JPH058482Y2 - - Google Patents

Info

Publication number
JPH058482Y2
JPH058482Y2 JP1986184169U JP18416986U JPH058482Y2 JP H058482 Y2 JPH058482 Y2 JP H058482Y2 JP 1986184169 U JP1986184169 U JP 1986184169U JP 18416986 U JP18416986 U JP 18416986U JP H058482 Y2 JPH058482 Y2 JP H058482Y2
Authority
JP
Japan
Prior art keywords
measured
section
center
height
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986184169U
Other languages
Japanese (ja)
Other versions
JPS6388704U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986184169U priority Critical patent/JPH058482Y2/ja
Publication of JPS6388704U publication Critical patent/JPS6388704U/ja
Application granted granted Critical
Publication of JPH058482Y2 publication Critical patent/JPH058482Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、検出部の光路を横切る被測定材の寸
法を測定する光学式寸法測定装置に係り、より詳
細には、検出部の光路の光軸の高さを被測定材の
中心の高さに略一致させる高さ調整装置に関す
る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an optical dimension measuring device that measures the dimensions of a material to be measured that crosses the optical path of the detection unit, and more specifically, The present invention relates to a height adjustment device that allows the height of the material to approximately match the height of the center of the material to be measured.

従来の技術 光学式の寸法測定装置ではその検出部にレンズ
を主要部として含む光学装置が使用されている
が、レンズには球面収差あるいは歪曲収差等があ
り、それらの収差を完全に取り除くことはできな
いため、歪みの無い像をセンサーに結像させるこ
とができない。歪みは周辺部ほど大きくなるの
で、被測定材の中心が検出部の光軸から離れるに
従い測定に伴う誤差が増加する。誤差を最小にす
るため一般には、被測定材と検出部との位置関係
の調整を行い、被測定材の中心を光軸に一致させ
ているが、その方法には2通りあつて、1つは被
測定材を動かす方法、もう1つは検出部を動かす
方法である。ところが被測定材を動かす方法は機
械設備上の困難が多いので、もつぱら検出部を動
かす方法が採用されている。
Prior Art Optical dimension measuring devices use an optical device that includes a lens as a main part in its detection section, but lenses have spherical aberrations, distortion, etc., and it is impossible to completely eliminate these aberrations. Therefore, it is not possible to form a distortion-free image on the sensor. Since the distortion increases toward the periphery, the error associated with measurement increases as the center of the material to be measured moves away from the optical axis of the detection section. In order to minimize errors, generally the positional relationship between the material to be measured and the detection unit is adjusted to align the center of the material to be measured with the optical axis.There are two ways to do this, one is One method is to move the material to be measured, and the other is to move the detection unit. However, since the method of moving the material to be measured has many mechanical difficulties, a method of moving the detecting section is adopted.

考案が解決しようとする問題点 検出部を動かす昇降装置としては主動あるいは
電動の2つの方式の装置があるが、そのどちらの
方式においても、検出部の位置決め、つまり被測
定材の中心と光軸との位置合わせは目視によつて
行つている。そのため水平方向から検出部の光路
を覗き込む必要が生じるけれど、検出部の取り付
け位置によつては機械装置の出つ張つている部分
に邪魔され覗き込むことができない場合があり、
止むを得ず斜め上方から覗き込んで調整を行う場
合等があつて、その調整が不正確となることがあ
つた。またその調整には人手が不可欠である。
Problems that the invention aims to solve There are two types of elevating devices that move the detection part: active and electric. The alignment is done visually. Therefore, it is necessary to look into the optical path of the detection unit from the horizontal direction, but depending on the mounting position of the detection unit, it may be obstructed by the protruding part of the mechanical device and it may not be possible to look into the optical path.
There were cases where adjustments were unavoidably made by looking diagonally from above, resulting in inaccurate adjustments. Moreover, manual labor is essential for the adjustment.

本考案は目視に伴う上記の問題点を解消するた
めに発案されたもので、その目的は、検出部の光
軸と被測定材の中心とを自動で一致させることの
できる高さ調整装置を提供することにある。
This invention was devised to solve the above-mentioned problems associated with visual inspection, and its purpose is to provide a height adjustment device that can automatically align the optical axis of the detection unit with the center of the material to be measured. It is about providing.

問題点を解決するための手段 上記目的を達成するため本考案の高さ調整装置
は、 被測定材支持部により支持され、その外形が長
い棒状の被測定材が、その長手方向に沿つて移動
しつつ検出部の光路を横切るとき、この被測定材
の寸法が前記検出部によつて測定される光学式寸
法測定装置に適用し、 検出部を支持すると共に、支持した検出部を垂
直方向に移動させる昇降装置と、 被測定材の寸法の基準値が入力される設定部
と、 この設定部に入力された基準値に基づき、昇降
装置における垂直方向の移動量を算出する移動量
換算部と、 この移動量換算部によつて算出された移動量に
従つて昇降装置における垂直方向の移動を制御す
る制御部とを備えた構成とし、 被測定材の中心と光路の光軸とを略同一高さと
させるものとする。
Means for Solving the Problems In order to achieve the above object, the height adjustment device of the present invention is provided in such a way that the object to be measured, which is supported by the object-to-be-measured support part and has a long rod-like outer shape, moves along its longitudinal direction. When the object to be measured crosses the optical path of the detection section, it is applied to an optical dimension measuring device whose dimensions are measured by the detection section, supports the detection section, and moves the supported detection section in the vertical direction. A lifting device for moving, a setting section into which a reference value of the dimension of the material to be measured is input, and a movement amount conversion section for calculating the vertical movement amount of the lifting device based on the reference value input into the setting section. , and a control unit that controls the vertical movement of the lifting device according to the movement amount calculated by the movement amount conversion unit, and the center of the material to be measured and the optical axis of the optical path are approximately the same. The height shall be the same.

作 用 新たな被測定材の測定を始めようとする時に
は、被測定材の寸法の基準となる値を設定部によ
り入力する。移動量換算部はこの設定部からの出
力に従つて、被測定材の中心の高さに検出部の光
軸の高さを略一致させるために必要な移動量を算
出し、制御部に送出する。制御部は昇降装置を動
作させ検出部の高さを変えて、被測定材の中心の
高さと光軸の高さとを略一致させる。
Operation When starting the measurement of a new material to be measured, a value serving as a standard for the dimensions of the material to be measured is inputted using the setting section. The movement amount conversion section calculates the amount of movement necessary to make the height of the optical axis of the detection section approximately match the height of the center of the material to be measured, according to the output from this setting section, and sends it to the control section. do. The control section operates the lifting device to change the height of the detection section, so that the height of the center of the material to be measured substantially matches the height of the optical axis.

実施例 第1図は本考案の一実施例の概略を示す正面図
である。
Embodiment FIG. 1 is a front view schematically showing an embodiment of the present invention.

図において、光学式寸法測定装置の検出部12
は、その両端近くを支持する一対の支持板131
により長方形の基台132に固定されている。こ
の基台132は4台のスクリユージヤツキ(2台
のスクリユージヤツキについては、描かれたスク
リユージヤツキの奥に位置しているため図示され
ていない)133の各々の昇降軸140によつて
四隅を支持され、検出部12は上下に昇降可能と
なつている。
In the figure, the detection unit 12 of the optical dimension measuring device
is a pair of support plates 131 that support near both ends thereof.
It is fixed to a rectangular base 132 by. This base 132 is moved by the lifting shaft 140 of each of the four screw jacks 133 (the two screw jacks are not shown because they are located at the back of the drawn screw jack). The detection unit 12 is supported at its four corners and can be moved up and down.

ギヤードモーター138の出力はカツプリング
137を介して、スクリユージヤツキ133bへ
回転力の伝達を行うギヤボツクス139bに伝え
られ、さらに2つのカツプリング135と延長軸
136とによりギヤボツクス139aにも伝えら
れる。これらのギヤボツクス139a,139b
は図示されていないスクリユージヤツキに対して
もギヤードモーター138の出力を伝える構成と
なつていて、4つの昇降軸140はその移動量が
等しくなるように構成されている。なお昇降装置
13は、同図の131〜140の符号が付与され
た要素により構成されている。
The output of the geared motor 138 is transmitted via a coupling 137 to a gearbox 139b that transmits rotational force to a screw jack 133b, and further transmitted to a gearbox 139a via two couplings 135 and an extension shaft 136. These gearboxes 139a, 139b
is configured to transmit the output of the geared motor 138 also to a screw jack (not shown), and the four lifting shafts 140 are configured so that the amount of movement thereof is equal. The elevating device 13 is constituted by elements numbered 131 to 140 in the figure.

2つのカツプリング135を繋ぐ延長軸136
の中央にはパルス円板151が取り付けられてお
り、フオトインタラプター152と組み合わせら
れてロータリーエンコーダーを構成している。
Extension shaft 136 connecting two coupling rings 135
A pulse disk 151 is attached to the center of the rotary encoder, and is combined with a photo interrupter 152 to form a rotary encoder.

第2図はロータリーエンコーダーおよびギヤー
ドモーター138を含む電気的接続を示すブロツ
ク線図である。
FIG. 2 is a block diagram showing the electrical connections including the rotary encoder and geared motor 138.

光学式寸法測定装置本体に設けられた操作パネ
ル(図示されていない)の数字キーと共用され、
長く丸い棒状の被測定材の外径の寸法の基準値が
入力される設定部16は、移動量換算部17に向
けて入力された値を送出する。この移動量換算部
17は、その構成がソフトウエアとなつていて、
昇降装置13に取り付けられた検出部12の垂直
方向における移動量の演算(後に詳細に説明す
る)を行い、移動量を示す出力をモーター駆動部
153に送り出す。制御部15は、パルス円板1
51とフオトインタラプター152との組み合わ
せであるロータリーエンコーダーとモーター駆動
部153とからなり、モーター駆動部153はギ
ヤードモーター138に対して駆動出力の送出を
行つている。
It is shared with the numeric keys on the operation panel (not shown) provided on the main body of the optical dimension measuring device,
A setting section 16 into which a reference value of the outer diameter of a long, round bar-shaped material to be measured is inputted, sends the inputted value to a movement amount conversion section 17 . The movement amount conversion unit 17 is configured as software,
The amount of movement of the detection unit 12 attached to the lifting device 13 in the vertical direction is calculated (described in detail later), and an output indicating the amount of movement is sent to the motor drive unit 153. The control unit 15 controls the pulse disk 1
51 and a photo interrupter 152, and a motor drive section 153, and the motor drive section 153 sends a drive output to the geared motor 138.

第1図に示すように、被測定材11aあるいは
11bは、被測定材支持部である搬送ローラー1
11上を移動しながら検出部12の光路を横切つ
ていき、この時に寸法の測定が行われる。
As shown in FIG. 1, the material to be measured 11a or 11b is conveyed by a conveying roller 1 which is a supporting part of the material to be measured.
11 while crossing the optical path of the detection unit 12, and at this time the dimensions are measured.

第3図は被測定材11の基準寸法と中心の高さ
との関係を示す説明図である。
FIG. 3 is an explanatory diagram showing the relationship between the reference dimensions and the center height of the material to be measured 11.

第3図に示す搬送ローラー111は、先端を切
り落とした一対の円錐を、その切断面を向かい合
わせて接合したような鼓状の形態をしており、互
いの周面の交わる角度θは120度となつている。
搬送ローラー111の最も細くなつた個所の上部
位置は、被測定材の基準寸法が0と仮定した時の
論理的な中心位置であり、この位置33を基準点
として以下に説明する。
The conveyance roller 111 shown in FIG. 3 has a drum-like shape in which a pair of cones with their tips cut off are joined with their cut surfaces facing each other, and the angle θ at which their circumferential surfaces intersect is 120 degrees. It is becoming.
The upper position of the narrowest part of the transport roller 111 is the logical center position when the reference dimension of the material to be measured is 0, and the following description will be made with this position 33 as the reference point.

第4図は基準点33と被測定材の中心との位置
関係を示す説明図である。
FIG. 4 is an explanatory diagram showing the positional relationship between the reference point 33 and the center of the material to be measured.

被測定材11の中心をOとして直線Dへ下ろし
た垂線の足をEとする。基準点を示す位置をFと
すると、OFの長さは被測定材11の中心の高さ
hを示し、OEの長さは被測定材11の半径を示
す。半径をrとすると、角度αが60度であること
から h/r=2/√3 つまり被測定材11の直径をdとすると中心の
高さhは h=2×r/√3=d/√3 として示される。
The center of the material 11 to be measured is set to O, and the leg of the perpendicular line drawn down to the straight line D is set to E. When the position indicating the reference point is F, the length of OF indicates the height h of the center of the material to be measured 11, and the length of OE indicates the radius of the material to be measured 11. If the radius is r, the angle α is 60 degrees, so h/r=2/√3 In other words, if the diameter of the material to be measured 11 is d, the height h of the center is h=2×r/√3=d /√3.

以下に本考案に係る装置の動作について説明す
る。
The operation of the device according to the present invention will be explained below.

第1図においては被測定材11bの測定が行わ
れているため、被測定材11bの中心112bの
高さと検出部12の光軸121の高さとが一致す
るように、昇降装置13により調整されている。
この状態から被測定材11aの測定を行う場合に
は、光軸121に被測定材11bの中心112b
を一致させる必要がある。なお第1図は概略図で
あるため、第3図に示す搬送ローラー111と被
測定材11との位置関係および大きさの比率に関
しては同一となつていない。
In FIG. 1, since the measurement of the material to be measured 11b is being performed, the height of the center 112b of the material to be measured 11b and the height of the optical axis 121 of the detection unit 12 are adjusted by the lifting device 13. ing.
When measuring the material to be measured 11a from this state, the center 112b of the material to be measured 11b is aligned with the optical axis 121.
need to match. Note that since FIG. 1 is a schematic diagram, the positional relationship and size ratio between the conveying roller 111 and the material to be measured 11 shown in FIG. 3 are not the same.

被測定材11aの基準寸法を設定部16から入
力する。すると移動量換算部17は第3図に示す
高さ31aを演算し、被測定材11bのときの高
さ31bを基にして移動量32を算出する。この
移動量をIとすると、第4図より I=31a−31b =a/√3−b/√3 =(a−b)/√3 (ただしaは被測定材11aの直径、bは被測
定材11bの直径を示す)。
The reference dimensions of the material to be measured 11a are input from the setting section 16. Then, the movement amount conversion unit 17 calculates the height 31a shown in FIG. 3, and calculates the movement amount 32 based on the height 31b for the material to be measured 11b. If this amount of movement is I, then from Fig. 4 I = 31a-31b = a/√3-b/√3 = (a-b)/√3 (where a is the diameter of the material to be measured 11a and b is the (indicates the diameter of the measuring material 11b).

この値Iがモーター駆動部153に送出され
る。するとモーター駆動部153はギヤードモー
ター138を回転させ、フオトインタラプター1
52からのパルスの計測を行う。スクリユージヤ
ツキ133はギヤボツクス139を介してギヤー
ドモーター138により回転させられ、昇降軸1
40が上昇していく。そして検出部12の光軸1
21が被測定材11aの中心112aに一致する
高さとなると、そのことはフオトインタラプター
152からのパルス量としてモーター駆動部15
3に知らされ、モーター駆動部153はギヤード
モーター138の駆動を停止する。
This value I is sent to the motor drive section 153. Then, the motor drive unit 153 rotates the geared motor 138, and the photo interrupter 1
The pulse from 52 is measured. The screw jack 133 is rotated by a geared motor 138 via a gear box 139, and the elevator shaft 1
40 is rising. And the optical axis 1 of the detection unit 12
21 reaches a height that matches the center 112a of the material to be measured 11a, this means that the motor drive unit 15
3, the motor drive section 153 stops driving the geared motor 138.

なお本考案は上記実施例に限定されず、ギヤー
ドモーター138にかわつてステツピングモータ
ーを採用した場合にはオープンループ制御となる
ため、制御部15からロータリーエンコーダーを
省いた構成とすることが可能である。
Note that the present invention is not limited to the above embodiment, and if a stepping motor is used instead of the geared motor 138, open loop control will be achieved, so it is possible to omit the rotary encoder from the control unit 15. .

また搬送ローラー111については、鼓状の場
合について説明したが、その他の形状、例えば円
柱状の搬送ローラーについても同様に適用するこ
とが可能である。
Moreover, although the conveyance roller 111 has been described in the case of a drum-shaped case, it is possible to apply the present invention similarly to a conveyance roller having other shapes, for example, a cylindrical shape.

考案の効果 本考案に係る高さ調整装置は、設定部によつて
被測定材の寸法の基準値を入力すると共に、入力
された値に基づき移動量換算部において算出され
た値に従つて、昇降装置により検出部を垂直方向
に移動させる構成としているので、寸法の基準値
を入力するのみで検出部が移動するため、検出部
の光軸と被測定材の中心とを自動で一致させるこ
とが可能となつている。
Effects of the invention The height adjustment device according to the invention inputs the reference value of the dimension of the material to be measured through the setting section, and also inputs the reference value of the dimension of the material to be measured through the setting section, and also inputs the reference value of the dimension of the material to be measured using the setting section, and according to the value calculated by the movement amount conversion section based on the input value, Since the detection unit is configured to move vertically using a lifting device, the detection unit moves simply by inputting the reference dimensions, allowing the optical axis of the detection unit to automatically align with the center of the material to be measured. is now possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の概略を示す正面
図、第2図はロータリーエンコーダーおよびギヤ
ードモーターを含む電気的接続を示すブロツク線
図、第3図は被測定材の基準寸法と中心の高さと
の関係を示す説明図、第4図は基準点と被測定材
の中心との位置関係を示す説明図である。 11……被測定材、12……検出部、13……
昇降装置、15……制御部、16……設定部、1
7……移動量換算部、111……被測定材支持
部。
Fig. 1 is a front view schematically showing an embodiment of the present invention, Fig. 2 is a block diagram showing electrical connections including a rotary encoder and a geared motor, and Fig. 3 is a diagram showing the reference dimensions and center of the material to be measured. FIG. 4 is an explanatory diagram showing the relationship with height, and FIG. 4 is an explanatory diagram showing the positional relationship between the reference point and the center of the material to be measured. 11... Material to be measured, 12... Detection section, 13...
Lifting device, 15...control unit, 16...setting unit, 1
7...Movement amount conversion section, 111...Measurement material support section.

Claims (1)

【実用新案登録請求の範囲】 被測定材支持部により支持され、その外形が長
い棒状の被測定材が、その長手方向に沿つて移動
しつつ検出部の光路を横切るとき、この被測定材
の寸法が前記検出部によつて測定される光学式寸
法測定装置において、 前記検出部を支持すると共に、支持した前記検
出部を垂直方向に移動させる昇降装置と、 前記被測定材の寸法に基準値が入力される設定
部と、 この設定部に入力された基準値に基づき、前記
昇降装置における垂直方向の移動量を算出する移
動量換算部と、 この移動量換算部によつて算出された移動量に
従つて前記昇降装置における垂直方向の移動を制
御する制御部とを備え、 前記被測定材の中心と前記光軸とを略同一高さ
とさせることを特徴とする高さ調整装置。
[Claims for Utility Model Registration] When a material to be measured, which is supported by a material to be measured supporting part and has a long external shape, crosses the optical path of the detection unit while moving along its longitudinal direction, the material to be measured is An optical dimension measuring device in which a dimension is measured by the detection section, further comprising: an elevating device that supports the detection section and moves the supported detection section in a vertical direction; and a reference value for the dimension of the material to be measured. a setting section into which is input; a movement amount conversion section that calculates the vertical movement amount of the lifting device based on the reference value input to this setting section; a control section that controls vertical movement of the elevating device according to an amount of the object to be measured, the height adjusting device comprising: a control section that controls vertical movement of the elevating device according to an amount of the object;
JP1986184169U 1986-11-28 1986-11-28 Expired - Lifetime JPH058482Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986184169U JPH058482Y2 (en) 1986-11-28 1986-11-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986184169U JPH058482Y2 (en) 1986-11-28 1986-11-28

Publications (2)

Publication Number Publication Date
JPS6388704U JPS6388704U (en) 1988-06-09
JPH058482Y2 true JPH058482Y2 (en) 1993-03-03

Family

ID=31131589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986184169U Expired - Lifetime JPH058482Y2 (en) 1986-11-28 1986-11-28

Country Status (1)

Country Link
JP (1) JPH058482Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664607A (en) * 1979-10-31 1981-06-01 Sony Corp Measuring machine
JPS57201801A (en) * 1981-06-05 1982-12-10 Mitsutoyo Mfg Co Ltd Limit gauge
JPS60107509A (en) * 1983-11-15 1985-06-13 Nippon Kogaku Kk <Nikon> Contacting type height measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124885Y2 (en) * 1981-01-27 1986-07-26

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664607A (en) * 1979-10-31 1981-06-01 Sony Corp Measuring machine
JPS57201801A (en) * 1981-06-05 1982-12-10 Mitsutoyo Mfg Co Ltd Limit gauge
JPS60107509A (en) * 1983-11-15 1985-06-13 Nippon Kogaku Kk <Nikon> Contacting type height measuring device

Also Published As

Publication number Publication date
JPS6388704U (en) 1988-06-09

Similar Documents

Publication Publication Date Title
EP0239409A1 (en) Robot for surgical operation
CN104155111B (en) The centering method of dolly centralising device built by a kind of electromotor
US10503131B2 (en) Precision shaft alignment system
JPH058482Y2 (en)
JPH0292409A (en) Roll molding machine
JPH08151903A (en) Rotor rotation pedestal device
KR101189518B1 (en) Apparatus for inspecting surfaces and method for inspecting surfaces using it
JP3190723B2 (en) Roller eccentricity measuring device
JPH0257938A (en) Apparatus for checking equal velocity coupling
KR102623327B1 (en) Device for measuring diameter of cylindrical object
CN217787366U (en) Rapid precision adjusting equipment for motor rack
CN110715634A (en) Goniometer based on differential program-controlled multi-tooth dividing table
JPH05231864A (en) Roundness measuring machine
CN104976297A (en) Mechanical transmission device of full-automatic standard ellipsometer
CN219714421U (en) Intelligent calibration system for probe tube
CN216081339U (en) Large-diameter pipeline online diameter measuring device based on laser distance measurement
CN220062883U (en) Laser calibration detection device
JPH09166420A (en) Measuring device for outer diameter of circular member
CN215797058U (en) Automatic correction UVW platform capable of achieving high-precision alignment
KR20030052750A (en) Apparatus for measurment of distance between edger roll
KR102490822B1 (en) Aircraft weight and center of gravity measurement system
US20160041542A1 (en) Precision shaft alignment system
JPH01148905A (en) Shape measuring machine
JP2792549B2 (en) Method and apparatus for correcting inclination of roundness measuring machine
JPS61130803A (en) Centering method of material wood