようにボールミルにて粉砕した。得られた
焼成粉のB4 C含有量をX線解析法を用いて定量分析し
たところ、約15%であった。この粉末に対し35.1
2 /gに粉砕した市販の高結晶性BN粉末を30、5
0および70wt%、更にバインダーを各2wt%加
え、アセトン中で充分混合した後、乾燥させた。これを
2トン/cm2 でφ50×30mmの大きさに金型成形
し、窒素気流中2000℃×4hrの条件で焼結させ
た。得られた焼結体を切断して断面を観察したところ、
いずれも黒芯は認められなかった。BN粉末の配合比の
増加にともない、焼結体の密度および強度が低下する傾
向にあったが、いずれも密度は1.80g/cm3
上、強度は400Kg/cm2 以上の値を示した。
(Examples 10 to 12) 35 wt% of B 2 O 3 was added to 65 wt% of B 4 C, thoroughly mixed in acetone, and then dried. Φ20 at 1 ton / cm 2
Molded into pellets of × 15mm, 170 in nitrogen stream
After baking at 0 ° C for 4 hours, the specific surface area is about 30m.
It was crushed with a ball mill so that the amount became 2 / g. The B 4 C content of the obtained fired powder was quantitatively analyzed by an X-ray analysis method and found to be about 15%. 35.1 for this powder
Commercially available highly crystalline BN powder pulverized to m 2 / g of 30, 5
0 and 70 wt%, and 2 wt% of each binder were further added, thoroughly mixed in acetone, and then dried. This was die-molded at 2 ton / cm 2 into a size of φ50 × 30 mm and sintered in a nitrogen stream at 2000 ° C. × 4 hr. When the obtained sintered body was cut and the cross section was observed,
No black core was observed in any of them. The density and strength of the sintered body tended to decrease with an increase in the compounding ratio of BN powder, but in both cases, the density showed a value of 1.80 g / cm 3 or more and the strength showed a value of 400 Kg / cm 2 or more. .

【0043】(比較例6)BN粉末の配合比を0wt%
とした以外は、実施例11〜13と同様の手順で焼結体
を作成した。得られた焼結体の密度および強度は、それ
ぞれ1.90g/cm3 および600Kg/cm2を示
したが、中心部には厚く黒芯が残っていた。
(Comparative Example 6) The compounding ratio of BN powder was 0 wt%.
A sintered body was prepared by the same procedure as in Examples 11 to 13 except for the above. The density and strength of the obtained sintered body were 1.90 g / cm 3 and 600 Kg / cm 2 , respectively, but a thick black core remained at the center.

【0044】 [0044]

【0045】[0045]

【発明の効果】本発明は六方晶BNの有する耐熱衝撃
性、耐食性、電気絶縁性、高熱伝導性、耐熱性、潤滑性
など優れた性質を有する肉厚の常圧焼結成形体の製造法
を開発したものである。
INDUSTRIAL APPLICABILITY The present invention provides a method for producing a thick atmospheric pressure sintered compact having excellent properties such as heat shock resistance, corrosion resistance, electrical insulation, high thermal conductivity, heat resistance and lubricity that hexagonal BN has. It was developed.

【0046】本発明方法によって得られる常圧焼結体は
肉厚であっても黒芯が残っていないので物性は安定して
おり、余分の添加物がないので高純度でありかつ高密度
であってBN特有の耐食性があり、添加物がないため高
温使用においても近辺を汚染することもなく使用温度範
囲も広範である。
The atmospheric pressure sintered body obtained by the method of the present invention has a stable physical property because no black core remains even if it is thick, and it has high purity and high density because there is no extra additive. Since it has the corrosion resistance peculiar to BN and does not contain any additives, it does not pollute the neighborhood even at high temperatures and has a wide operating temperature range.

【0047】また、BN反応物は易焼結性であり、常圧
焼結可能であるため生産性高く焼結体の製造ができ、そ
の成形体は成形、焼結に際し亀裂を起こすこともない優
れたBN成形体を得ることができる。
Further, since the BN reaction product is easily sinterable and can be sintered under normal pressure, a sintered body can be manufactured with high productivity, and the molded body does not crack during molding and sintering. An excellent BN molded body can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無水ほう酸粉末または反応条件において
無水ほう酸を生ずるほう素含有化合物を、無水ほう酸に
換算して無水ほう酸としての含有量30〜46wt%と
なる炭化ほう素粉末との混合物を、窒素、アンモニア等
の窒素を含有する非酸化性雰囲気中で加熱反応して少量
の未反応の炭化ほう素が残る窒化ほう素反応物とし、つ
いで粉砕し成形した後、窒素、アンモニア等の窒素を含
有する非酸化性雰囲気中で1500〜2100℃におい
て加熱焼結させることを特徴とする窒化ほう素常圧焼結
体の製造方法。
1. A boric anhydride powder or a mixture of a boron-containing compound which produces boric acid anhydride under reaction conditions and a boron carbide powder having a boric anhydride content of 30 to 46 wt% is converted into nitrogen. , Ammonia and other nitrogen-containing non-oxidizing atmospheres are heated and reacted to form a boron nitride reaction product that leaves a small amount of unreacted boron carbide, which is then crushed and shaped to contain nitrogen and ammonia and other nitrogen. A method for producing a boron nitride atmospheric pressure sintered body, which comprises heating and sintering at 1500 to 2100 ° C. in a non-oxidizing atmosphere.
【請求項2】 無水ほう酸粉末または反応条件において
無水ほう酸を生ずるほう素含有化合物と炭化ほう素の混
合物の加熱反応温度が1300〜1800℃である請求
項1記載の窒化ほう素常圧焼結体の製造方法。
2. The boron nitride atmospheric pressure sintered body according to claim 1, wherein the heating reaction temperature of the mixture of boron-containing compound or boron-containing compound that produces boric acid anhydride under reaction conditions is 1300 to 1800 ° C. Production method.
【請求項3】 加熱反応して得られた窒化ほう素反応物
中の炭化ほう素含有量が10wt%を越えない窒化ほう
素反応物をそのまま成形し、窒素気流中加熱焼結する請
求項1記載の窒化ほう素常圧焼結体の製造方法。
3. A boron nitride reaction product having a boron carbide content not exceeding 10 wt% in a boron nitride reaction product obtained by heating reaction is molded as it is, and heated and sintered in a nitrogen stream. A method for producing a boron nitride atmospheric pressure sintered body according to claim 1.
【請求項4】 炭化ほう素含有量が重量10%以上であ
る窒化ほう素反応物に、炭化ほう素含有量が10%以下
になるように炭化ほう素を含まない窒化ほう素粉末を加
えてから成形し、窒素気流中加熱焼結する請求項1記載
の窒化ほう素常圧焼結体の製造方法。
4. A boron nitride reaction product having a boron carbide content of 10% or more by weight, and boron nitride powder containing no boron carbide so as to have a boron carbide content of 10% or less. The method for producing a boron nitride atmospheric pressure sintered body according to claim 1, wherein the boron nitride atmospheric pressure sintered body is formed by molding and heat sintering in a nitrogen stream.
JP3173133A 1991-06-18 1991-06-18 Method for manufacturing boron nitride atmospheric pressure sintered body Expired - Lifetime JP2511337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3173133A JP2511337B2 (en) 1991-06-18 1991-06-18 Method for manufacturing boron nitride atmospheric pressure sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3173133A JP2511337B2 (en) 1991-06-18 1991-06-18 Method for manufacturing boron nitride atmospheric pressure sintered body

Publications (2)

Publication Number Publication Date
JPH05853A true JPH05853A (en) 1993-01-08
JP2511337B2 JP2511337B2 (en) 1996-06-26

Family

ID=15954736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3173133A Expired - Lifetime JP2511337B2 (en) 1991-06-18 1991-06-18 Method for manufacturing boron nitride atmospheric pressure sintered body

Country Status (1)

Country Link
JP (1) JP2511337B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
WO2014003193A1 (en) * 2012-06-27 2014-01-03 水島合金鉄株式会社 Sintered spherical bn particles with concave part, method for producing same, and polymer material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
US8169767B2 (en) 2003-08-21 2012-05-01 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder and devices comprising the powder
WO2014003193A1 (en) * 2012-06-27 2014-01-03 水島合金鉄株式会社 Sintered spherical bn particles with concave part, method for producing same, and polymer material
US9334391B2 (en) 2012-06-27 2016-05-10 Mizushima Ferroalloy Co., Ltd. Sintered spherical BN particles, method of producing the same, and polymer material

Also Published As

Publication number Publication date
JP2511337B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
JPH0812440A (en) Material containing boron nitride and its production
JPWO2020032060A1 (en) Hexagonal Boron Nitride Powder and Method for Producing Hexagonal Boron Nitride Powder
JPS6112844B2 (en)
JP2511337B2 (en) Method for manufacturing boron nitride atmospheric pressure sintered body
JP2531871B2 (en) Method for manufacturing high-density boron nitride pressureless sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
US7314593B2 (en) Process for preparing improved silicon carbide powder
JPH0524849B2 (en)
JP2845983B2 (en) Boron nitride powder
JPS6212663A (en) Method of sintering b4c base fine body
JPS638069B2 (en)
JPH01103960A (en) Production of boron nitride sintered compact
JPH0143711B2 (en)
JPS63392B2 (en)
JPS638265A (en) Manufacture of composite sintered body
JPH07315937A (en) Normal pressure sintered compact of boron nitride and its production
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JP3801252B2 (en) Method for producing silicon nitride
JPH06279124A (en) Production of silicon nitride sintered compact
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPS6259574A (en) Production of boron nitride sintered body
JP3008415B2 (en) Sialon-boron nitride-based composite sintered body and method for producing the same