JP3801252B2 - Method for producing silicon nitride - Google Patents

Method for producing silicon nitride Download PDF

Info

Publication number
JP3801252B2
JP3801252B2 JP07243796A JP7243796A JP3801252B2 JP 3801252 B2 JP3801252 B2 JP 3801252B2 JP 07243796 A JP07243796 A JP 07243796A JP 7243796 A JP7243796 A JP 7243796A JP 3801252 B2 JP3801252 B2 JP 3801252B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitriding
reaction
metal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07243796A
Other languages
Japanese (ja)
Other versions
JPH09255310A (en
Inventor
啓 磯崎
哲美 大塚
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP07243796A priority Critical patent/JP3801252B2/en
Publication of JPH09255310A publication Critical patent/JPH09255310A/en
Application granted granted Critical
Publication of JP3801252B2 publication Critical patent/JP3801252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、窒化珪素の製造方法に関する。
【0002】
【従来の技術】
窒化珪素の工業的規模の製造法には大別すると3法があるが、それぞれ一長一短がある。金属シリコン粉末を窒素ガス等で窒化する金属シリコン直接窒化法は、比較的安価であるが得られた窒化珪素の純度が悪い。シリカ粉末を窒素ガスと炭素で還元窒化するシリカ還元窒化法は、ややコスト高であるが高温曲げ強度の高い窒化珪素焼結体を製造し易い窒化珪素を製造することができる。四塩化珪素とアンモニアを反応させるハロゲン化珪素法は、高純度の窒化珪素を製造することができるが高価である。
【0003】
【発明が解決しようとする課題】
本発明は、上記窒化珪素の製造方法のうち、金属シリコン直接窒化法の改良に関するものであり、その目的は、反応率が高くしかも粉砕性の高い窒化珪素インゴットを製造することによって、粉砕工程で鉄等の不純物の混入を防止し、高純度かつ高α化率の窒化珪素粉末を製造することである。
【0004】
【課題を解決するための手段】
すなわち、本発明は、金属シリコン粉末を窒化して窒化珪素を製造する方法において、上記金属シリコン粉末が、X線回折により求められた結晶子径が100nm以上のものであることを特徴とする窒化珪素の製造方法である。
【0005】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0006】
金属シリコンと窒素ガスとの反応は主に気−固反応によって進むものと考えられている。この反応は、1100〜1450℃の温度範囲で行われる固体の不均一反応であり、また大きな発熱を伴うため反応を厳密に制御することが困難である。そこで、通常はあまり急激に反応させないよう長時間をかけて反応を行わせ、高α化率の窒化珪素インゴットを製造している。
【0007】
反応制御がうまくいかないと、金属シリコンが溶融したまま残存し、不純物の多い粉砕性の悪い窒化珪素インゴットが製造される。このような反応制御は、金属シリコン粉末の投入量、窒化温度、雰囲気の窒素分圧、窒化時間などによって行われるが、本発明は金属シリコン粉末の結晶子径の大きさを調整して行うことに特徴がある。
【0008】
通常、金属シリコンは、珪石と炭材を混合した後、電気炉で還元反応させて合成され、その特性は純度によって規格化されている。この金属シリコンの粉砕物は窒化珪素の製造原料として使用されている。これまでは、金属シリコン粉末の窒化反応性は、その粒度や、鉄、アルミニウム等の金属不純物量ないしは酸素量との関係で説明されており、一般に金属不純物が多く、粒度の細かいものが反応性が高いといわれている。しかし、本発明のように、金属シリコン粉末の結晶子径の大きさとその窒化反応性との関係で説明されたものは見当たらない。
【0009】
本発明で使用される金属シリコン粉末が、その結晶子径がX線回折により求められた値が100nm以上のものである。通常に入手される金属シリコン粉末の結晶子径が50〜80nm程度であるので、本発明で使用されるものが著しく大きいことが特徴である。本発明において、金属リコン粉末の結晶子径が100nm未満では窒化反応が不均一に起こり、α化率の低下したり、生成した窒化珪素粒子の焼結によって窒化珪素インゴットの粉砕性が低下する。
【0010】
金属シリコン粉末の結晶子径は、上記還元反応が起こるときの温度と冷却速度によって決定され、高温で還元反応を生じさせるほど、また冷却速度を緩やかにするほど、結晶子径は大きくなる。本発明で使用される金属シリコン粉末は、この現象を利用して製造することができる。
【0011】
本発明において、金属シリコン粉末の結晶子径をX線回折により求める方法は次のとおりである。先ず、Kα1 とKα2 の回折線を多重ピーク分離し、真の半価幅(FWHM : full width at half weight) βは、実測半価幅Bと機械的半価幅bに対してβ2 =B2 −b2 であるとする。bはα−SiO2 の回折線から求める。βは結晶子径と不均一歪により決まり、歪がGauss分布しているとすると(1)式となる。
【0012】
β2 /tan2θ=Kλβ/ε tanθ sinθ+4η2 ・・・(1)
ここで、K:定数(=0.9)、λ:CuKα線の波長(1.54Å)、η:不均一歪、ε:金属シリコン粉末の結晶子径である。
【0013】
従って、Kλβ/ tanθ sinθに対してβ2 /tan2θをプロットし、その直線の傾きから1/εを求め、金属シリコン粉末の結晶子径εを算出する(修正Hall法)。
【0014】
本発明の金属シリコン粉末を用いて窒化珪素を製造するには通常の条件を採用することができる。
【0015】
例えば、金属シリコン粉末原料の反応炉への供給は、金属シリコン粉末を容器に充填してから行うか、又はプレス成形等により所望の形状に成形してから行う。金属シリコン粉末の比表面積としては0.2〜5m2 /g特に0.5〜4m2 /gであることが好ましく、また金属シリコン粉末のFe不純物の含有量は2000ppm以下であることが好ましい。Fe不純物の含有量が2000ppmをこえると、反応制御が容易となるが製品純度が低下する。
【0016】
反応速度の制御を容易とするために、金属シリコン粉末は窒化珪素粉末からなる骨材と混合して使用することもできる。骨材としては、低酸素、高比表面積、高純度の窒化珪素粉末を使用すると、低酸素、高比表面積、高純度の窒化珪素粉末を得ることができる。金属シリコン粉末と骨材の混合方法は、両者を別々に粉砕した後混合してもよく、また粉砕と混合を同時に行うこともできる。いずれの場合においても、粉砕・混合時の不純物の混入、特にメディアの摩耗による不純物混入と金属シリコンの酸化には充分留意すべきであり、特に高純度を必要とする場合には、窒化珪素製のメディアを使用し、非酸化性雰囲気下で粉砕・混合を行うことが好ましい。
【0017】
窒化を行う際の窒化反応ガスの例としては、窒素及び/又はアンモニアをあげることができる。窒化反応ガスは反応制御のため不活性ガスや水素ガス等と併用することもできる。特に好ましいガス組成は、窒素−水素−アルゴン系であり、窒化率10〜80%の範囲においては水素とアルゴンガスの合計が15〜70体積%の範囲にあることが望ましい。
【0018】
窒化に際しては、温度1100〜1450℃特に1150〜1350℃の範囲における窒化率を80%以上となるように制御することが好ましい。窒化時間については、本発明で使用される金属シリコン粉末の反応活性が高いので、40〜60時間という比較的短時間でも可能である。
【0019】
従来の金属シリコン粉末を用いる窒化珪素の製造においては、反応制御を容易とするためフッ化カルシウムや酸化鉄等の窒化触媒を金属シリコン粉末に添加していたが、本発明においては金属シリコン粉末の反応活性が高いので窒化触媒を用いなくてもよい。むしろ、窒化触媒が製品に残留して窒化珪素の品質低下を招くので使用しないほうが望ましい。
【0020】
【実施例】
以下、実施例、比較例をあげて更に具体的に本発明を説明する。
【0021】
実施例1〜7 比較例1〜7
表1に示す結晶子径の異なる高純度金属シリコン粉末を窒化珪素製ボールを用いたボールミルで粉砕し表1に示す比表面積にした。得られた金属シリコン粉末100重量部に骨材(電気化学工業社製窒化珪素粉末:商品名「SN−9FW」)50重量部を加え、ボールミルで混合して原料とした。
【0022】
この原料80gを嵩密度0.7g/cm3 の板状体に成形してから窒化炉内に充填し、炉内を酸素濃度が300ppm以下になるよう窒素ガス置換してから、窒素ガスとアルゴンガスと水素ガスの混合ガスを流入しながら昇温を開始した。1100℃迄は200℃/hで昇温し、1350℃迄は10℃/hで昇温した。その後、窒素ガスを流しながら室温まで放冷し、生成した窒化珪素インゴットを取り出した。インゴットは窒化珪素製乳鉢で粗・中砕して篩い分け、0.2〜1mmのものについて比表面積を測定し、更に0.045mm以下の粉砕物を用いてX線回折分析を行った。その結果を表1に示す。
【0023】
(1)比表面積:湯浅アイオニクス社製「カンタソーブ」を用い、ヘリウム−窒素の混合ガスを標準ガスとした流通式の1点法で測定した。
(2)α化率:CuKα線によりX線回折を行い、α相は(102)面の回折線強度Ia102と(210)面の回折線強度Ia210、β相は(101)面と(210)面の回折線強度をそれぞれIb101、Ib210で代表し、次式により算出した。
α化率(%)=(Ia102+Ia210)/(Ia102+Ia210+Ib101+Ib210)×100
【0024】
【表1】

Figure 0003801252
【0025】
表1に示したように、本発明の製造方法による実施例1〜7では、反応率は高く、高比表面積、高α化率の窒化珪素インゴットが得られた。これに対し、金属シリコンの結晶子径が本発明の範囲内にない比較例1〜7では、窒化反応率は低く、低比表面積、そして低α化率のインゴットであり、窒化珪素焼結用原料粉末としては適当ではなかった。
【0026】
実施例8〜14 比較例8〜14
実施例1〜7及び比較例1〜7で製造された原料200gを嵩密度0.7g/cm3 の板状体に成形してから窒化炉内に充填し、温度1100℃迄は200℃/hで昇温し、1450℃迄は10℃/hで昇温したこと以外は、実施例1と同様にして窒化珪素インゴットを製造した。
【0027】
得られた窒化珪素インゴットを窒化珪素製乳鉢で0.2mm以下に粗・中砕した後、窒化珪素製ボールを用いたボールミルにより窒素雰囲気中で8時間粉砕し、表2に示す比表面積を有する窒化珪素粉末を製造した。
【0028】
得られた窒化珪素粉末90重量部、Al23 粉末3重量部、Y2 3 粉末5重量部及び有機バインダー15重量%を加え湿式混合し、スプレードライヤーで造粒・乾燥した後、それを金型プレス成形後2.0トン/cm2 の圧力でCIP成形してから、温度1800℃で6時間焼成して窒化珪素焼結体を製造し、JIS R1601に準拠して室温における4点曲げ強度を測定した。それらの結果を表2に示す。
【0029】
【表2】
Figure 0003801252
【0030】
【発明の効果】
本発明によれば、従来のような長時間ないしは特殊な解砕・粉砕工程や、湿式の精製工程のような手間のかかる後処理を行わなくても高品質の窒化珪素粉末を製造することができる。
【0031】
本発明によれば、窒化触媒を添加しなくても反応率を高めて窒化珪素インゴットを製造することができるので高純度であり、しかも容易に高比表面積の窒化珪素粉末とすることもできるので、その焼結体は自動車部品やガスタービン部品に適したものとなる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing silicon nitride.
[0002]
[Prior art]
There are three general methods for producing silicon nitride on an industrial scale, each of which has advantages and disadvantages. The metal silicon direct nitridation method in which metal silicon powder is nitrided with nitrogen gas or the like is relatively inexpensive, but the purity of the obtained silicon nitride is poor. The silica reduction nitriding method in which the silica powder is reduced and nitrided with nitrogen gas and carbon can produce silicon nitride, which is somewhat expensive but easy to produce a silicon nitride sintered body with high high temperature bending strength. The silicon halide method in which silicon tetrachloride reacts with ammonia can produce high-purity silicon nitride, but is expensive.
[0003]
[Problems to be solved by the invention]
The present invention relates to an improvement of the metal silicon direct nitridation method among the silicon nitride production methods described above, and its purpose is to produce a silicon nitride ingot having a high reaction rate and high pulverizability, thereby providing a pulverization step. It is to produce silicon nitride powder with high purity and high alpha conversion rate by preventing impurities such as iron from being mixed.
[0004]
[Means for Solving the Problems]
That is, according to the present invention, in the method for producing silicon nitride by nitriding metal silicon powder, the metal silicon powder has a crystallite diameter determined by X-ray diffraction of 100 nm or more. It is a manufacturing method of silicon.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0006]
The reaction between metallic silicon and nitrogen gas is considered to proceed mainly by gas-solid reaction. This reaction is a solid heterogeneous reaction performed in a temperature range of 1100 to 1450 ° C., and it is difficult to strictly control the reaction because it involves a large exotherm. Therefore, usually, the reaction is carried out over a long time so as not to react so rapidly, and a silicon nitride ingot having a high α conversion rate is manufactured.
[0007]
If the reaction control is not successful, the metal silicon remains in a molten state, and a silicon nitride ingot with many impurities and poor grindability is produced. Such reaction control is performed by the amount of metal silicon powder input, the nitriding temperature, the nitrogen partial pressure of the atmosphere, the nitriding time, etc., but the present invention is performed by adjusting the crystallite size of the metal silicon powder. There is a feature.
[0008]
In general, metallic silicon is synthesized by mixing a silica stone and a carbonaceous material, followed by a reduction reaction in an electric furnace, and its characteristics are standardized by purity. This pulverized metal silicon is used as a raw material for producing silicon nitride. Up to now, the nitriding reactivity of metal silicon powder has been explained in relation to the particle size and the amount of metal impurities such as iron and aluminum or the amount of oxygen. Generally, there are many metal impurities and the finer particle size is reactive. Is said to be expensive. However, as described in the present invention, no explanation has been found regarding the relationship between the crystallite size of the metal silicon powder and its nitriding reactivity.
[0009]
The metal silicon powder used in the present invention has a crystallite diameter determined by X-ray diffraction of 100 nm or more. Since the crystallite diameter of the metal silicon powder that is usually obtained is about 50 to 80 nm, it is a feature that what is used in the present invention is remarkably large. In the present invention, when the crystallite diameter of the metal recon powder is less than 100 nm, the nitriding reaction occurs non-uniformly, and the α-ization rate is lowered, or the pulverizability of the silicon nitride ingot is lowered by sintering the produced silicon nitride particles.
[0010]
The crystallite size of the metal silicon powder is determined by the temperature and cooling rate at which the above reduction reaction occurs, and the crystallite size increases as the reduction reaction occurs at a higher temperature and the cooling rate becomes slower. The metal silicon powder used in the present invention can be produced by utilizing this phenomenon.
[0011]
In the present invention, the method for obtaining the crystallite diameter of the metal silicon powder by X-ray diffraction is as follows. First, the diffraction lines of Kα 1 and Kα 2 are separated into multiple peaks, and the true full width at half weight (FWHM) β is β 2 with respect to the measured half width B and mechanical half width b. Suppose that = B 2 -b 2 . b is obtained from the diffraction line of α-SiO 2 . β is determined by the crystallite diameter and the non-uniform strain, and if the strain is Gaussian distributed, Equation (1) is obtained.
[0012]
β 2 / tan 2 θ = Kλβ / ε tan θ sin θ + 4η 2 (1)
Here, K: constant (= 0.9), λ: wavelength of CuKα ray (1.541.5), η: nonuniform strain, ε: crystallite diameter of metal silicon powder.
[0013]
Therefore, β 2 / tan 2 θ is plotted against Kλβ / tanθ sinθ, 1 / ε is obtained from the slope of the straight line, and the crystallite diameter ε of the metal silicon powder is calculated (modified Hall method).
[0014]
Normal conditions can be employed for producing silicon nitride using the metal silicon powder of the present invention.
[0015]
For example, the metal silicon powder raw material is supplied to the reaction furnace after filling the container with the metal silicon powder, or after forming into a desired shape by press molding or the like. The specific surface area of the metal silicon powder is preferably 0.2 to 5 m 2 / g, particularly 0.5 to 4 m 2 / g, and the content of Fe impurities in the metal silicon powder is preferably 2000 ppm or less. When the content of Fe impurities exceeds 2000 ppm, the reaction control becomes easy, but the product purity decreases.
[0016]
In order to easily control the reaction rate, the metal silicon powder can be used by mixing with an aggregate made of silicon nitride powder. As the aggregate, when low-oxygen, high specific surface area, high-purity silicon nitride powder is used, low-oxygen, high specific surface area, high-purity silicon nitride powder can be obtained. As for the method of mixing the metal silicon powder and the aggregate, they may be mixed after being separately pulverized, or pulverization and mixing may be performed simultaneously. In any case, attention should be paid to contamination of impurities during grinding and mixing, especially contamination due to media wear and oxidation of metal silicon. Especially when high purity is required, silicon nitride is used. It is preferable to pulverize and mix in a non-oxidizing atmosphere using the above media.
[0017]
Nitrogen and / or ammonia can be mentioned as an example of the nitriding reaction gas at the time of nitriding. The nitriding reaction gas can be used in combination with an inert gas or hydrogen gas for reaction control. A particularly preferable gas composition is a nitrogen-hydrogen-argon system, and it is desirable that the total of hydrogen and argon gas is in the range of 15 to 70% by volume in the range of nitriding rate of 10 to 80%.
[0018]
In nitriding, it is preferable to control the nitriding rate in the range of 1100 to 1450 ° C., particularly 1150 to 1350 ° C., to be 80% or more. Regarding the nitriding time, since the reaction activity of the metal silicon powder used in the present invention is high, a relatively short time of 40 to 60 hours is possible.
[0019]
In the manufacture of silicon nitride using conventional metal silicon powder, a nitriding catalyst such as calcium fluoride or iron oxide has been added to the metal silicon powder in order to facilitate reaction control. Since the reaction activity is high, it is not necessary to use a nitriding catalyst. Rather, it is desirable not to use the nitriding catalyst because it remains in the product and causes the quality of silicon nitride to deteriorate.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0021]
Examples 1-7 Comparative Examples 1-7
High purity metal silicon powders having different crystallite diameters shown in Table 1 were pulverized by a ball mill using silicon nitride balls to obtain specific surface areas shown in Table 1. 50 parts by weight of aggregate (silicon nitride powder manufactured by Denki Kagaku Kogyo Co., Ltd .: trade name “SN-9FW”) was added to 100 parts by weight of the obtained metal silicon powder and mixed with a ball mill to obtain a raw material.
[0022]
80 g of this raw material was formed into a plate-like body having a bulk density of 0.7 g / cm 3 and then filled in the nitriding furnace. After the inside of the furnace was replaced with nitrogen gas so that the oxygen concentration was 300 ppm or less, nitrogen gas and argon The temperature rise was started while flowing a mixed gas of gas and hydrogen gas. The temperature was raised at 200 ° C./h up to 1100 ° C., and the temperature was raised at 10 ° C./h up to 1350 ° C. Then, it was allowed to cool to room temperature while flowing nitrogen gas, and the produced silicon nitride ingot was taken out. The ingot was coarsely and crushed with a silicon nitride mortar and sieved, the specific surface area of 0.2 to 1 mm was measured, and X-ray diffraction analysis was performed using a pulverized product of 0.045 mm or less. The results are shown in Table 1.
[0023]
(1) Specific surface area: Measured by a flow type one-point method using “Kantasorb” manufactured by Yuasa Ionics Co., Ltd. with a mixed gas of helium-nitrogen as a standard gas.
(2) α conversion rate: X-ray diffraction is performed with CuKα ray, α phase is (102) plane diffraction line intensity I a102 , (210) plane diffraction line intensity I a210 , β phase is (101) plane ( The diffraction line intensity of the 210) plane is represented by I b101 and I b210 , respectively, and was calculated by the following equation.
Alphaation rate (%) = (I a102 + I a210 ) / (I a102 + I a210 + I b101 + I b210 ) × 100
[0024]
[Table 1]
Figure 0003801252
[0025]
As shown in Table 1, in Examples 1 to 7 according to the production method of the present invention, a silicon nitride ingot having a high reaction rate, a high specific surface area, and a high α conversion rate was obtained. On the other hand, in Comparative Examples 1 to 7 in which the crystallite diameter of metallic silicon is not within the scope of the present invention, the nitriding reaction rate is low, the ingot has a low specific surface area, and a low α conversion rate. It was not suitable as a raw material powder.
[0026]
Examples 8-14 Comparative Examples 8-14
200 g of the raw materials produced in Examples 1 to 7 and Comparative Examples 1 to 7 were formed into a plate-like body having a bulk density of 0.7 g / cm 3 and then filled in the nitriding furnace. A silicon nitride ingot was produced in the same manner as in Example 1 except that the temperature was raised at h and the temperature was raised to 1450 ° C. at 10 ° C./h.
[0027]
The obtained silicon nitride ingot was roughly crushed and crushed to 0.2 mm or less with a silicon nitride mortar, and then pulverized in a nitrogen atmosphere for 8 hours with a ball mill using silicon nitride balls, and has the specific surface areas shown in Table 2. Silicon nitride powder was produced.
[0028]
90 parts by weight of the obtained silicon nitride powder, 3 parts by weight of Al 2 O 3 powder, 5 parts by weight of Y 2 O 3 powder and 15% by weight of organic binder were added and wet-mixed. After granulating and drying with a spray dryer, CIP molding is performed at a pressure of 2.0 ton / cm 2 after die press molding, followed by firing at a temperature of 1800 ° C. for 6 hours to produce a silicon nitride sintered body. Four points at room temperature according to JIS R1601 The bending strength was measured. The results are shown in Table 2.
[0029]
[Table 2]
Figure 0003801252
[0030]
【The invention's effect】
According to the present invention, it is possible to produce high-quality silicon nitride powder without performing a long-time or special pulverization / pulverization process as in the past or a complicated post-treatment such as a wet purification process. it can.
[0031]
According to the present invention, a silicon nitride ingot can be produced with an increased reaction rate without adding a nitriding catalyst, so that the silicon nitride powder has high purity and can easily be made into a high specific surface area silicon nitride powder. The sintered body is suitable for automobile parts and gas turbine parts.

Claims (1)

金属シリコン粉末を窒化して窒化珪素を製造する方法において、上記金属シリコン粉末が、X線回折により求められた結晶子径が100nm以上のものであることを特徴とする窒化珪素の製造方法。A method for producing silicon nitride by nitriding metal silicon powder, wherein the metal silicon powder has a crystallite diameter determined by X-ray diffraction of 100 nm or more.
JP07243796A 1996-03-27 1996-03-27 Method for producing silicon nitride Expired - Fee Related JP3801252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07243796A JP3801252B2 (en) 1996-03-27 1996-03-27 Method for producing silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07243796A JP3801252B2 (en) 1996-03-27 1996-03-27 Method for producing silicon nitride

Publications (2)

Publication Number Publication Date
JPH09255310A JPH09255310A (en) 1997-09-30
JP3801252B2 true JP3801252B2 (en) 2006-07-26

Family

ID=13489284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07243796A Expired - Fee Related JP3801252B2 (en) 1996-03-27 1996-03-27 Method for producing silicon nitride

Country Status (1)

Country Link
JP (1) JP3801252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947576A (en) * 2018-08-06 2018-12-07 清华大学 A kind of reversed template prepares the ceramic sponge MATERIALS METHODS of nano wire braiding microballoon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261832A (en) * 2006-03-27 2007-10-11 Sumco Solar Corp Silicon nitride release material powder, method for producing release material and firing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108947576A (en) * 2018-08-06 2018-12-07 清华大学 A kind of reversed template prepares the ceramic sponge MATERIALS METHODS of nano wire braiding microballoon

Also Published As

Publication number Publication date
JPH09255310A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
CN1246102A (en) Carbonitride powder, method for producing same, and use thereof
JP3801252B2 (en) Method for producing silicon nitride
JP3801253B2 (en) Method for producing silicon nitride
JPS58213617A (en) Production of titanium carbonitride powder
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
JPH03261611A (en) Production of silicon nitride composite powder
JP3439604B2 (en) Method for producing silicon nitride
JP3285621B2 (en) Method for producing silicon nitride powder
JP3838691B2 (en) Silicon nitride grinding aid and its use
JP3348798B2 (en) Method for producing silicon nitride
JP3342753B2 (en) Method for producing silicon nitride
JP2511337B2 (en) Method for manufacturing boron nitride atmospheric pressure sintered body
JP3496795B2 (en) Method for producing silicon nitride powder
JPH11278812A (en) Production of silicon nitride powder
JP3390059B2 (en) Method for producing silicon nitride
JP3375182B2 (en) Method for producing easily crushable low oxygen silicon nitride
JPH06263410A (en) Method for increasing beta-fraction of powdery silicon nitride
JP3375185B2 (en) Method for producing silicon nitride
JP3342756B2 (en) Silicon nitride powder and method for producing the same
JP3367567B2 (en) Method for producing easily crushable and high α-type silicon nitride
JPH0448752B2 (en)
JP3344663B2 (en) Method for producing high α-type silicon nitride
JP3348797B2 (en) Silicon nitride grinding aid and silicon nitride powder
JPH07237915A (en) Fine particulate chromium carbide and method for producing the same
JP2000128511A (en) Silicon nitride powder and slurry and filler using the silicon nitride powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees